Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missouri S&T</td>
<td>5</td>
</tr>
<tr>
<td>Educational Goals of Missouri S&T</td>
<td>5</td>
</tr>
<tr>
<td>Administrators</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to Missouri University of Science and Technology</td>
<td>7</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>8</td>
</tr>
<tr>
<td>General Information</td>
<td>9</td>
</tr>
<tr>
<td>Academic Resources On Campus</td>
<td>9</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>9</td>
</tr>
<tr>
<td>Aerospace Studies (Air Force ROTC)</td>
<td>12</td>
</tr>
<tr>
<td>Career Opportunities and Employer Relations (COER)</td>
<td>13</td>
</tr>
<tr>
<td>Cooperative Education Program (Co-op)</td>
<td>14</td>
</tr>
<tr>
<td>Counseling, Disability Support, and Student Wellness</td>
<td>15</td>
</tr>
<tr>
<td>Cultural Programs</td>
<td>17</td>
</tr>
<tr>
<td>Curtis Laws Wilson Library</td>
<td>17</td>
</tr>
<tr>
<td>Fees</td>
<td>17</td>
</tr>
<tr>
<td>Financial Assistance</td>
<td>20</td>
</tr>
<tr>
<td>Global Learning</td>
<td>22</td>
</tr>
<tr>
<td>Information Technology (IT)</td>
<td>22</td>
</tr>
<tr>
<td>International Affairs</td>
<td>24</td>
</tr>
<tr>
<td>Military Science (Army ROTC)</td>
<td>25</td>
</tr>
<tr>
<td>Missouri Greece Program</td>
<td>26</td>
</tr>
<tr>
<td>Missouri London Program</td>
<td>27</td>
</tr>
<tr>
<td>New Student Programs</td>
<td>27</td>
</tr>
<tr>
<td>Nuclear Reactor</td>
<td>28</td>
</tr>
<tr>
<td>Oak Ridge Associated Universities (ORAU)</td>
<td>28</td>
</tr>
<tr>
<td>Office of the Registrar</td>
<td>28</td>
</tr>
<tr>
<td>Other Possibilities</td>
<td>32</td>
</tr>
<tr>
<td>Required Assessment Testing</td>
<td>33</td>
</tr>
<tr>
<td>Residential Life</td>
<td>34</td>
</tr>
<tr>
<td>S&T Police Department</td>
<td>35</td>
</tr>
<tr>
<td>Student Design and Experiential Learning Center (SDELC)</td>
<td>37</td>
</tr>
<tr>
<td>Student Diversity Programs (SDP)</td>
<td>38</td>
</tr>
<tr>
<td>Student Health Services</td>
<td>38</td>
</tr>
<tr>
<td>Student Organizations</td>
<td>39</td>
</tr>
<tr>
<td>Teacher Education Program</td>
<td>40</td>
</tr>
<tr>
<td>The Honors Academy</td>
<td>40</td>
</tr>
<tr>
<td>Women’s Leadership Institute (WLI)</td>
<td>41</td>
</tr>
<tr>
<td>Writing Across the Curriculum</td>
<td>41</td>
</tr>
<tr>
<td>Degree Programs</td>
<td>43</td>
</tr>
<tr>
<td>Degree Programs</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Minors</td>
<td>46</td>
</tr>
<tr>
<td>Certificates</td>
<td>47</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>48</td>
</tr>
<tr>
<td>Aerospace Studies</td>
<td>51</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>51</td>
</tr>
<tr>
<td>Art</td>
<td>55</td>
</tr>
<tr>
<td>Arts, Languages & Philosophy</td>
<td>56</td>
</tr>
<tr>
<td>Bioinformatics Minor Curriculum</td>
<td>56</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>56</td>
</tr>
<tr>
<td>Business and Management Systems</td>
<td>59</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>62</td>
</tr>
<tr>
<td>Chemical & Biochemical Engineering</td>
<td>65</td>
</tr>
<tr>
<td>Chemistry</td>
<td>68</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>76</td>
</tr>
<tr>
<td>Computer Science</td>
<td>80</td>
</tr>
<tr>
<td>Economics</td>
<td>82</td>
</tr>
<tr>
<td>Education</td>
<td>85</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>86</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>91</td>
</tr>
<tr>
<td>English</td>
<td>94</td>
</tr>
<tr>
<td>Enterprise Resource Planning</td>
<td>96</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>96</td>
</tr>
<tr>
<td>Etymology</td>
<td>99</td>
</tr>
<tr>
<td>Explosives Engineering</td>
<td>99</td>
</tr>
<tr>
<td>Finance</td>
<td>99</td>
</tr>
<tr>
<td>Foreign Languages</td>
<td>99</td>
</tr>
<tr>
<td>French</td>
<td>99</td>
</tr>
<tr>
<td>Freshman Engineering Program</td>
<td>99</td>
</tr>
<tr>
<td>Geological Engineering</td>
<td>100</td>
</tr>
<tr>
<td>Geology and Geophysics</td>
<td>104</td>
</tr>
<tr>
<td>German</td>
<td>107</td>
</tr>
<tr>
<td>Global Studies</td>
<td>107</td>
</tr>
<tr>
<td>History</td>
<td>107</td>
</tr>
<tr>
<td>Information Science and Technology</td>
<td>110</td>
</tr>
<tr>
<td>Interdisciplinary Engineering</td>
<td>112</td>
</tr>
<tr>
<td>Latin</td>
<td>112</td>
</tr>
<tr>
<td>Marketing</td>
<td>112</td>
</tr>
<tr>
<td>Materials, Science, and Engineering</td>
<td>112</td>
</tr>
<tr>
<td>Mathematics</td>
<td>113</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>117</td>
</tr>
</tbody>
</table>
Metallurgical Engineering ... 122
Military Science ... 124
Mining Engineering .. 125
Multiculturalism & Diversity .. 130
Music .. 131
Nuclear Engineering .. 131
Petroleum Engineering .. 134
Philosophy ... 136
Physical Education and Recreation .. 137
Physics .. 137
Political Science .. 140
Prehealth Professions .. 141
Prelaw ... 141
Psychology ... 141
Russian .. 147
Spanish .. 147
Speech and Media Studies .. 147
Statistics .. 148
Sustainability .. 148
Systems Engineering ... 148
Technical Communication .. 148
Theatre .. 149
Course List ... 151
Aerospace Engineering (AERO ENG) ... 151
Architectural Engineering (ARCH ENG) ... 154
Art (ART) .. 156
Biological Sciences (BIO SCI) ... 157
Business (BUS) ... 160
Ceramic Engineering (CER ENG) ... 161
Chemical Engineering (CHEM ENG) ... 163
Chemistry (CHEM) .. 166
Civil Engineering (CIV ENG) .. 169
Computer Engineering (COMP ENG) ... 173
Computer Science (COMP SCI) ... 175
Economics (ECON) .. 178
Education (EDUC) .. 180
Electrical Engineering (ELEC ENG) ... 182
Engineering Management (ENG MGT) ... 186
English (ENGLISH) ... 189
Environmental Engineering (ENV ENG) ... 192
Enterprise Resource Planning (ERP) ... 193
Etymology (ETYM) .. 194
Missouri S&T

Statement of Affirmative Action

It is the policy of the Missouri University of Science and Technology to provide full and equal employment opportunities to all persons without regard to race, color, religion, sex, sexual orientation, national origin, age, disability, and veteran status; to prohibit discrimination in recruitment, employment or conditions of employment, including salary and benefits related thereto; to promote employment opportunity and to take affirmative action in this regard.

Title VI of the Civil Rights Act of 1964

“No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance.”

Title IX of the Education Amendments of 1972

“No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving Federal financial assistance.”

Section 504 of the Rehabilitation Act of 1973

“No otherwise qualified handicapped individual in the United States...shall, solely by reason of the handicap, be excluded from the participation in, be denied the benefits of, or be subject to discrimination under any program or activity receiving Federal financial assistance.”

Section 303 of the Age Discrimination Act of 1975

“No person in the United States shall, on the basis of age, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance.”

The Americans with Disabilities Act of 1990

Section 102 Discrimination

General Rule – No covered entity shall discriminate against a qualified individual with a disability because of the disability of such individual in regard to job application procedures, the hiring, advancement, or discharge of employees, employee compensation, job training, and other terms, conditions, and privileges of employment.

Missouri S&T conducts its programs and activities involving admission and treatment of students, employment, teaching, research, and public service in a non-discriminatory manner as prescribed by Federal law and regulation.

Inquiries concerning the above may be addressed to:

Campus Title IX Coordinator, Missouri University of Science and Technology
http://titleix.mst.edu/resources

Chancellor, Missouri University of Science and Technology
Rolla, Missouri 65409-9957

Director, Office for Civil Rights Department of Education
Washington, D.C. 20201

Information on the World Wide Web

For the most current information regarding course descriptions go to:
http://registrar.mst.edu

Students are also advised to consult the web sites of individual department offices.

Accreditation

The University has been accredited by the Higher Learning Commission of the North Central Association of Colleges and School, http://www.ncahigherlearningcommission.org, 30 North LaSalle Street; Suite 2400; Chicago, Illinois 60602-2504. (312)263-0456. Further information on the specialized accreditation by department is available in the Missouri S&T Fact Book or at http://ira.mst.edu/accreditation.html

Registrar’s Office Contact Information

103 Parker Hall; 300 W. 13th Street; Rolla, MO 65409
(573)341-4181, registrar@mst.edu, or visit http://registrar.mst.edu

Educational Goals of Missouri S&T

As Missouri’s technological research university, Missouri University of Science and Technology’s mission is to educate tomorrow’s leaders. In a world growing increasingly dependent on science and technology, tomorrow’s graduates must be prepared to be leaders in more than just their chosen professions. They must also be leaders in business, in government, in education, and in all aspects of society. Missouri S&T is dedicated to providing leadership opportunities for its students. The opportunity to receive an excellent technological education is only part of the educational experience received by students at Missouri S&T. Missouri S&T offers a full range of engineering and science degrees, coupled with business and liberal arts degrees and programs that are vital to the kind of comprehensive education that turns bright young men and women into leaders.

Missouri S&T is nationally recognized for its excellent undergraduate engineering programs, and is distinguished for producing cutting-edge research and key technologies vital to the economic success of Missouri and the nation. Missouri S&T has a distinguished faculty dedicated wholeheartedly to the teaching, research, and creative activities necessary for scholarly learning experiences and advancements to the frontiers of knowledge. Missouri S&T has excellent physical facilities, which support the best possible education in the liberal arts, engineering, science, applied science, and selected interrelated fields.

Missouri S&T’s programs in science, engineering, and business, its technology transfer programs, its leadership opportunities, and its learning environment are all integral parts of the total educational package available to students who attend the Missouri University of Science and Technology.
Mission Statement

Missouri University of Science and Technology integrates education and research to create and convey knowledge to solve problems for our state and the technological world.

(Approved January 2008 Board of Curators meeting.)

Vision

Missouri University of Science and Technology will be recognized as one of the top five technological research universities in the nation.

On Jan. 1, 2008, UMR became Missouri University of Science and Technology, or Missouri S&T. Our new name will not only help us gain broader national recognition, but will also give us an identity that fits our mission - to be the state’s technological research university.

Administrators

University of Missouri Board of Curators

Wayne Goode, 1-1-2015 (Chair)
Don M. Downing, 1-1-2015 (Vice-Chair)
David R. Bradley, 1-1-2015
Ann Covington, 1-1-2019
Donald L. Cupps, 1-1-2017
Pamela Q. Henrickson, 1-1-2017
John R. Phillips, 1-1-2019
Michael Ponder, 1-1-2019
David L. Steward, 1-1-2017
Amy Johnson (Student Representative to the Board), 1-1-2014

Missouri University of Science and Technology Administrators

Cheryl B. Schrader, Chancellor
Warren K. Wray, Provost and Executive Vice Chancellor, Academic Affairs
Joan M. Nesbitt, Vice Chancellor, University Advancement
Randy Stoll, Interim Vice Chancellor, Administrative Services
Shenethia Manuel, Associate Vice Chancellor, Human Resource Services, Affirmative Action, Diversity and Inclusion
Debra Robinson, Vice Chancellor, Student Affairs
Walter J. Branson, Vice Chancellor, Finance and Administration
Venkat Allada, Vice Provost, Graduate Studies
Jeffrey D. Cawfield, Vice Provost, Undergraduate Studies
K. Krishnamurthy, Vice Provost, Research
Philip D. Whitefield, Interim Vice Provost, Academic Affairs
Laura Stoll, Vice Provost & Dean, Enrollment Management
Henry A. Wiebe, Vice Provost, Global Learning
Greg Smith, Chief Information Officer

Missouri S&T Board of Trustees

Richard Arnoldy, (retired) ARCO Construction Company, Inc., St. Louis, MO
Keith Bailey, (retired) Williams Companies, Tulsa, OK
James Bertelsmeyer, (retired) Heritage Propane Partners L.P., Tulsa, OK
Raymond Betz, The Betz Companies, Houston, TX
Sarah Bock, Covidien, St. Louis, MO
Robert G. Brinkmann, R.G. Brinkmann Construction Co., St. Louis, MO
Michael Bytnar, (retired) Nooter Corporation, St. Louis, MO
Hugh Cole, Avraham Y. Goldratt Institute, New Haven, CT
Roger Dorf, (retired) Navini Networks, Inc., Richardson, TX
John Eash, Boeing Company, St. Louis, MO
Richard Eimer, (retired) ONEOK, Inc., Tulsa, OK
Gary Havener, Havener Companies, Fort Worth, TX
Mike Hurst, (retired) McCarthy, St. Louis, MO
Barry Koenemann, United Construction Enterprise Co., St. Louis, MO
Steven J. Malcolm, (retired) The Williams Companies, Inc., Tulsa, OK
John Mathes, (retired) The Mathes Companies, Columbia, IL
J. Ronald Miller, (retired) Procter & Gamble, Cincinnati, OH
Joan Nesbitt, Missouri S&T, Rolla, MO
Helene Hardy Pierce, GAF Materials Corporation, Wayne, NJ
Joseph Rupp, Olin Corporation, Clayton, MO
Cheryl B. Schrader, Missouri S&T, Rolla, MO
Richard Stegemeier, (retired) Unocal Corporation, Anaheim, CA
Geoffrey Steinhart, (retired) Anheuser-Busch Companies, Inc., St. Louis, MO
Cynthia Tang, (retired) Insight Industries, Inc., Platteville, WI
Richard Vitek, (retired) Photodyne, Inc., Hartland, WI
Cheryl Walker, Obasi Enterprises, LLC, St. Louis, MO
Kathryn Walker, OPENAIR Ventures, Olathe, KS
Theodore Weise, (retired) Federal Express Corporation, Memphis, TN
Joan Woodward, (retired) Sandia National Laboratories, Albuquerque, NM
Steve Wunning, Caterpillar, Inc., Peoria, IL

Missouri S&T Named Professorships

Moshen Asle Zaeem, Roberta & G. Robert Couch Assistant Professor
Baojun Bai, Lester Birbeck Endowed Chair
Mariesa Crow, Fred W. Finley Distinguished Professorship of Electrical and Computer Engineering
Sajal Das, Daniel St. Clair Endowed Chair in Computer Science
Nuran Ercal, Richard K. Vitek/FCR Endowed Chair in Biochemistry
Ralph E. Flori, Jr., Gulf Oil Foundation Professorship
Samuel Frimpong, Robert H. Quenon Missouri Endowed Chair in Mining Engineering
Stewart Gillies, Union Pacific Foundation/Rocky Mountain Energy Co. Professorship
Steven L. Grant, Roy A. Wilkens Missouri Telecommunications Distinguished Professorship
Shubhender Kapila, MO Soybean Res. Professorship
Kamal Khayat, Vernon & Maralee Jones Endowed Professorship
Ming Leu, Keith & Pat Bailey Missouri Professorship in Mechanical Engineering & Aerospace Engineering
Frank Liu, Michael and Joyce Bytner Product Innovation and Creativity Professorship
Charlottle Mathews, Maxwell Weiner Professorship in English
Daniel B. Oerther, John & Susan Mathes Endowed Chair
Von L. Richards, Robert V. Wolf Assoc. Professor of Metals Casting in Metallurgical Engineering
David J. Rogers, Karl F. Hasselman Missouri Chair in Geological and Petroleum Engineering
Jagannathan Sarangapani, Rutledge-Emerson Professor in Electrical Engineering
Joseph Smith, Laufer Endowed Chair in Energy
Jay Switzer, Castleman/FCR Missouri Professorship of Discovery in Chemistry
Donald Wunsch, Mary K. Finley Missouri Professorship in Computer Engineering
Caizhi Zhou, Roberta & G. Robert Couch Assistant Professor
Reza Zoughi, Schlumberger Distinguished Professor in Electrical & Computer Engineering

Curators’ Professors

Bassem F. Armaly of Mechanical Engineering (Emeritus)
S.N. Balakrishnan of Mechanical & Aerospace Engineering
Richard K. Brow of Ceramic Engineering
K. Chandrashekhara of Mechanical & Aerospace Engineering
Alfred L. Crosbie of Mechanical Engineering
Lokesh Dharani of Mechanical Engineering
James Drewniak of Electrical Engineering
Greg Hilmas of Ceramic Engineering
Nicholas Leventis of Chemistry (Emeritus)
Michael Schulz of Physics

Curators’ Teaching Professorship

James S. Drallmeier of Mechanical Engineering
William G. Fahrenholz of Ceramic Engineering
Larry Gragg of History & Political Science
Frances Dee Haemmerlie Montgomery of Psychology
Yinfa Ma of Chemistry
O. Allan Pringle of Physics
David C. Van Aken of Materials Science and Engineering

Introduction to Missouri University of Science and Technology

A college education offers you a number of options. It can be the foundation you'll need to pursue a rewarding career or the background to further your studies in a graduate or professional school.

Selecting the college or university that will help you prepare for these options is a decision that requires careful consideration. What do you want want from an education? What are your goals? You should consider quality of academic programs, location, return on the investment you make, and the availability of scholarships and financial assistance.

Before you make your decision, we would like you to know more about what Missouri University of Science and Technology has to offer you, including:

- degrees in business, computing, engineering, science, and the humanities and social sciences as well as an Education program certification
- ranking as a top investment and top public university
- a national leader in the number of bachelor’s degrees granted in engineering
- medium-sized campus of about 6,700 students located in a beautiful area of
- financial assistance and scholarships for qualified individuals
- one of the top Career Opportunities offices in the country

In classes at Missouri S&T, you are encouraged to participate and explore the subjects that interest you. Technologically advanced laboratories help you understand the concepts learned in the classroom. Tenured or tenure-track professors and advisors will help you plan your academic program so that you may attain your academic and career goals.

Co-curricular activities provide outlets for your interests and talents. Among the over 200 student organizations are intercollegiate athletics and intramural sports, musical groups and dramatic productions, service groups, special interest organizations, and student media and publications. You can explore the rivers, parks, and lakes of the nearby Missouri Ozarks and enjoy St. Louis and Springfield, each within about 100 miles of Rolla.

Missouri S&T offers opportunities to help you with your educational finances. If you are eligible, there are loans, grants, and scholarships available, or you can apply for a part-time job through the work-study program.

The Cooperative Training Program at Missouri S&T allows qualified students to alternate semesters of school with semesters of work in industry. When you are ready to graduate, the University offers outstanding career assistance.

We invite you and your parents to take a closer look at the Missouri University of Science and Technology. The following pages will introduce you to the opportunities that await you. We encourage you to visit the campus. If you would like more information, or to arrange a tour of the campus, please contact:

Office of Admissions
106 Parker Hall
Missouri University of Science and Technology
Rolla, MO 65409-1060
1-800-522-0938

About the Campus

Founded in 1870 as one of the first technological schools west of the Mississippi, today Missouri University of Science and Technology is one of the nation’s top technological research universities. Originally known as the University of Missouri School of Mines and Metallurgy, the campus was later named the University of Missouri-Rolla in 1964 and Missouri S&T in 2008. Missouri S&T is one of the four campuses of the University of Missouri System.

The 284-acre campus is located in Rolla, Mo., a town of nearly 20,000 in the heart of the Ozarks. The university offers bachelor of arts and bachelor of science degrees in 30 fields of study, including engineering, science, humanities, business and social sciences. Master of science degrees are offered in 27 disciplines, the doctor of philosophy in 20 and the doctor of engineering in eight.

The Missouri S&T campus is home to 50 research and academic support centers. Externally sponsored program expenditures have increased about 150 percent since FY2001, from $17.23 million to $38.08 million in FY2009. In FY2010, Missouri S&T received a record $52.3 million in new grant and contract awards. Missouri S&T will enhance its research activity in order to distinguish itself through interdisciplinary collaborations of national significance.

Missouri S&T enrolls more than 7,600 students from 50 states and 70-plus countries. More than 70 percent of students study in engineering, science or computer fields, but Missouri S&T also offers liberal arts, humanities, social science and business degrees, as well as certification in select education fields. More than 700 different employers, including many of the nation’s top companies, recruited S&T graduates in 2012-13.
S&T graduates get great jobs at great salaries. In 2012-2013 graduates with bachelor’s degree start at nearly $60,000 on average and graduates earning post-baccalaureate degrees start at greater than $71,000 on average.

Campus Life

Missouri S&T offers a number of campus living options, including fraternity and sorority houses, traditional residence halls and the new Residential College. The university has more than 200 student organizations, including a dozen student design teams, a competitive NCAA Division II athletic program, student professional societies, a student radio station, and theatre and music programs. Each year, Missouri S&T students help to organize one of the largest St. Pat’s celebrations in the nation.

University of Missouri Structure & History

The four University of Missouri campuses are located in Rolla, Columbia, Kansas City and St. Louis. Governing these campuses is the Board of Curators, whose members are appointed by the Governor of Missouri and confirmed by the Missouri Senate. The president of the university directs and coordinates programs of all four campuses with assistance from staff in finance, business management, academic affairs, research, extension, development, public information, and other university services. The activities of each campus are under the supervision of a chancellor, who directs campus affairs within policies established by the UM Board of Curators and the president.

The University of Missouri has a long and proud history. It was established at Columbia in 1839, only 18 years after Missouri became a state. A land-grant university, UM is recognized as the first state university west of the Mississippi River. The university remained a single campus institution until 1870 when the University of Missouri School of Mines and Metallurgy (Missouri S&T’s former designation) was established at Rolla. Campuses at St. Louis and Kansas City were added in 1963.

On July 1, 1964, the UM Board of Curators took action to rename the University of Missouri School of Mines and Metallurgy to the University of Missouri-Rolla.

Missouri University of Science and Technology

On Jan. 1, 2008, University of Missouri-Rolla became Missouri University of Science and Technology, or Missouri S&T. Our new name will not only help us gain broader national recognition, but will also give us an identity that fits our mission as the state’s technological research university.

Student Consumer Information

Various state and federal laws, specifically the Higher Education Opportunity Act, require Missouri University of Science and Technology to provide information and notice to students on a variety of topics. In addition, Missouri S&T occasionally develops statements or policies on important matters and distributes them to all students. For a listing of official notifications that are currently provided to students visit the web at: http://registrar.mst.edu/student_consumer_info.html.

It is a student’s responsibility to know and follow current requirements and procedures at the departmental and University levels, including those described in the University’s Student Academic Regulations, Student Handbook, Undergraduate and Graduate Catalogs, Residential Housing Terms and Conditions and the Collected Rules and Regulations of the University of Missouri.

For More Information

If you have additional questions, write or call the Director of Admissions, Missouri University of Science and Technology, Rolla, MO 65409-1060 (800) 522-0938. You also may wish to contact one of the following offices for specific information:

- Air Force ROTC (573) 341-4925
- Army ROTC (573) 341-4744
- Career Opportunities and Employer Relations (573) 341-4343
- Counseling, Disability Support, and Student Wellness (573) 341-4211
- Global Learning (573) 341-6222
- Freshman Engineering (573) 341-4977
- Honors Academy Program (573) 341-4131
- Intercollegiate Athletics (573) 341-4175
- International Affairs (573) 341-4208
- Minority in Engineering and Science Program (573) 341-4212
- New Student Programs (573) 341-4025
- Registrar (573) 341-4181
- Residential Life and Student Support (573) 341-4218
- Student Diversity Programs (573) 341-4212
- Student Financial Aid (573) 341-4282
- University Police (573) 341-4300
- Vice Chancellor of Student Affairs (573) 341-4292
- Women in Engineering and Science Program (573) 341-4212

Academic Calendar

(See http://registrar.mst.edu/calendars)
General Information

Academic Resources On Campus

"Learning Enhancement Across Disciplines" (LEAD) Program

The LEAD program offers learning forums for students who wish to increase their understanding, improve their skills, and validate their mastery of concepts and techniques in a wide range of courses. LEAD sponsors learning centers and tutoring for courses currently listed at http://lead.mst.edu/assist. Our goal is to assist students in achieving their full potential.

LEAD Learning Centers

The LEAD program sponsors open-environment Learning Centers for many courses in more than ten departments. Discipline-based faculty and undergraduate peer instructors staff the centers during fixed hours each week. Students are encouraged to work in collaborative groups to solve problems and to develop solution strategies – guided and validated by the instructional experts on duty. The centers are designed not only to assist students with course content, but to also help them gain professional skills in communication, problem solving and teamwork.

LEAD Peer Tutoring

Scheduled walk-in peer tutoring is available for over twenty foundational courses at S&T. It focuses on individual and small-group interactive assistance. Our undergraduate LEAD tutors are accomplished in the course material, trained by professional staff, and communicate with LEAD faculty mentors in the associated disciplines.

Check out the current schedule of LEAD academic assistance at http://lead.mst.edu/assist or call the LEAD office at (573) 341-4608 for more information.

Sources of Academic Assistance at Missouri S&T

There are several sources of academic assistance at Missouri S&T that students can access to improve their understanding of and proficiency with course material and learning process.

- **Professors**
 - Professors can clarify concepts or refer students to peers or resources that can provide academic assistance

- **Writing Center**, 113 Campus Support Facility, (573) 341-4436, http://writingcenter.mst.edu
 - New facility with state-of-the-art computers, all the latest software, and a staff of highly trained, motivated, and friendly peer writing tutors.

- **Counseling Center**, 204 Norwood Hall, (573) 341-4211, http://counsel.mst.edu
 - Study skill reference material at the Van Matre Resource Center

- **Library**, (573) 341-4227, http://library.mst.edu/
 - Great study or meeting facility, and broad learning resources

Admission Requirements

Students applying to Missouri S&T should submit an undergraduate application for admission and all required materials as described below. Applications for the fall semester should be submitted by July 1, for the spring semester by December 1, and for the summer session by May 1. All first-time applicants must submit an application fee of $50, paid in U.S. currency only. Acceptance is on a rolling basis.

The completed admission application (with supporting documents) serves as the scholarship application for most merit-based aid programs. Explore additional scholarships at https://mst.academicworks.com/. The priority scholarship deadline is December 1 and the final scholarship deadline is February 1 with scholarships awarded on a rolling basis.

Regular Admission from High School

Students should submit the undergraduate application for admission, $50 application fee, high school transcript, and one appropriate test score (ACT or SAT).

The following minimum requirements are established for general admission of first-time college students to the Missouri University of Science and Technology. Meeting the minimum requirements, however, does not guarantee admission. The Office of Admissions will notify applicants in a timely manner whether they have been accepted, denied, or placed on a waiting list.

Effective as of the fall semester 1997, regular admission of first-time college students (entering freshman) requires completion of at least 17 units of credit (1 unit = 1 year in class) as follows:

1. Four (4) units of English, one of which may be speech or debate. Two units emphasizing composition or writing skills are required.
2. Four (4) units of mathematics (Algebra I or higher). This requirement may be satisfied by the completion of courses in middle school, junior high, or senior high.
3. Three (3) units of science (not including General Science). The three units of science must include at least one laboratory course and must include units from at least two of the following areas: physical science, biology, physics, chemistry, and earth sciences. This requirement may be satisfied by the completion of courses in middle school, junior high, or senior high.
4. Three (3) units of social studies.
5. One (1) unit of fine arts, to be taken in visual arts, music, dance or theater.
6. Two (2) units of a single foreign language. This requirement may be satisfied by the completion of courses in middle school, junior high, or senior high.

Students will also be evaluated on a combination of aptitude examination percentile (ACT or SAT test), class rank and grade point average (GPA). If the sum of the high school class rank percentile and aptitude examination percentile is:

- 120 or greater: The student is generally directly admissible. However, the university placement process may require remediation and reduced schedules for some students. Some students may receive enhanced advising, recommendations for remediation, and reduced academic schedules.
• 100-120: Students in this range are at higher risk of experiencing difficulty with university-level work.
• Less than 100: Students in this range are normally admissible only after additional academic development which is not available at Missouri S&T. Students in this category are encouraged to enroll at one of Missouri S&T’s transfer partner schools and later apply to Missouri S&T through the Transfer Assistance Program (TAP).

The University seeks a heterogeneous student body reflecting diversity of race, gender, ethnicity, age, geography (including international students), and physical disability. Factors given prime consideration for admission to undergraduate study are an applicant’s previous academic success and the quality of the records presented. Applicants who do not meet the criteria set forth for regular admission from high school may be considered by appealing to the Admissions Appeal Committee. Additional factors which may be considered for admission include:

• extensive extracurricular activity
• personal statement of 200 words or less (optional)
• outstanding talents and/or abilities
• number and scope of college preparatory courses taken
• evidence of marked improvement, over time, in high school academic record
• significant work experience and/or family responsibilities

Special Admission Cases

Students should submit the undergraduate application for admission, $50 application fee, high school transcript, and one appropriate test score (ACT or SAT). Admission decisions will be based on the following criteria.

1. Early Admission from High School. Superior high school students may be admitted before they have graduated from high school.

 There are two types of early admission:

 A. If the student has completed all of the requirements for graduation from high school, eligibility for admission will be determined by the procedures established for regular admission from high school. Certification by the high school principal or counselor that graduation requirements have been met and a high school diploma will be issued is required.

 B. If the student has not completed all requirements for graduation from high school, a test score and a high school class rank must be presented. The combination of test score and class rank will be evaluated on the basis of a standard that is higher than the standard for regular admission from high school. A GED will be required in lieu of a diploma.

 In either case, an interview will be required and the following information is required from each applicant:
 • application for admission
 • high school transcript (sent by school)
 • letter of recommendation from high school principal or counselor

2. Dual High School-University Enrollment. Superior high school students may be admitted in a special student category for the purpose of taking university courses while in high school. Students from high schools in the local areas are served by this option. Students must submit application for admission and required documents and test scores, along with $50 application fee. Admissions are limited and governed by space available in and prerequisites for the desired course or courses.

3. Trial Admission. Graduates of Missouri high schools who do not meet the standards for regular admission from high school may be admitted on a conditional basis, in the summer session, to any campus of the university. Typically, the enrollment is for six hours, and if “C” grades or better are earned in those six hours, the student is permitted to enroll the following semester.

4. Accredited High School Equivalency. An individual may apply for admission on the basis of scores on the General Educational Development (accredited) test after the individual’s high school class has graduated. Applicants in this category are admitted on an individual basis.

5. Graduates of Accredited High Schools. Graduates who have been out of high school for a number of years should submit required application and documents, and will be evaluated on an individual basis.

6. Admission from Non-Accredited High Schools and Home Schooled Students. Graduates of high schools that are not accredited by recognized regional accrediting associations or approved by recognized state agencies; e.g., the University of Missouri Committee on the Accreditation of Non-Public Schools, are required to have a minimum ACT enhanced composite of 24 or equivalent SAT. This also applies to home schooled students.

7. Admission from Non-Ranking High Schools. Graduates of high schools that do not rank their students are considered on an individual basis. A minimum ACT composite score of 24 or equivalent SAT is normally required.

A Campus Admissions Committee will establish necessary policies for and oversee the administration of these regulations. The committee or the director of admissions acting under its direction will determine which applicants will be admitted. The committee has the authority to establish standard application forms, to request interviews from an applicant, and to establish procedures for admission during the senior year while required courses are being completed. The committee has the authority to establish procedures for early admission from high school, dual high school-university enrollment, trial admission, and GED high school equivalency enrollment.

Admission of Transfer Students

Students should submit the undergraduate application for admission, $50 application fee, and official transcripts from any college or university attended. To be eligible for federal financial aid, all transfer students should submit an official high school transcript. Transfer students who have completed fewer than 24 college-level credits must also submit high school transcripts and one appropriate test score (ACT or SAT).

The following minimal requirements are established for general admission of transfer students. They do not include more stringent requirements that may be established by the faculties of the individual campuses or the requirements of special programs (most engineering degree programs require a higher GPA for admission). It is the responsibility of the transfer student to check with Missouri S&T transfer personnel regarding admission requirements.

1. A transfer student who has completed fewer than 24 semester hours of college-level credits must submit high school transcripts and one appropriate test score (ACT or SAT) in addition to the regular application documents for transfer students. These students will be evaluated for admission based on a combination of their high school records, test scores, and college-level GPA.
2. An applicant who has completed 24 or more semester hours of college-level work is eligible for admission if he or she is in good standing and has attained an overall grade point average of at least 2.0 (4.0 system) in all college-level courses attempted at previous institutions. (Each campus faculty governing group shall review the performance of transfer students and may recommend at that time a measure of performance which would indicate a reasonable chance of making a 2.0 grade point average at the university.) A 2.0 GPA does not guarantee admission to specific degree programs.

3. An applicant who does not meet these standards may apply by submitting to the Admissions Committee such data as the committee considers appropriate. The committee or the director of admissions acting under its direction may determine who shall be admitted.

Admission of International Students

Students who are neither citizens nor permanent residents of the United States must follow Missouri S&T admission processes for international students as outlined below:

1. Demonstrate sufficient command of English to successfully pursue work at the Missouri University of Science and Technology. Departments normally require a TOEFL score of 79 (internet-based scoring) or an IELTS score of 6.0. Students may also submit proof of successful completion of a recognized ESL program.

2. Submit an undergraduate application for admission, accompanied by a $50.00 admission fee, paid in U.S. currency.

3. Submit official transcripts (mark sheets) for each year from all secondary schools, colleges, and universities attended, showing courses taken, grades earned, rank in class, grade point average, and class or division earned if applicable. Additionally, students should submit an English translation of the official transcript along with course descriptions in English for all courses reported on the transcript. Students may be required to submit transcripts and other credentials for evaluation through an approved credential evaluation agency.

Please note the following conditions:

Students transferring from another American college or university are required to complete at least one semester before transferring. With the application, students must submit a complete transcript. Official transcripts must be sent directly from all previously attended colleges or universities. A list of courses in progress must also be sent. Missouri S&T’s international student School Transfer Eligibility form must be completed by the international student advisor from American institutions attended.

4. Submit a statement verifying ability to provide financial support:
 A. Applicants: A bank statement made by the sponsor or bank indicating source and amount of funds available per year.

Note: Your application for admission will not be given consideration until items one through three (English verification, application fee, complete transcripts) have been received. The I-20 cannot be processed without a bank statement. If your completed application materials are not received by the deadlines indicated below, admission may be delayed one semester.

- Fall semester – June 15
- Spring semester – November 15
- Summer session – April 1

Dual Enrollment of Missouri S&T Undergraduate Students in Graduate School

In general, undergraduates are not permitted to enroll for 400-level courses. However, an undergraduate may earn credit toward the bachelor’s degree for courses normally taken by first-year graduate students (400-level courses). Students are eligible to enroll when they have obtained senior status, with a minimum GPA of 3.5 if two semesters remain, 3.0 if in their final semester.

Dually enrolled students are limited to sixteen total credit hours per semester, but petitions for additional credit hours will be considered by the Provost. Petition forms are available at http://registrar.mst.edu/documents/dualenrolled.pdf. If a dually enrolled student fails to meet the minimum undergraduate scholastic standards, his or her resulting academic probationary status will be that of an undergraduate and will be evaluated without reference to the student’s grades in his or her graduate course(s).

Transfer Credit Policy

Missouri S&T accepts college-level course credits. All grades, quality points and credit hours are transferred and computed in the cumulative GPA. Grades not included in the transfer institution’s GPA due to a repeat or forgiveness policy may be removed from the Missouri S&T cumulative GPA upon verification to the Registrar’s Office. No more than 15 semester transfer hours will be dropped from the calculation of the student’s cumulative GPA.

College-level course credit earned while enrolled in high school (dual credit) shall follow the same policy as transfer credit.

The last 60 hours of an undergraduate program must normally be taken in residence at Missouri S&T. A student may, with departmental approval, take up to 15 hours of this 60 hours off campus. If the student wishes to exceed 15 hours (of the last 60 hours) taken off campus, the student must obtain approval from the Provost upon recommendation of the student’s department chair.

Transferring within the University of Missouri System

University of Missouri Policy states that “Any course that leads to an undergraduate degree on any campus of the University of Missouri shall be accepted in transfer toward the same degree on each campus of the University offering said degree.” Students transferring within the UM system are still required to satisfy the course and residency requirements of the campus from which they wish to graduate. Grades, including D and F grades, and grade points earned will also transfer and be included in the cumulative UM grade-point average.

For more information contact the following offices:

University of Missouri – Columbia Office of Admissions
800-225-6075
mu4u@missouri.edu

University of Missouri – Kansas City – Registration & Records Office
816-235-1125
registrar@umkc.edu
Mathematics Placement Test

All new freshmen will take placement tests. These tests will be given during the spring and summer orientation sessions or during the fall registration (for those who do not preregister). A high level of performance is required on both these tests in order to place into Calculus with Analytic Geometry I the first semester. Therefore, it is strongly recommended that students have four years of high school mathematics courses and that algebra and trigonometry be thoroughly reviewed before taking the placement test.

Credit by Examination

There are six different programs included in Missouri S&T’s credit by examination policy. These programs include Advanced Placement, International Baccalaureate, subject exams in the College Level Examination Program (CLEP), Missouri &T Placement Testing, military coursework/experiences (Commission on Accreditation of Services), and in some instances, departmental examinations. Contact Admissions at 1-800-522-0938 or http://www.mst.edu for Credit by Exam information. To inquire about Math Placement or CLEP testing, contact the Missouri S&T Testing Center at (573) 341-4222 or at http://testcenter.mst.edu.

Transfer Assistance Program (TAP)

Missouri institutions of higher education welcome transfer students; however, you should be aware that actual requirements for degrees vary from institution to institution. This factor makes it particularly important for you to contact the campus where you eventually wish to graduate very early in your academic program. By arranging an advance understanding of the transfer of applicable courses, it is likely that problems can be minimized. Unresolved problems of credit transfer may be appealed to the Student Scholastic Appeals Committee.

The Transfer Assistance Program, TAP, is designed to assist entering students during their first two years of college at another participating institution and then assist them in completing their education at Missouri S&T.

When students enroll in TAP, they will be provided with a transfer course guide that is developed in conjunction with the participating local college.

Missouri S&T Transfer Admissions staff will assist transfer students with questions and make regularly scheduled visits to participating colleges. Specially trained Missouri S&T academic advisors assist with pre-advising programs that offer the same opportunity for course selection as currently enrolled students.

Orientation programs designed specifically for the transfer student allow new transfer students to speak with students who have already made the transition from their two- or four-year local college to Missouri S&T and to discuss career and personal counseling, computer services, placement services, health services, student activities, and library instruction.

If you decide to become part of TAP, check the web site, http://admissions.mst.edu/transfer, or contact the following:

Transfer Programs, Office of Admissions
Missouri S&T
Rolla, MO 65409-1060
1-800-522-0938
transfer@mst.edu

Aerospace Studies (Air Force ROTC)

The Air Force Reserve Officer Training Corps (AFROTC) is an educational program designed to give young men and women the opportunity to become Air Force officers while completing a bachelor’s or master’s degree. The mission of Air Force ROTC is to develop quality leaders for the Air Force. As the largest source of Air Force officers, AFROTC prepares officer candidates to assume positions of increasing responsibility and importance in today’s Air Force. Leadership, communication, and basic military skills are the focus of the AFROTC program. In addition to helping students succeed during college, AFROTC also fosters self-confidence and self-discipline.

The Program

The AFROTC program at Missouri S&T is a four year program. However, some students may choose a three and a half or three year course of study, determined by personal circumstances. The first two years of the program, called the General Military Course (GMC), cover basic introductory military topics as well as communication and leadership. Each GMC class is a one-hour course. Students can enroll in the GMC by registering for Aerospace Studies just as they register for any other university course. There is absolutely no obligation incurred for service in the Air Force for taking GMC courses, unless the student has an active AFROTC scholarship.

The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officership. Each POC class is a three-hour course. In addition to the academic GMC/POC ROTC class, all cadets attend a two hour leadership laboratory and two hours of physical training each week. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.

Students usually attend summer field training prior to their junior year, before elevation into the POC. Field training is a four week encampment. Entrance into the POC is based on an extensive evaluation and selection process during the student’s sophomore year. Selections are based on the “whole person” concept, which considers the results of an Air Force Officer Qualifying Test, a military physical examination, university grade point averages, and physical fitness performance, among other factors.

Scholarships

Students do not have to be on a scholarship to complete our program and be an Air Force officer. However, an Air Force ROTC Scholarship can include all tuition costs, incidental and lab fees, and a flat rate for textbooks. A monthly stipend is given during the academic year to each cadet on scholarship and also members of the POC. Students who receive an AFROTC scholarship also receive an annual $2,000 supplement from Missouri S&T.
Field Training
Air Force ROTC cadets’ first extended exposure to a military environment comes with a Field Training Unit, usually at the end of the sophomore year. The cadets get a close look at Air Force life and activities and the Air Force simultaneously takes a close look at the cadets.

These FTUs include cadet orientation, junior officer training, physical training, organization and functions of an Air Force base, career orientation, drill and ceremony, small arms familiarization, and supplemental training.

Graduate Study
The Air Force realizes there is an increasing demand for graduate education among its personnel and has established several programs to provide this training. The Air Force Institute of Technology is available to AFROTC graduates and offers advanced degree training in college curricula that are related to Air Force career fields, including engineering, meteorology, the physical sciences, mathematics, languages, logistics, and business administration.

Qualifications
All students who desire to enter Air Force ROTC must be citizens of the United States, be of sound physical condition, and be of the highest moral character. Pilot and navigator candidates must be no older than 29 at commissioning; other age restrictions may apply for non-rated commissionees.

Physical Requirements
Detailed information on physical requirements is available at the detachment on campus located on the second floor of Harris Hall, or at www.afrotc.com (http://www.afrotc.com).

Military Obligation
Upon graduation and commissioning as an officer in the U.S. Air Force, students fulfill their military obligation by agreeing to retain their commission for a period of eight years, serving at least four years on active duty, depending on their selected Air Force career field. Pilots incur a ten-year active duty service commitment after completing undergraduate pilot training. Navigators incur an eight-year active duty service commitment after completing undergraduate navigator training. Aircraft Battle Management Officers incur a six-year active duty service commitment after completing ABM Training.

Opportunities
Opportunities in the Air Force are excellent, with over 100 possible career fields available. Career field availability depends on academic discipline, medical condition, desires of the individual, and needs of the Air Force. As newly commissioned Second Lieutenants on active duty, Air Force ROTC graduates can serve rewarding duties in highly technical, scientific, and operational areas such as design, research, engineering, systems development, space operations, computer science, procurement, flying, management, acquisition, and maintenance.

The Corps of Cadets
The Air Force ROTC unit at Missouri S&T is organized as an objective wing, with associated groups, squadrons, and flights. Freshmen and sophomore cadets are assigned to one of the flights. They receive instructions from POC cadets in basic military customs and courtesies, drill movements, and many other facets of Air Force operations. Additionally, they are offered the opportunity to visit Air Force bases and discuss career opportunities with Air Force members. Junior and senior cadets are assigned and rotated through various leadership positions, gaining experience in management procedures.

If you are interested in the Air Force ROTC program here at Missouri S&T or have any questions, please call or visit the detachment. We are on the second floor of Harris Hall. Our phone number is (573) 341-4925, or you can also find us at http://afrotc.mst.edu/.

Career Opportunities and Employer Relations (COER)
Career Opportunities & Employer Relations, located on the third floor of Norwood Hall, provides many services to assist Missouri University of Science and Technology students and graduates in their job search for professional full-time, summer and co-op employment.

COER is an effective link between Missouri S&T students and employers, and its goals are two-fold: first, to PREPARE students for conducting a successful job search, and second, to PROVIDE opportunities for employment.

I. Job Search Preparation
http://career.mst.edu

The COER webpage contains information on services, career fairs, events, on-campus interviews, and job listings, as well as on-line copies of the COER Career Guide.

Individual Advising
Appointments are available with career advisors who work one-on-one with students to review their resume and cover letter and to discuss job search concerns.

Workshops & Events
Workshops on Resume and Cover Letter Writing, Conquering the Career Fair, Professionalism and Interviewing Skills, Plant Trips, Evaluating a Job Offer and more are presented each semester at convenient times for students.

An Etiquette Dinner is provided each semester to review dining and business etiquette.

“Life After S&T” is presented each spring and fall for graduating students. This is a series of seminars to help students make a smoother transition to the real world and includes tips from business and industry experts.

Practice Interviews
Practice interviews are available for students who would like to assess their interviewing skills. Students are evaluated by a career advisor and given feedback on their strengths and areas that need improvement.

II. Job Search Opportunities
Career Fairs
Two career fairs are sponsored each year to provide students direct access to hundreds of employer representatives. Students have the opportunity to meet face-to-face with recruiters, hand out resumes, and
collect employer information. These contacts often lead to full-time, intern, and co-op interviews and employment.

On-Campus Interviews
Full-time, summer and co-op interviews are conducted by employers in COER’s professional interview suites, located on the 3rd floor of Norwood Hall. Students must be registered with COER to upload their resume into MinerJobs and participate in on-campus interviews. Students should check the system daily for information about employers coming to interview, job requirements, and important dates. Each student is responsible for submitting his or her resume electronically and for signing up for interviews by the stated deadlines.

Resume Referrals
When a student registers with COER, his or her resume can be referred to employers who are interested in hiring Missouri S&T students even though the employer may not necessarily be coming to campus to interview. The employer will then contact the student directly if he or she is interested.

Resume Drops
Some employers will list their job opportunities and request a “Resume Drop” from students. Interested students are responsible for submitting their resume to the employer through MinerJobs by a designated date. Resumes submitted are reviewed and students in whom the employer is interested will be contacted.

Alumni
Missouri S&T alumni may also register with COER. Once registered, they will receive access to MinerJobs to search job listings. In addition, alumni resumes that are uploaded in the system will be sent to employers requesting resume referrals if they match their hiring qualifications.

Cooperative Education Program (Co-op)

The Missouri University of Science and Technology’s Cooperative Education Program, administered by COER, is designed to provide students with an employment opportunity to gain practical degree-related, work experience prior to graduation. The program is set up so that students can take a break from studies and work full-time for one or for a combination of semesters such as spring/summer or summer/fall, allowing 8-9 months of work experience vs. the 3 summer months allowed for internship positions. Students may also obtain parallel co-op jobs in which they work and study on a part-time basis simultaneously. Over 150 employers hire Missouri S&T co-op students annually, and jobs in which they work and study on a part-time basis simultaneously.

Alumni resumes that are uploaded in the system will be sent to employers who are interested in hiring Missouri S&T students even though the employer may not necessarily be coming to campus to interview. The employer will then contact the student directly if he or she is interested.

On-Campus Interviews
Full-time, summer and co-op interviews are conducted by employers in COER’s professional interview suites, located on the 3rd floor of Norwood Hall. Students must be registered with COER to upload their resume into MinerJobs and participate in on-campus interviews. Students should check the system daily for information about employers coming to interview, job requirements, and important dates. Each student is responsible for submitting his or her resume electronically and for signing up for interviews by the stated deadlines.

Resume Referrals
When a student registers with COER, his or her resume can be referred to employers who are interested in hiring Missouri S&T students even though the employer may not necessarily be coming to campus to interview. The employer will then contact the student directly if he or she is interested.

Resume Drops
Some employers will list their job opportunities and request a “Resume Drop” from students. Interested students are responsible for submitting their resume to the employer through MinerJobs by a designated date. Resumes submitted are reviewed and students in whom the employer is interested will be contacted.

Alumni
Missouri S&T alumni may also register with COER. Once registered, they will receive access to MinerJobs to search job listings. In addition, alumni resumes that are uploaded in the system will be sent to employers requesting resume referrals if they match their hiring qualifications.

Cooperative Education Program (Co-op)

The Missouri University of Science and Technology’s Cooperative Education Program, administered by COER, is designed to provide students with an employment opportunity to gain practical degree-related, work experience prior to graduation. The program is set up so that students can take a break from studies and work full-time for one or for a combination of semesters such as spring/summer or summer/fall, allowing 8-9 months of work experience vs. the 3 summer months allowed for internship positions. Students may also obtain parallel co-op jobs in which they work and study on a part-time basis simultaneously. Over 150 employers hire Missouri S&T co-op students annually, and students can apply for many of those positions through the online resume/interview job search process that is facilitated by COER. COER also helps to create new student co-op opportunities with employers who have not previously hired co-ops at Missouri S&T.

Co-op Benefits
- Gain future employment advantage
- Earn a higher starting full-time salary
- Validate career plans
- Option to earn academic credit
- Network with professionals and other college students
- Apply textbook knowledge
- Learn corporate recruiting strategies
- Help finance college - the average monthly co-op salary is approximately $3,000.00

Co-op Eligibility
To be eligible to participate in the Co-op Program, a student must be enrolled full-time. Full-time is defined as satisfactorily carrying and passing a minimum of 12 credit hours (9 credit hours for a graduate student) in a fall or spring semester.

A student must have a cumulative GPA of at least 2.0 out of 4.0 to apply to and participate in the program. The student must not be on any type of probation. Students in all majors at Missouri S&T may participate in co-op.

The actual amount of academic work that must be completed before being selected for the program or before beginning a work period is up to the employer, but a freshman must have completed at least two semesters. Other eligibility requirements may be established by the sponsoring company with the concurrence of Missouri S&T. Financial need is not a determining factor as to which students receive employment.

A transfer student may register for co-op as soon as he or she begins classes at Missouri S&T. A transfer student who is participating in a co-op program through another institution may transfer and continue the co-op affiliation subject to Missouri S&T’s guidelines.

Missouri S&T Registration during Co-op
Students participating in the Co-op Program register each work term (Summer, Fall, and/or Spring) with COER. To register with the University, students pay the educational fee of one in-state credit hour plus a $100 processing fee, regardless of residency. These fees are administered in the spring and fall semesters only, not the summer semester.

Registration includes:
- Maintaining continuously enrolled status for insurance and loan purposes
- Not having to apply for readmission to Missouri S&T to attend classes following the co-op work term
- Receiving pre-registration information
- Documentation of co-op participation on the student transcript
- Retaining scholarship(s) which require that the student be registered with the University

Credit for co-op is awarded at the discretion of the student’s academic department. Students must be registered with the university for work terms when academic credit is to be earned. Regular tuition rates apply based upon in-state/out-of-state tuition and the number of hours received.

International Students
International students are required to register for co-op with COER in order to be legally eligible to obtain work authorization. This applies to both co-op and summer internships. International students must complete paperwork with the International Affairs office first and then with COER. After completion and approval of paperwork, international students will receive work authorization and the necessary documentation to provide to their employer. International students are eligible for co-op after 9 months of studies, with academic department approval.
More Information
For additional information concerning COER please contact:

Career Opportunities & Employer Relations
320 W. 12th Street
Third Floor Norwood Hall
Missouri University of Science and Technology
Rolla, Missouri 65409-0240
(573) 341-4343
http://career.mst.edu
career@mst.edu

Counseling, Disability Support, and Student Wellness

Counseling, Disability Support, and Student Wellness (CDSW) offers a variety of services to the Missouri S&T campus community including individual, group, and crisis counseling; consultation; programming on many topics; the Van Matre Resource Center of self-help materials; the Faculty and Staff Assistance Program; and assistance for students with disabilities.

Missouri S&T’s Disability Support Services ensures that students with disabilities have equal access to academic classrooms and curricula by coordinating services and academic support. Accommodations can make a difference in academic success.

Personal and career counseling is provided on a time-limited basis to Missouri S&T students and benefit-eligible employees. Services, which are provided by licensed counselors and psychologists, are free and confidential within ethical and legal limitations. Concerns commonly addressed in personal counseling include self-exploration, college adjustment, family issues, feelings of depression and anxiety, interpersonal issues, communication skills, and self-esteem. Relaxation strategies and methods to cope with the many stressors of daily living may also be addressed. Overcoming test anxiety or procrastination, improving self- and time- management, and developing other skills related to success at Missouri S&T may be a focus in counseling.

Individuals wondering about their majors and career options may benefit from career counseling, which typically explores personal and professional goals and how to achieve them.

Group counseling is an interactive, supportive, and interpersonal form of therapy. Counseling Services offers several groups based on campus need and interest. Some current and past groups are General Therapy, Family Issues, ADD/ADHD Support Group, and Test Anxiety.

CDSW actively promotes student learning and professional development through its learning enhancement and outreach programming services. The staff members offer programs to campus groups on topics such as teamwork, stress management, conflict resolution, and time management.

The Van Matre Resource Center, a self-help library, contains excellent audio, video, and reading materials. Topics range from communication skills to parenting, career exploration issues to dealing with depression, anxiety, and abuse. Materials are available for checkout.

The Faculty Staff Assistance Program (FSAP) offers a variety of services such as counseling, consultation, organizational development, and programming for faculty and staff. For more information, call (573) 341-4211 or visit http://counsel.mst.edu and http://dss.mst.edu.

Student Wellness

The Student Wellness Program promotes healthy behaviors to create a campus environment conducive to academic, professional, and personal success. Wellness is an active, continuing process of becoming more conscious of and making choices towards a fulfilling and thriving life. S&T’s Student Wellness Program takes an environmental approach to address the well-being of the campus community because individuals are influenced both positively and negatively by the behaviors of others and the environment in which they live. The Student Wellness Program topic areas include: alcohol and other drug prevention; stress management and mental health promotion; healthy eating and physical activity promotion; sexual health; and sexual violence prevention. The Student Wellness Program provides workshops over various health and wellness topics; social norms and health marketing campaigns; special events; information tables; on-line education; and one-on-one wellness consultations. The Health Educator for the Student Wellness Program advises Joe’s P.E.E.R.S. (Providing Education, Encouragement, and Resources for Students) Peer Education Group. Joe’s P.E.E.R.S. is a student group that promotes healthy behaviors among S&T students through interactive programming, awareness campaigns, and distribution of health and wellness information. More information about Joe’s P.E.E.R.S. and the Student Wellness Program can be found at: http://counsel.mst.edu/wellness.

Contact Information

Health Educator
Counseling, Disability Support, and Student Wellness
204 Norwood Hall
Phone: (573) 341-4211
Fax: (573) 341-6179
E-mail: counsel@mst.edu

Disability Support Services

This policy statement relating to otherwise qualified persons with disabilities outlines the roles and responsibilities of students, faculty, staff and the Coordinator of Disability Support Services (Coordinator/Advisor) in making Missouri University of Science and Technology programs and services available to all persons. The University places specific emphasis on accommodating the needs of matriculated students with a disability, providing related services, and ensuring the academic integrity of Missouri S&T. This policy statement is in accordance with Section 240.040 E. Policy Related to Students with Disabilities, Collected Rules and Regulations of the University of Missouri, the Missouri Human Rights Act, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990.

I. Confidentiality

A. In accordance with the requirements of the Family Educational Rights and Privacy Act, medical information concerning a disability will be treated with utmost confidentiality. It will be:
1. treated like other medical information
2. maintained in secure files under the jurisdiction of the Coordinator/Advisor
3. released only on a need-to-know basis within the university community
II. Responsibilities of the Student

A. All disabled students seeking reasonable accommodations and provision of disability-related services must:
 1. Identify himself or herself to the Coordinator/Advisor as desiring accommodations
 2. Provide current and adequate documentation of his/her disability and of appropriate accommodations to the Coordinator/Advisor
 3. Request needed classroom accommodations and related services of the Coordinator/Advisor

B. All of the above requirements must be met by the student in a timely manner to ensure full resolution of accommodations and related services prior to the student’s entrance into the program or course of study. The student should provide the necessary documentation at least six weeks prior to the first semester for which accommodations are being requested and should provide the Coordinator/Advisor with a copy of his/her class schedule as soon as it is available for each semester during which s/he is seeking accommodations. Waiver of these deadlines may be made by the Coordinator/Advisor on a case by case basis. Failure to meet the specified deadlines and requirements may result in a denial of accommodations.

III. Documentation Procedure

A. Documentation of a specific disability provided to the Coordinator/Advisor must be adequate and up to date. Diagnosis and evaluation costs shall not be the responsibility of the university.
 1. Current medical or other diagnostic documentation of a disability must be provided by a qualified physician or other qualified diagnostician.
 2. Current documentation of the need for reasonable accommodations and related services must also be provided to the Coordinator/Advisor.
 3. If existing documentation is incomplete or outdated, the Coordinator/Advisor may require the student to provide additional documentation at the student’s expense.

IV. Collaborative Responsibilities of the Coordinator, Faculty, and Staff

A. The Coordinator/Advisor shall review the documentation provided by the student and discuss the accommodation and related services requested.

B. The Coordinator/Advisor shall make an initial determination as to whether requested accommodations and related services are required.

C. The Coordinator/Advisor shall provide the student with a letter describing recommended accommodations and related services.

D. The faculty or staff member responsible for a specific class, program, or service shall then determine accommodations of the disability and provision of related services in consultation with the Coordinator/Advisor if necessary.

E. Any disagreement relating to accommodations shall be described in writing and submitted to the Chancellor or his/her designee for resolution in a prompt manner. This appeal must specify why the accommodation request is considered unreasonable or unworkable.

F. In any disagreement related to IV.5, the Chancellor or his/her designee shall take into consideration all relevant factors including but not limited to:
 1. Current documentation of the specific disability
 2. The need for the requested services or accommodations
 3. The essential elements of the academic program or course of study being pursued
 4. The fact that no applicable law requires Missouri S&T to substantially alter essential elements of its academic program or course of study or to otherwise compromise its academic standards

G. The written judgment of the Chancellor or his/her designee shall be presented to the faculty member or department administrator within ten working days following receipt of the written notice of disagreement.

V. Specific Responsibilities of the Faculty

A. It is the responsibility of the faculty to:
 1. Establish curriculum requirements and uphold the academic standards of Missouri S&T
 2. Determine that the essential elements of these curricula, as well as those of an individual course are being fulfilled
 3. Work with the Coordinator/Advisor to determine the provision of reasonable accommodations and related services for disabled students when requested by the Coordinator/Advisor
 4. Follow applicable rules with respect to individual privacy and confidentiality

B. If the faculty member concerned opposes the determination made by the Coordinator/Advisor, he or she should proceed as follows:
 1. He or she initiates a review of this determination with the Coordinator/Advisor.
 2. If after this review the faculty member or department administrator still does not agree with the Coordinator/Advisor’s determination, he or she may have recourse to the procedures outlined by Section IV, subsections 5 and 6.

VI. Grievance & Complaint Process

A. A student who believes that the determination of the Coordinator/Advisor for the provision of reasonable accommodations and related services is not being fulfilled by a faculty or staff member must contact the Coordinator/Advisor in a timely manner to discuss the concerns.

B. A student who is not satisfied with the accommodation plan or the initial determination of the Coordinator/Advisor may file a grievance under the University of Missouri Discrimination Grievance Procedure for Students (Section 370.010). A copy of this policy can be obtained from the following sources:
 1. The UM system web page at http://www.umsystem.edu/
 2. The Human Resource Services, Affirmative Action, Diversity and Inclusions Office in 113 Centennial Hall (573) 341-4241
 3. Office of the Vice Chancellor for Student Affairs, 106 Norwood (573) 341-4292

Contact Information
Coordinator/Advisor of Disability Support Services
Counseling, Disability Support, and Student Wellness
203 Norwood Hall
Phone: (573) 341-6655
Fax: (573) 341-6179
E-mail: dss@mst.edu
Web: http://counsel.mst.edu
Cultural Programs

Leadership and Cultural Program’s mission is to assist students in developing skills they need to serve as successful leaders in a global community. We realize that in order to be successful citizens and competitive in the job market, students need to be culturally competent and possess strong communication, leadership, and personal management skills. We contribute to student retention and satisfaction by enhancing students’ educational experience through providing quality programs and resources. Our programs include cultural celebrations, skill development workshops, dialogue series, and experiential learning activities on and off campus. For more information visit our website at: http://lcprograms.mst.edu.

Curtis Laws Wilson Library

As the primary learning resource center for the Missouri S&T campus, Wilson Library provides services and materials to support the university’s academic programs. In addition to providing students with access to research resources, the library is a place where students can develop the research skills necessary to excel in an information-based society.

Missouri S&T is known as Missouri’s premier technological research university; Wilson Library is equally well known for its strong science and technology collection. The humanities and social science collections have also grown to support programs in those areas. The print collection consists of approximately 480,000 volumes and 230 journals. Other materials, including DVDs and CDs, are also available at the library. Many online resources are accessible through the library’s webpage, which links to full text from over 64,000 journals and 140,000 ebooks. The library homepage also links to the Scholars’ Mine, Missouri S&T’s institutional repository. The Mine contains information about, and often the full text of, theses and dissertations, journal articles, conference papers, and books produced by students and faculty at Missouri S&T.

Wilson Library makes every effort to provide Missouri S&T students with access to state-of-the-art library technologies. The library catalog, called MERLIN, shows the library’s holdings and links to electronic full-text items. The MERLIN catalog also allows students to search, view, and borrow from the collections at the other three University of Missouri campuses. In addition to MERLIN, students can access the MOBIUS online catalog, through which they are able to borrow from over 60 Missouri libraries. These catalogs are complemented by research databases that provide information about scholarly literature (including journal articles and conference proceedings) in a wide range of subjects. Students can also use Summon, a tool that allows researchers to find materials both in the library catalog and in the many full text online resources provided by Wilson Library. Reference librarians are available to provide students with research assistance in using all of the library’s resources.

In the library’s Multimedia Center, which was made possible by a grant from the Emerson Electric Company, the library becomes a laboratory where students are active participants in the creation and manipulation of information. Students have access to state-of-the-art technologies, including non-linear video editing, scanners, illustration packages, graphics manipulation programs, as well as poster printing and laminating.

Missouri S&T is a selective depository for United States and Missouri government documents. The library receives a wide selection of materials from the Government Printing Office and other agencies. A large percentage of all new government publications are now available online. The full text of many online government documents is accessible through the library catalog.

Through interlibrary loan, the Missouri S&T collection is supplemented by materials owned by other libraries throughout the United States. Wilson Library is able to borrow most materials needed by students from other libraries.

Wilson Library is Missouri S&T’s gateway to the ever-expanding world of information. Students are encouraged to explore the library’s homepage at http://library.mst.edu.

Fees

“The University reserves the right to modify by increase or decrease the fees charged for attendance and other services at the University, including but not limited to tuition, at any time when in the discretion of the governing board the same is in the best interest of the University, provided that no increases can or will be effective unless approved by the governing board not less than thirty (30) days prior to the beginning of the academic term (semester, etc.) to which the fees are applicable, with all modification of fees to be effective irrespective as to whether fees have or have not been paid by or on behalf of a student prior to the effective date of the modification.”

To review the Statement of Financial Responsibility and its terms visit http://cashier.mst.edu/staff/studentfees/statementoffinancialresponsibility/. This statement allows students to confirm their understanding of financial implications when registering each semester.

Electronic Billing Statements

Electronic billing is the official billing method for currently enrolled students at Missouri University of Science and Technology. Students will be notified by e-mail at their Missouri S&T e-mail account when monthly billing statements are available. Currently enrolled students will be able to view, print, and pay their student fee bill online at JoeSS.

Currently enrolled students can also authorize others (parents, grandparents, guardians) to view and pay their student fee bill. Authorized users can be established and maintained on JoeSS under Campus Finances, Billing Authorized Users. Authorized users have access to electronically view and print the monthly billing statement and make payment online. They are also notified when the statement is available at the e-mail address entered by the student during set-up. For further information, visit the Missouri S&T Cashier’s Office web site at http://cashier.mst.edu

Tuition per Credit Hour

All students enrolled at Missouri S&T are required to pay tuition. Visit the Missouri S&T Cashier’s Office web site for fee information at http://cashier.mst.edu.

Courses audited and courses taken for reduced credit will be counted at their normal credit value in computing the amount of fees to be paid. Students enrolling in zero credit hours are required to pay tuition and fees according to the equivalent credit for the course.
Information Technology Fee

All students enrolled at Missouri University of Science and Technology are required to pay an Information Technology Fee per credit hour.

Supplemental Fees

An additional Supplemental Fee will apply to the following and will be charged per credit hour:

- An Engineering Supplemental Fee will be charged to all students enrolled in engineering courses, except for courses offered by the Department of Geology & Geophysics. Co-listed courses are subject to the Engineering Supplemental Fee.
- A Science Supplemental Fee will be charged to all students enrolled in Computer Science, Geology, and Geophysics courses. Co-listed courses are subject to the Science Supplemental Fee.
- A Science Supplemental Fee will be charged per credit hour to all students enrolled in Biological Sciences and Chemistry. Co-listed courses are subject to the Science Supplemental Fee.
- A Science Supplemental Fee will be charged to all students enrolled in Physics courses. Co-listed courses are subject to the Science Supplemental Fee.
- A Business, IS&T, and M&IS Course Fee will be charged to all students enrolled in Business, IS&T, and M&IS courses. Co-listed courses are subject to the Business Supplemental Fee.

Student Activity/Facility Fee

A Student Activity/Facility Fee is charged to students each semester to pay for a variety of activities, services, and bonded debt on student fee funded buildings. The Activity/Facility Fee is determined and approved by the Student Council. The Activity/Facility Fee includes fees for the Havener Center, intramural and recreational facilities and programs, campus events, the student newspaper, radio station and yearbook, and funding for a variety of student organizations. The Activity Fee is charged each semester. The Rollamo Yearbook Fee will be charged during the fall semester to all undergraduate students enrolled for seven or more hours and will remain optional for all undergraduate students enrolled for fewer than seven hours and all graduate students. Graduate students pay a fee to fund the Council of Graduate Students. The Activity/Facility Fee is prorated for students enrolled in fewer than 10 hours.

The Activity/Facility Fee is charged to all students, undergraduate and graduate. Students attending the Engineering Education Center in St. Louis pay the designated UMSL student Activity Fee.

Additional information concerning the Missouri S&T Student Activity/Facility Fee is available at: http://studentlife.mst.edu.

Health Service Fee

The mandatory Health Service Fee is charged to all students, graduate and undergraduate (full or part time enrolled) each semester. This allows students access to the Student Health Center.

Graduation Fee

A $75 graduation fee is assessed to all students who have applied as a candidate for graduation. This fee will be charged to the student account after submitting an application for graduation.

Time of Payment of Fees

All fees must be paid in full or payment arrangements made at the time of registration at the opening of each semester or term as a condition of admission to classes. Consult the academic calendar for dates of registration and payment of fees.

Minimum Fee Payment Plan

The student’s account (to include tuition and fees, housing, traffic violations, etc.) will be billed for the full amount each month with a minimum payment allowed. The minimum payment is derived by dividing the full account balance by the number of scheduled payments remaining in the semester. If a student chooses to pay the minimum amount, a 1% per month interest charge will be assessed on the remaining unpaid account balance.

Late Payment Fee

Student fee accounts will be subject to a late fee for unpaid amounts billed when payment is not received by the scheduled due date as communicated on the student’s monthly billing statement. If the minimum payment or billed balance due is paid on or before the scheduled due date, as it appears on the student’s monthly billing statement, no late fees will apply.

Past due amounts owed the University must be satisfied by payment in full. Failure to pay may result in transcripts or diplomas being withheld. The University will pursue appropriate collections practices which may include referrals to a collection agency for accounts that remain past due. The account may be assessed an additional collection charge of up to 50% of the balance if referral to a collection agency becomes necessary.

Fall Semester Payment Due Dates

Preregistered students: five installments due July, August, September, October, and November 15th.

Regular registration students: four installments with the first one due at registration and the remaining due September, October and November 15th.

Spring Semester Payment Due Dates

Preregistered students: five installments due December, January, February, March, and April 15th.

Regular registration students: four installments with the first one due at registration and the remaining due February, March, and April 15th.

Summer Semester Payment Due Dates

Preregistered students: 50% of fees due May 15th and 50% due June 15th.

Regular registration students: total fees due at registration.

Financial Aid

Approved financial aid is applied directly to a student’s account. The entry will appear as a credit on the billing statement and will reduce the current term balance due. The balance remaining after application of financial aid will be billed to the student and will be subject to the minimum payment process and interest charge calculation.
Personal Checks

Personal checks will be accepted only for the amount due from the student. Personal checks can be presented to the Cashiers Office in person or by mail to G4 Parker Hall, Rolla MO 65409. A late registration fee will be assessed if a check presented in payment of student fees is returned unpaid and remains unpaid after the close of the registration period.

Online Payment Options

Missouri S&T has convenient online payment options for our students and their authorized payers. Students can make online check and credit card payments by accessing the student self-service module Joe’s>Self-Service>Campus Finances>Make a Payment. They can also establish authorized payers to make payment on their behalf.

The University of Missouri contracts with a third party vendor to process credit card payments applied to the student fee account. Credit card payment can be made by Visa, MasterCard, Discover and American Express online only. A convenience fee of 2.75% will be charged by the third party vendor on all credit card payments.

To avoid the convenience fee, students and their authorized payers, have the option to make an online electronic check payment by simply entering the bank/financial institution routing and account numbers at the time of the online payment. Online payment information can be found on the Cashiers website at http://cashier.mst.edu/ under the Convenient Online Payment Methods link.

Debit Card Payment

PIN based debit card payments are processed at the Cashiers Office at no cost to the student. The student must present the card at the time of the transaction and will enter their personal identification number (PIN) to complete. Credit card payments, for payment of a student account, are not accepted at the Cashiers Office.

Late Registration Fee

A student who registers after the start of the semester will be charged a late fee equivalent to one hour undergrad tuition. Also, by registering late, a student may find certain sections or entire courses closed to registration. Each department reserves the right to close sections of courses or even to close enrollment in a department when the capacity of the class is reached.

International Student Sponsored Student Program

A full range of services for sponsored international students is provided through the Office of International Affairs. International students sponsored by international agencies receive special services and are pay an administrative fee per semester. Individual students desiring to take advantage of these special services may apply for them. Details on the current Sponsored Student program and costs are available upon request from:

Office of International Affairs
103 Norwood Hall
Rolla, Missouri 65409-0160

Sponsor Billing

If part or all of your educational expenses are being paid by an embassy, agency or company, you can elect to have them billed directly through our sponsor billing process.

Upon receipt of written authorization, a credit will be posted to your student account for the amount authorized. We will discontinue billing you for that amount and bill your sponsor directly. If the sponsor does not pay in a timely manner, the credit will be removed from your account and you will be responsible for this amount again, including the accrual of finance charges.

Additional information is available on the Cashiers website under Sponsor Billing.

International Student Services Fee

The Office of International Affairs (IA) Student Services provides a full range of services to international students including, but not limited to, communication with prospective international students and applicants, issuance of immigration documents, new international student orientation as well as ongoing orientation/acculturation programs. IA manages the federally-mandated Department of Homeland Security SEVIS database (Student and Exchange Visitor Information System) and is responsible for meeting current requirements, the upcoming SEVIS II, and all follow-on phases. Due to the complexity and scope of these associated mandatory requirements, a fee has been implemented in order to meet the system demands. Therefore, all F-1 and J-1 international students who are enrolled in one or more academic hours will be charged and International Student Fee of $80.00 per semester for fall and spring semesters, and $40.00 for summer semester.

Mandatory Health Insurance for International Students

All international students, as a condition of their enrollment, are required to purchase mandatory health insurance. This includes all F-1 and J-1 visa students. In addition, J-1 visa students whose spouse and/or children are living in the U.S. are required to carry health insurance. An independent carrier working through the International Affairs (IA) office, provides an insurance policy at a reasonable cost. Premiums must be paid within two weeks of the beginning of the Fall and Spring semester. (Summer premiums are included in the Spring Semester.)

For more information on the mandatory health insurance requirements for international students, contact:

International Affairs Office
103 Norwood Hall
(573) 341-4208

Offset of Missouri Income Tax

For those non-residents who pay Missouri income tax, the non-resident tuition shall be credited in an amount equal to the actual Missouri income tax paid for the previous calendar year, except that the remaining obligation shall not be less than the amount of the resident tuition. Unemancipated minor or adult dependent students are eligible for reason of payment of Missouri income tax by the non-resident individual or individuals having custody of said students. Students entering in January shall be regarded as entering in the fall for purposes of determining...
previous calendar year. For students entering after January, previous year means immediate past calendar year.

For those non-resident students who have non-resident scholarships, the amount of this scholarship will be deducted first from their non-resident tuition. If a student qualifies, the remainder of the non-resident balance may be offset by Missouri income taxes paid (see above).

To affect an offset, the student shall furnish to the Cashier’s Office satisfactory evidence that the tax was paid, the date of payment, and that the student is entitled to an offset. Ordinarily, evidence of payment and the date thereof will be confirmed by exhibiting to the Missouri S&T Cashier a copy of the State Income Tax return, together with canceled check (if any) or photo copies thereof; or if all taxes were withheld, the MO-WH-2 form, or photo copy thereof, showing the amount of tax withheld must be presented and a copy of the front page of the federal return. After reviewing the evidence submitted, the Cashier may request other evidence of payment of tax.

Tax credit thus established may be used only once as an offset against the non-resident tuition, but any tax credit not used in a given term may be carried forward to be used in a subsequent term, subject to the time limitation stated above. If several students from the same family claim allowable tax credit, the tax credit shall be applied as the taxpayer directs. If the taxpayer does not direct application, the Cashier shall make such application. Tax credit may be offset against the non-resident tuition only and may not be offset against any other fees or obligations.

Refund of Fees

Fees subject to refund include: tuition, information technology fees, engineering, science, and business supplemental fees, student activity/faculty fees, health service fees and any instruction-related miscellaneous fees that may be assessed.* Students who have registered for credit courses, and made payment of fees, and whose registration is subsequently canceled, or who withdraw from the university or reduce their course load, will, subject to certain exceptions and upon written request to the Cashier’s Office, receive a refund of the fees in accordance with the following schedule: class day of cancellation, withdrawal, or change of course load. The official Missouri S&T refund policy can be found from the Chancellor’s Policy Memorandum site at: http://chancellor.mst.edu/documents/policy/III-16.pdf

Fall/Spring Semester – 16 weeks

<table>
<thead>
<tr>
<th>Elapsed Days</th>
<th>Percent of Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the first day of classes</td>
<td>100%</td>
</tr>
<tr>
<td>Class days 1-5</td>
<td>90%</td>
</tr>
<tr>
<td>Class days 6-10</td>
<td>70%</td>
</tr>
<tr>
<td>Class days 11-25</td>
<td>50%</td>
</tr>
<tr>
<td>After class day 25</td>
<td>NO REFUND</td>
</tr>
</tbody>
</table>

Summer Session – 8 weeks

<table>
<thead>
<tr>
<th>Elapsed Days</th>
<th>Percent of Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the first day of classes</td>
<td>100%</td>
</tr>
<tr>
<td>Class days 1-3</td>
<td>90%</td>
</tr>
<tr>
<td>Class days 4-5</td>
<td>70%</td>
</tr>
<tr>
<td>Class days 6-13</td>
<td>50%</td>
</tr>
<tr>
<td>After class day 13</td>
<td>NO REFUND</td>
</tr>
</tbody>
</table>

Class days are counted by excluding Saturdays, Sundays and holidays.

*Deductions may be made from any refund of fees for any financial obligation due the university.

Financial Assistance

Our Mission

The Student Financial Assistance Office assists families with understanding college costs at Missouri University of Science and Technology. Our team facilitates access to federal, state, institutional and private financial resources and coordinates access to university scholarship and loan awards for our students. SFAO provides financial literacy and debt counseling programs.

The Student Financial Assistance Office continually strives to provide high quality service to all students, families, faculty, staff, alumni and other interested parties. Our team works to meet campus strategic goals through financial aid administration, and outreach.

Missouri S&T has many ways for you to get financial assistance. Freshman applicants must complete the Missouri S&T Undergraduate Application for Admission & Scholarships and be accepted to the university by appropriate deadlines for scholarship consideration.

For other financial aid (grants, loans, work-study), you must complete a Free Application for Federal Student Aid (FAFSA). Preference will be given to those students whose FAFSA has been received by March 1. If you apply at any other time of the year, Missouri S&T will attempt to fill your financial needs to the extent that funds or opportunities are available. Missouri’s need-based Access Missouri Scholarship absolutely requires FAFSA submission by April 1st.

Student Financial Assistance begins generating financial aid packages by late March. A detailed list of financial aid can be found on our website sfa.mst.edu. Please contact the Student Financial Assistance Office for more detailed information.

Completing the FAFSA provides access to Federal and State financial aid including grants, loans, and work study. Non-need based campus jobs are listed on MinerJobs at https://www.myinterfase.com/mst/Account/LogOn. In the Cooperative Training Program, you can alternate semesters of school at Missouri S&T with semesters of work in industry. You may want to look into Missouri S&T’s Minority Engineering and Science Program and Women in Engineering and Science Programs. Army and Air Force ROTC each offer scholarships. The athletic department offers many grants in various sports.

The Student Financial Assistance Office strongly encourages students to keep their expected graduation date current. Having an incorrect expected graduation date could affect a student receiving financial aid for a given semester. Contact the Registrar’s Office if you wish to change your expected graduation date.

Missouri S&T Curators’ Scholarship Program

You must be from a Missouri high school. You must be a Missouri resident and an incoming freshman student to qualify. The Curator’s Scholarship will be included as part of the Excellence or Trustees scholarship package.

1. Freshman Scholar. You should rank in the top five percent of your graduating class and have ACT composite test scores of 28 or better. The value of the Missouri S&T Curators Freshman
A student must complete an application to be considered for this work and have a cumulative grade point average of 3.25 or better. Students who have completed 30 hours of university-level coursework are eligible, as are non-Missouri resident Missouri S&T upperclassmen. Non-Missouri resident transfer students must have a composite score of 24 or better. Freshman students with a 3.0 high school cumulative GPA and have an ACT score of 24 or better. To qualify, students must be incoming non-Missouri resident students whose parent(s) or grandparent(s) graduated from Missouri S&T. To be considered for the Alumni Sons/Daughters/Grandchildren Scholarship Program (For Non-Missouri Residents), students must:

- Be a Missouri resident
- Have a test score in the top 3% of Missouri residents (currently an ACT enhanced composite score of 31 or better or an SAT score of 1400 or better)

University Scholarships

To be considered for the majority of university scholarships (i.e. Excellence, Trustees, and Miner) offered by the Student Financial Assistance Office to incoming, first-time freshmen, you must apply for admission to Missouri S&T by Dec. 1 (for early awards) and Feb. 1 (final deadline). First-time incoming transfer students for the Fall semester must apply for admission by May 1 and for the Spring semester by December 1, to be considered for transfer scholarships.

We will consider you for University scholarships based on ACT/SAT test scores and high school GPA. Transfer students will be evaluated for scholarships based on their cumulative GPA from all previously attempted college-level credit.

University scholarships include funds provided by the Alumni Association, business firms, foundations, trusts, and friends of Missouri S&T.

Scholarships for new freshmen and transfers are awarded on a rolling basis 2-3 weeks after admission. Scholarship amounts are listed on the website or scholarship brochure. Most scholarships are renewable and that renewal is based on the recipient's academic performance. Renewal is automatically reviewed.

The Missouri Higher Education Academic “Bright Flight” Scholarship Program

The “Bright Flight” Scholarship Program will provide awards in the amount of up to $2,000 (may change based on state funding) to eligible entering freshman students. To be eligible for this scholarship, a student must:

- Be a Missouri resident
- Have a test score in the top 3% of Missouri residents (currently an ACT enhanced composite score of 31 or better or an SAT score of 1400 or better)

National Merit Scholarships

Missouri S&T offers a number of National Merit Scholarships, ranging from $1000 to $2,000 each year to students who are classified as “finalists” in the National Merit Scholarship competition.

Alumni Sons/Daughters/Grandchildren Scholarship Program (For Non-Missouri Residents)

The Alumni Sons/Daughters/Grandchildren Scholarship Program is for non-Missouri resident students whose parent(s) or grandparent(s) graduated from Missouri S&T. To qualify, students must be incoming freshmen with a 3.0 high school cumulative GPA and have an ACT composite score of 24 or better. Non-Missouri resident transfer students are eligible, as are non-Missouri resident Missouri S&T upperclassmen who have completed 30 hours of university-level course work and have a cumulative grade point average of 3.25 or higher. A student must complete an application to be considered for this scholarship. Scholarship applications may be completed at https://scholarships.mst.edu.

Excellence, Trustees & Miner Out of State Scholarship Programs (For Non-Missouri Residents)

The Excellence, Trustees and Miner Out of State Scholarship Programs will provide a scholarship toward out of state tuition. Qualifications for consideration: Complete the Missouri S&T Undergraduate Application for Admission & Scholarships.

The application priority deadline is Dec. 1 and the final scholarship deadline is Feb. 1 preceding the academic year of enrollment. This scholarship is renewed each academic year for a total of eight semesters as long as the student maintains a cumulative GPA of 3.25 or higher.

Federal Pell Grant

The source of funding is the federal government.

- **Eligibility:** You must have a financial need, be at least a half-time student, be a U.S. citizen or permanent resident, and have never received a bachelor's degree.
- **Amount:** Up to $5,645 (during the 2013-2014 academic year)
- **Repayment:** None
- **Renewal:** Must re-apply and meet eligibility each year. Students may only receive 600% of Pell Grant over undergraduate career.
- **Applications:** Complete a Free Application for Federal Student Aid (FAFSA).

Federal Perkins Loan

This source of funding is from the federal government to the university. You must have an established exceptional financial need, be at least a half-time student, and a U.S. citizen or permanent resident.

- **Amount:** Varies to a maximum of $5,500 per year for undergraduate study.
- **Repayment:** The Federal Perkins Loans must be repaid. The repayment begins nine months after leaving school with five percent interest starting at that time.
- **Applications:** Complete a Free Application for Federal Student Aid (FAFSA).

University Loans

The source of funding is gifts to Missouri S&T from the Alumni Association, business firms, foundations, trusts, and friends of Missouri S&T.

- **Eligibility:** You must have an established need, be at least a half-time student, and a U.S. citizen or permanent resident.
- **Amount:** Varies depending on the stipulations of the loan guidelines.
- **Repayment:** Repayment begins after you leave Missouri S&T.
- **Applications:** Complete a Free Application for Federal Student Aid (FAFSA).
Federal Supplement Educational Opportunity Grant

The funds for this program are awarded to students with an extreme need.

- **Amount:** Varies from $200 to $800 per year.
- **Eligibility:** You must be at least a half-time student, a U.S. citizen or permanent resident, and have never received a bachelor’s degree.
- **Applications:** Complete a Free Application for Federal Student Aid (FAFSA).

Federal Work-Study (FWS)

The source of funding is from the federal government to the university. All students who have completed a FAFSA and have an established need will be considered automatically for the FWS program, with special consideration given to students from low-income families. The FWS program is financial aid that the student must earn through work. The student is paid minimum wage and usually works an average of 10 hours per week. The student must be a U.S. citizen or permanent resident.

Access Missouri Program

Full-time Missouri resident undergraduates with expected family contribution between $0-$12,000.

The amount varies. To apply, complete FAFSA annually by the April 1 deadline.

Ford Direct Student Loans

The source of funding for the Ford Direct Loan program is provided by the federal government. The amount can vary depending on the individual student’s need, up to a maximum of $5,500 as a dependent freshman, $6,500 as a dependent sophomore, and $7,500 as a dependent junior, senior, or fifth-year student. Graduate students may receive up to $20,500 per year. A student must be enrolled at least half-time.

A FASFA must be completed in order for a student to receive a Ford Direct Loan. Interest on Subsidized Ford Direct Loans begins as soon as a student graduates or ceases to be at least a half-time student. Interest on Unsubsidized Ford Direct Loans begins as soon as the loan is disbursed to the student’s account.

Undergraduate borrowers’ subsidized and unsubsidized Ford Direct loans carry a fixed interest rate of 6.8%. Graduate borrowers’ subsidized and unsubsidized loans have a fixed interest rate of 6.8%. Rates are subject to change based on US Congress decision.

Global Learning

Global Learning’s mission is to bring Missouri S&T’s teaching, research, and service capabilities to a global market. Through its programs, you can earn an advanced degree or a graduate certificate via distance education, connect as a youth with Missouri S&T’s summer camps, or attend a technical conference for professional development.

Global Learning provides an education that fits your needs. Go online to http://dce.mst.edu for a current list of graduate degrees and certificate programs offered through distance education. Graduate certificates are a great way to earn college credit toward a master’s degree.

Global Learning includes:

- **Distance and Continuing Education:** administers and coordinates a wide variety of credit and non-credit programs. Contact (573) 341-6222, http://dce.mst.edu, dce@mst.edu
- **Engineering Education Center (St. Louis):** provides educational services to the greater St. Louis, Rolla, & distance locations. Contact (341) 516-5431, http://eec.mst.edu, eec@mst.edu
- **Video Communications Center:** manages communication technologies that bring together Missouri S&T instructors and students. Contact (573) 341-4526, http://vcc.mst.edu, vcchelp@mst.edu

For further information, contact:

Global Learning
216 Centennial Hall
300 West 12th Street
Phone: (573) 341-6222
Fax: (573) 341-4992
Web: http://global.mst.edu

Video Communications Center

The Video Communications Center located in G-8 Library offers a variety of video production services to the campus community. This is achieved through several specialized video-equipped classrooms, teleconference rooms and a selection of recording and transmitting technologies.

For the student - especially those pursuing advanced degrees -- the VCC offers an array of communication tools for extending the traditional classroom and laboratory out into “the real world.” Services include:

- Multimedia classroom use for thesis defense and project presentation
- DVD or web-streaming video recording of the above
- Video teleconferencing for project presentation to sponsoring companies and for student organizations meeting between campuses, and for job interviews
- Assistance in setting up, capturing, and converting research lab project videos for documentation and presentation
- Participation in advanced coursework carried over and stored on the Web for later access
- The opportunity to take courses “at a distance” while away from or after leaving Missouri S&T

For more information on these and other services, contact the Video Communications Center at (573) 341-4526; or e-mail: vcc@mst.edu or visit our website at: http://vcc.mst.edu.

Information Technology (IT)

Getting Started

Missouri S&T’s Information Technology (IT) Department provides a variety of computing tools and resources to assist with academic and administrative work done at the University. Faculty, staff and students use computers daily to register for classes, communicate with friends, send
e-mail, collaborate on group projects and research, publish web pages, write reports, and find course schedules.

Computer Accounts

Computer accounts are assigned to students and are used to access various resources at Missouri S&T, such as the computing network and the computers and software in Computer Learning Centers (CLCs). Most Missouri S&T IT services require an authorized computer account (username and password) to gain access. The following services are available through IT computer accounts.

- Joe'S (student web portal)
- Blackboard (learning management system)
- Network file storage
- Personal website storage folders
- Access to the campus network, including wireless networks on campus

University Communications to Students

Each student, once initially registered for classes, will be issued a Missouri S&T e-mail account with an address on the mst.edu domain. This is the account used for official University business and official University communications to students. Students are expected to check their Missouri S&T e-mail account regularly for University communications and are responsible for communications sent to this account. Therefore, communications sent to this account will be considered to have fulfilled any University obligation for notification.

Students must activate their email account online at: http://it.mst.edu/services/email/student/activate/

Leaving Missouri S&T

Assigned computer accounts remain active and available for use as long as a student is enrolled in classes at Missouri S&T. Additional information regarding account maintenance may be found at http://it.mst.edu/policies/ and then clicking the "Username Maintenance" link.

Following graduation, Missouri S&T students retain access to their student email accounts. Local account access is removed one semester after students graduate or stop attending. If the student was also employed by the university, account removal may occur sooner.

Students are responsible for creating a backup of any data on their network storage prior to leaving the university.

Systems and Software

Missouri S&T IT provides a wide variety of computing and networking facilities and support. These facilities include, but are not limited to the following:

- Windows-based PCs
- Macintosh systems
- Linux systems
- Computer Learning Centers (CLCs)
- General Purpose Cluster computing

Computer Learning Center

Computer labs, called Computer Learning Centers or CLCs, provide computers and specially software for students to use for in-class, homework, and project related work.

CLCs are located in various buildings around campus. Use of computers and technology in these locations is restricted to Missouri S&T faculty, staff and students. The list of CLC locations, hours of operation, and equipment is available online at http://edtech.mst.edu/clc/.

Instructional Technology

To support teaching and learning, IT supports a broad set of instructional technologies. In addition to CLCs, classroom presentation technology, such as podium computers, laptop connections, projectors, and speakers, are provided to enhance the ability of instructors and teaching assistants to present course materials and use student response systems (clickers) in the classroom.

Blackboard, the supported learning management system, is used to enhance the distribution of course materials, assess student learning (e.g., quizzes, exams), enable student discussion and learning collaboration.

Personalized assistance in best practices and usage of these technologies is available to instructors and teaching assistants upon request by calling the IT Help Desk at (573) 341-HELP(4357).

More information about available instructional technologies can be found online at http://edtech.mst.edu.

Privileges and Responsibilities

Missouri S&T IT provides access to computing, networking and information resources in support of teaching, research and other official duties of the university. Access to the computing resources and facilities is a privilege, not a right. The "Missouri S&T Computing and Network Facilities Acceptable Use Policy" describes the ethical and legal responsibilities regarding computing resources.

Other computing policies and procedures, including the University of Missouri policies, can be found at http://it.mst.edu/policies/.

Individually Owned Computers

Missouri S&T IT, in partnership with the Missouri S&T Bookstore, provides recommendations for supported hardware and software to those wishing to purchase for personal use.

Academic discounts are available for personally-owned computers and software purchased through the Missouri S&T Bookstore. Most software on university-owned machines is provided through licensing agreements with various vendors.

Please visit http://www.mstbookstore.com and click Technology for more information on supported technology and recommended systems.

Connecting to the Network

Computers in campus residence halls and fraternities or sororities connect to the network through an Ethernet connection or via wireless...
connection. Wireless coverage currently extends to nearly 100% of the campus (including the Residential College), providing great flexibility and convenience for members of the campus community.

To register a machine on the campus network, simply plug-in to an available Ethernet jack and open a web browser. An online registration page will load. Complete the online form and you are ready to access the network. Detailed instructions on connecting to the network, using either wired or wireless Ethernet, are available by supported operating system at: http://it.mst.edu/services/

Virtual Private Network (VPN) connections are available, which allow members of the campus community to connect to the network while away from campus or traveling.

Special usage policies apply to network connections. For more information, see the “Policies and Procedures” web page at http://it.mst.edu/policies/. In addition, Ethernet cards (both wired and wireless) and cables may be purchased through the Missouri S&T Bookstore, located in the Havener Center.

Emergency Alert System

Missouri S&T has a system in place to alert the campus community in the event of a campuswide emergency. An e-mail is automatically sent to every university e-mail account, but students, faculty and staff can enter additional contact information and register to receive emergency alerts via cell phone voicemail or text message.

For more information, or to register for the Emergency Alert System, visit: http://alert.mst.edu/

Getting Help

The Missouri S&T IT Help Desk and the IT Walk-In Center are available to assist the students, faculty and staff of Missouri S&T in using the different computing systems on campus.

Help is available on a wide range of items, including Windows-based PCs, Macintosh systems, and Linux workstations, as well as supported software on these systems.

Members of the campus community may call (573) 341-HELP (4357), stop by the IT Walk-In Center on the first floor of the Library, or access the online Help Request system at http://help.mst.edu. Hours of operation are available by visiting http://it.mst.edu/help-desk.

Internet Resources

• Online Help Request – http://help.mst.edu
• Missouri S&T campus gateway – http://www.mst.edu
• IT Help Desk – http://it.mst.edu/help-desk
• IT Department Homepage – http://it.mst.edu
• IT Security – http://it.mst.edu/services/
• Campus Library – http://library.mst.edu
• Joe’S S (student web portal) – http://joess.mst.edu

International Affairs

The Office of International Affairs (IA) coordinates international activities, administers all matters involving immigration for international students and scholars, and provides advisement services to the University’s international population.

The Office of International Affairs is responsible for the recruitment of international students, and serves as a direct contact with U.S. government agencies, embassies, consulates, and the private sector concerning international activities. The office serves as the campus home for international student exchange programs and the majority of study abroad activities (see section on Study Abroad Programs). In addition, the Office assists faculty wishing to travel or work overseas, and offers special educational and training programs, both domestically and abroad.

The Office of International Affairs coordinates and administers Missouri S&T’s Applied Language Institute, which houses the University’s Intensive English Program. The Office is also responsible for the organization of international protocol activities, and monitors the status of Missouri S&T international linkage agreements.

International Student Sponsored Student Program

A full range of services for sponsored international students is provided through the Office of International Affairs. International students sponsored by international agencies receive special services and are assessed a sponsored student fee for each semester.

Details on the current sponsored student program and costs are available upon request from:

Office of International Affairs
104 Norwood Hall
Rolla, Missouri 65409-0160

Mandatory Health Insurance for International Students

All international students are required to purchase Missouri S&T international student health insurance as a condition of their enrollment. This includes all F-1 and J-1 visa holders. In addition, the J-2 dependents of the J-1 visa holders are required to purchase health insurance by the dept. of state. Student insurance premiums are charged to the student’s Missouri S&T Cashier’s account.

For more information on the mandatory health insurance requirement, contact:

Office of International Affairs
104 Norwood Hall
(573) 341-6875

Study Abroad Programs

The Office of International Affairs coordinates study abroad opportunities for Missouri S&T students. Students may choose from a variety of exchange opportunities including semester or year abroad, faculty-led short term exchange, summer abroad, and experiential learning opportunities such as Engineers Without Boarders. Semester, year, or summer abroad programs offer opportunities to earn credit towards the student’s Missouri S&T degree program.

Semester year, and summer study abroad programs are available in approximately 50 countries. A list of study abroad programs by country is available online at http://studyabroad.mst.edu/universities/. Missouri S&T offers exchange options that will fit each student, ranging from studying courses in English at a foreign university, studying in a foreign language, or participating in a Missouri factually-led program to London or Greece.
Students eligible for financial assistance at Missouri S&T may be able to apply financial aid to study abroad.

For additional information, contact
Office of Internationale Affairs
Study Abroad
104 Norwood Hall
Rolla, MO 65409
(573) 341-6237
stephan.menard@mst.edu

Intensive English Program (IEP)

The Intensive English Program (IEP) at the Missouri University of Science and Technology provides intensive instruction in the English language for international students whose proficiency in the language is insufficient for full-time academic admission to Missouri S&T.

The mission of the Intensive English Program at Missouri S&T is to assist international students in attaining the proficiency level needed to meet language standards and promote a successful transition to academic programs. The program provides courses in English grammar, writing, reading comprehension, listening comprehension, pronunciation, and presentation at five proficiency levels.

All international students who have not satisfied the University’s language-proficiency requirements are required to complete IEP’s assessment testing, which is comprised of four parts:

- Michigan Test of English Language Proficiency (MTELP) A standardized test that evaluates abilities in grammar, reading comprehension, and vocabulary.
- Test of Writing Proficiency (TWP) A locally developed test that evaluates abilities to write clear, well-organized English based on nationally developed guidelines.
- Oral Proficiency Evaluation (OPE) A locally developed test that evaluates abilities to speak English clearly based on nationally developed guidelines.
- Test of Listening Proficiency (TLP) A locally developed test that evaluates abilities to understand spoken English, especially in a classroom setting.

Students who perform well on all tests may be approved immediately for academic course work at the University. Other students are enrolled in IEP course work, and may then complete the series of tests again at the end of the semester. Recommendations for promotion into a higher level of the IEP or for advancement into university course work are made by the IEP’s academic coordinator based on student testing and faculty input.

Students who enroll in the IEP must complete that program to the satisfaction of its director and academic coordinator (i.e. satisfy all completion requirements) before being allowed to enroll full-time in university course work. A student may enroll in a reduced university load (in conjunction with IEP course work) with the approval of both his/her academic department and the director of the IEP.

Ordinarily, the IEP is open only to students who intend to pursue study at Missouri S&T, and who have been conditionally admitted to the University. If space exists, international students already admitted to Missouri S&T and already taking course work may enroll in IEP courses to improve their English. In addition, international persons with no academic affiliation with the University may be considered for admittance for Intensive English Students.

Testing fees and program costs can be obtained by contacting the number below. For more information on the IEP, contact the Intensive English Program (IEP):

1207 N. Elm St.
114 SWBCC, Missouri University of Science and Technology
Rolla, MO 65409
Phone: 573-341-6640
Fax: 573-341-4514
Email: mstali@mst.edu
Website: http://ali.mst.edu

Military Science (Army ROTC)

Reserves Officers’ Training Corps

Army ROTC is the primary source of officers for the U.S. Army, the Army Reserve, and the Army National Guard. Army ROTC has been a part of the Missouri S&T campus since 1919. Over 2,700 officers have earned their commissions as lieutenants in the U.S. Army through ROTC at Missouri S&T. Eleven of these have become generals. Thousands of other students have received leadership training provided by the Department of Military Science, and applied it to their civilian careers.

Army ROTC is a four-year program divided into two parts – the Basic Course and the Advanced Course. The Basic Course is normally taken during the freshman and sophomore years, although these classes are open to any student on campus. No military commitment is incurred in the Basic Course unless students are contracted on our scholarship. Subjects taught include leadership and management development, communications, land navigation, military history, small unit tactics, survival techniques, marksmanship, drill and ceremonies, military courtesy, discipline, and customs.

All students enrolled at Missouri S&T can take any of the Basic Military Science classes without further enrollment or obligation to ROTC or the Army.

After completing the Basic Course, selected students may enroll in the Advanced Course. Instruction in this program includes further leadership development, ethics and professionalism, principles of war and military justice. During the Advanced Course, cadets are provided hands-on leadership experience in various kinds of leadership positions within the cadet chain of command. Campus and laboratory instructions are reinforced with weekend field training exercises (usually two per semester). Contracted cadets in both the Basic and Advanced Courses receive uniforms and a subsistence allowance of up to $5,000 each year.

Cadets in the Advanced Courses must attend a four-week Leader Development and Assessment Course (LDAC) normally held during the summer between their junior and senior years. This course permits cadets to further refine and put into practice the principles, theories, and skills they have acquired. LDAC includes leadership, tactics, marksmanship, land navigation, physical training, and many other leadership and military skills. Cadets receive a salary during LDAC, as well as free room, meals, and transportation to and from the course. Successful completion of the LDAC is required prior to commissioning.
Army Schools

There are summer opportunities for selected students to attend the following Army schools:

- Airborne School – A three-week school that teaches the fundamentals of Army parachute jumping. After initial training, students make at least five actual jumps (two Hollywood jumps, two full combat jumps, and one night jump).
- Air Assault School – A physically and mentally demanding two-week school that teaches the fundamentals of employing Army helicopters in support of front line units. In addition to helicopter rappelling, students learn various techniques to balance loads in a helicopter and to configure various sling loads for large equipment. Training and testing are done in a stressful environment.
- Cultural Understanding and Language Proficiency (CULP) – Opportunities available for fully-funded studying abroad internships, foreign language scholarships, and culture and language incentive pay. The Army wants officers who can fully grasp the complexity of the security environment in which they operate and have sufficient knowledge of geo-politics, culture, language, economics, and the information environment. Selected Cadets are chosen for CULP opportunities to learn more about foreign cultures. Our Cadets have been selected for internships in Central America (Panama), Africa (Benin and Ghana) and Europe (Slovakia), and Asia (Mongolia, Laos, and Thailand). Other world-wide opportunities exist.
- Army Corps of Engineer Internships – Cadets will typically work in USACE District (Battalion or Brigade Command equivalent, usually in a resident office (construction office) working on civil, mechanical, electrical, or environmental engineering projects. Districts are located all across the US (36 Districts), and OCONUS (5 Districts). Projects support US Army or Air Force installations (military construction) or state and local communities (civil works-dams, levees, navigation, etc.). Cadets may perform engineering functions such as design, project management, project engineer, construction representative (quality assurance), GIS, and more.

Two Year Program

There is a special two-year program for community and junior college graduates and students at Missouri S&T who have not taken part in Army ROTC during their first two college years. Students can enter this program and qualify for the Advanced Course by successfully completing a four-week Leader’s Training Course (LTC), for which they receive pay. The LTC replaces and is the equivalent to the Basic Course (the first two years of the regular four-year ROTC program).

Scholarships

Army ROTC offers scholarships for four, three and two years. Most four-year scholarships are awarded on a nationwide competitive basis to U.S. citizens who will be entering college as freshmen. Four-year scholarship applications are available from April 1 to January 10 of the High School senior year. Four-year scholarship applications can be obtained by applying online at http://armyrotc.com/.

Some four, three, and two-year scholarships are awarded competitively to students who are already enrolled in college. Students who attend the LTC before entering the two-year program may also compete for two-year scholarships while at camp. Four, three, and two-year scholarships are available for active duty Army enlisted personnel on a competitive basis.

All ROTC scholarships pay full college tuition and mandatory educational fees, plus $1200.00 per year for miscellaneous fees, textbooks, supplies, and equipment. Each scholarship also provides a subsistence allowance of up to $5,000 each year the scholarship is in effect. All students who receive a scholarship through the (Army) Reserve Officer Training Corps Program at the Missouri University of Science and Technology will receive an additional $2,000 scholarship from Missouri S&T each year they retain their ROTC scholarship.

Four-year scholarship recipients incur a military obligation at the beginning of their sophomore year. Three and two-year scholarship recipients incur an obligation concurrently with the commencement of their scholarship benefits. After commissioning and graduation, Army ROTC scholarship recipients serve in the military. The eight year service obligation can be done in the Active Army, Army National Guard, or Army Reserve.

Reserve Forces Duty

Under the ROTC-Reserve Forces Duty Scholarship Program, a limited number of two and three-year scholarships are also available to students who desire to serve with the Army Reserve or the Army National Guard in lieu of extended active duty.

The Simultaneous Membership Program permits a cadet to combine service in the Army Reserve or National Guard as an officer trainee with participation in ROTC, and be paid for both. Federal and State Tuition Assistance, as well as other Financial benefits, are available to qualified Guard and Reserve members.

Details about the Army ROTC program may be obtained at:

Stonehenge ROTC Battalion
301 Harris Hall
(573) 341-4744

Missouri Consortium for International Studies (MOCON)

The Missouri University of Science and Technology is a member of the Missouri Consortium for International Programs and Studies (MOCON). As a member of MOCON, Missouri S&T is able to offer its students several unique study abroad opportunities.

Missouri Greece Program

Greece and Greek culture have exerted a tremendous influence on European and North American civilization. The Academic Program in Greece is a wonderful educational and cultural experience, offering to students the opportunity to study in Greece through a semester-long curriculum combining regular classes, field trips, and independent studies. Courses include various aspects of Greek Civilization (history, art, art-history, literature, philosophy, music, theatre, etc.) The program is open for credit to students with a minimum GPA of 2.5. All courses offered by the Missouri Greece Program can be used for credit toward graduation.

Cost of the program includes regular Missouri S&T fees plus a non-academic program fee which includes accommodation in Athens, a weekly program of cultural and social activities and subsidized course-related excursions. Students eligible for financial assistance at Missouri S&T may be able to apply this aid to the MGP. For information, contact:
Missouri London Program

Semester in London

Missouri S&T has joined eight other Missouri universities in offering qualified students a semester of study in London, England. The Missouri London Program (MLP) offers a core of courses taught by faculty from the participating universities.

You are eligible to participate in the program if you have a cumulative grade point average of 2.50. Some parts of the MLP require higher grade point averages. All courses offered in the MLP can be used for credit toward graduation. The MLP offers you the opportunity to deepen your appreciation of literature, drama, history, art, and historical roots of the American political system through direct contact with British culture.

Cost of the program includes regular Missouri S&T fees plus a non-academic program fee that includes accommodations in London, a weekly program of cultural and social activities, membership in the Student’s Union of the Imperial College, membership in the Kensington Public Library, and subsidized course-related excursions. Students eligible for financial assistance at Missouri S&T may be able to apply this aid to the MLP. For information, contact:

Director of the Missouri London Program
1207 N. Elm, Rm 113
Rolla, MO 65409-0570
(573) 341-4355
kellems@mst.edu

Missouri London Program Business Internship

Students entering today’s corporate world need to be more prepared than ever to deal with current international issues. While many of these issues can be discussed at a certain level in the classroom, future employers recognize the necessity of hands-on experience to truly understand the role these issues play in business. The Business Internship in London program is run in conjunction with the Missouri London Program. The Internship is supervised field experience in a British business or organization. Projects include a variety of tasks such as market research, product promotion, analysis/system design, feasibility studies, cost/benefit analysis, strategy evaluation, business plan development, and others. All internships are non-paying positions.

Cost of the program includes regular Missouri S&T fees plus a non-academic program fee which includes accommodations in London, a weekly program of cultural and social activities, membership in the Student’s Union of the Imperial College, membership in the Kensington Public Library, and subsidized course-related excursions. Students eligible for financial assistance at Missouri S&T may be able to apply this aid to the MLP Business Internship.

For more information, contact:

MLP Director
1207 N. Elm, Rm 113

New Student Programs

Student Success Programs

Student Success Programs, an office of Enrollment Management, coordinates the New Student Programs Office, Student Success Center, and the University’s ID card service. Student Success Programs will empower students and their families with vital information and contacts to enhance new students’ academic, personal and professional success at Missouri S&T. The goals of the program are achieved through a coordinated sequence of events which provide constructive interactions between students, students’ families, faculty, staff and student leaders.

New Student Programs

New Student Programs is responsible for the campus orientation programs, which includes Preview, Registration, and Orientation (PRO); opening week orientation; transfer transitions orientation; opening week and transfer mentors; and PRO Leaders. New Student Programs serves to orient and welcome new students to Missouri S&T; facilitates the transition to college life through interaction with faculty/staff members, peers and upperclassmen; provides information concerning academics; resources on campus; builds the foundation for future success; and introduces the concepts of professional development and leadership.

During a one-day PRO session in the spring or summer, incoming students take placement exams; learn more about student success, campus resources, living options; obtain their Miner Card (campus ID); activate computer accounts; and meet with an academic advisor to determine students’ fall class schedules. Opening Week Orientation takes place the week before fall classes. This program includes New Student Convocation, participation in student mentor groups, academic workshops, team projects, and activities that will help with student success.

PRO Leaders are a selected group of student leaders for the New Student Program’s Office with primary duties consisting of assisting with planning and executing programs for new students during PRO and Opening Week.

Burns & McDonnell Student Success Center

The Student Success Center is to serve all Missouri S&T students as a campus resource that will provide high quality customer service, effective information, and support as students persist in their journey towards their educational goals.

The Student Success Center is a centralized location, 198 Toomey Hall, designed for students to visit and feel comfortable about utilizing the campus resources available. The Student Success Center was developed as a campus wide initiative to foster a sense of responsibility and self-directedness to all S&T students by providing peer mentors, caring staff, and approachable faculty and administrators who are student-centered and supportive of student success.

The objectives of the Student Success Center are to: Coordinate and support programs and retention efforts that foster student success at Missouri S&T; Collaborate with academic and non-academic departments on resources available to help enrich students’ educational experiences; Guide students on the path to success by providing referrals
to appropriate campus departments and resources to help them achieve at the best of their ability and reach their educational goals.

Miner Card

The Miner Card (campus ID card), is required for all students. The Miner Card features: student’s photograph, name, signature, and emergency contact phone numbers. There is also a magnetic strip encoded with student and campus information. Students should treat their Miner Card with the same care as you would an ATM or credit card. The Miner Card can be used at the S&T Bookstore and Library; for building/room access; on-campus dining; entitles students to sporting and theatre special events; discounts at restaurants and businesses. Lost or found Miner Cards should be reported to the Miner Card ID Office in 106 Centennial Hall or by calling 573-341-4996.

The Miner Card is the property of the Missouri University of Science and Technology and is non-transferable. This Card provides the valid bearer with privileged access to designated University facilities and services. It should be carried at all times and presented upon request.

Nuclear Reactor

The Missouri S&T Nuclear Reactor is a Nuclear Regulatory Commission (NRC) licensed 200 kilowatt pool-type reactor that is used to support the engineering and science activities on campus. Using the facility, the reactor staff provides hands-on laboratory, research & development, and project opportunities. The reactor itself uses uranium fuel and is cooled by either natural convection or a 400 kilowatt forced cooling system in a pool containing approximately 30,000 gallons of water. The reactor generates a brilliant blue glow (Cerenkov radiation) when operated at higher powers.

The open pool design allows access to the reactor core where experiments and samples to be irradiated can be positioned. The facility is equipped with a pneumatics sample irradiation system, a neutron beam that provides a collimator neutron beam, a thermal column that provides a diffused thermal neutron source, gamma spectroscopy system, computer data acquisition and control systems, and an internet accessible hot cell.

The reactor is open to the greater campus community and offers active (operations) licensure program for interested students and others. The facility hosts numerous projects that actively engage students of various backgrounds; some recent projects include activities in:

- applied robotics
- applied biometrics
- photolytically-induced material development
- radiation tolerance of electronic chips
- instrumentation and sensors
- convective heat transfer and multiphase flows

We encourage you to contact the facility for additional information.

Oak Ridge Associated Universities (ORAU)

Since 1981, students and faculty of the Missouri University of Science and Technology have benefited from its membership in Oak Ridge Associated Universities (ORAU). ORAU is a consortium of 91 colleges and universities and a contractor for the U.S. Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country; to keep its members informed about opportunity for fellowship, scholarship, and research appointments; and to organize research alliances among its members.

Through the Oak Ridge Institute for Science and Education (ORISE), the DOE facility that ORAU operates, undergraduates, graduates, postgraduates, as well as faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry, and mathematics. Appointment and program lengths range from one month to four years. Many of these programs are especially designed to increase the number of under-represented minority students pursing degrees in science- and engineering-related disciplines. A comprehensive listing of these programs and other opportunities, their disciplines, and details on locations and benefits can be found at http://www.orau.gov/orise/educ.htm or by calling either of the contacts below.

ORAU’s Office of Partnership Development seeks opportunities for partnerships and alliances among ORAU’s members, private industry, and major federal facilities. Activities include faculty development programs, such as the Ralph E. Powe Junior Faculty Enhancement Awards, the Visiting Industrial Scholars Program, consortium research funding initiatives, faculty research, and support programs as well as services to chief research officers.

For more information about ORAU and its programs, contact:

K. Krishnamurthy, Vice Provost for Research, Sponsored Programs, ORAU Counselor for Missouri University of Science and Technology (573) 341-4154

Monnie E. Champion, ORAU Corporate Secretary (865) 576-3306

or visit the ORAU Home Page at: http://www.orau.org.

Office of the Registrar

Mission Statement

The primary mission of the Office of the Registrar is to ensure the accuracy, integrity, and security of the academic records of the Missouri University of Science and Technology. In addition, the Office will strive to provide quality service to students, alumni, faculty, staff, and other constituents of the University. To this end, the Office will attempt to utilize available technology to deliver services and information in an efficient manner. Further, the Office will seek to interpret and apply the academic policies and regulations of the University for the benefit of the institution and its constituents.

Absence from Class

Work missed due to absence from class must be made up to the satisfaction of the instructor concerned. Excessive absences from class may result in the student being dropped from the course at the request of his or her instructor.
Application for Graduation

Students planning on graduating must do the following:

- Check application deadlines for semester in which you are applying for graduation
- Fill out the online Application for Graduation form found in Joe’Ss and submit through the online process

A $75 graduation fee is assessed to all students who have applied as a candidate for graduation. This fee will be charged to the student account after submitting an application for graduation.

Certification of Enrollment Status

Certifications of enrollment status should be requested through the Registrar’s Office either by visiting 103 Parker Hall or using the form located at http://registrar.mst.edu/media/administrative/registrar/documents/certlet.pdf. Certification of full-time or half-time status is based on the number of credit hours for which the student is enrolled and includes courses in which the student is enrolled as a hearer, with one exception. Hearer courses are not included for international student status, as defined by SEVIS.

For undergraduate students, full-time is based on at least 12 credit hours; half-time is at least six credit hours during the regular fall and spring term. For the summer term full-time is six credit hours and half-time is at least three credit hours.

These statements are set forth as guidelines and procedures to implement the University of Missouri Policy on student records developed from The Family Educational Rights of Privacy Act 1974.

The Missouri University of Science and Technology as charged in the from The Family Educational Rights of Privacy Act 1974.

A. Records of instructional, supervisory, and administrative personnel and educational personnel ancillary thereof which are in the sole possession of the maker thereof and which are not accessible or revealed to any other person except a substitute.
B. The records and documents of the University of Missouri Police Department that are maintained solely for law enforcement purposes and are not available to persons other than law enforcement officials of the same jurisdiction.
C. In the case of persons who are employed by the university but are not in attendance at the university, records made and maintained in the normal course of business which relate exclusively to such person and person’s capacity as an employee where the records are not available for any other purpose.
D. All records on any university students which are created and maintained by a physician, psychiatrist, psychologist, or other recognized professional or paraprofessional acting in his or her professional or paraprofessional capacity, or assisting in that capacity, and which are created, maintained, or used only in connection with the provision of treatment to the student, and are not available to anyone other than persons providing such treatment, provided, however, that such records can be personally reviewed by a physician or other appropriate professional of the student’s choice.

2. The Missouri University of Science and Technology recognizes “Directory Information” to be the student’s name, e-mail address, address, telephone listing (including local and permanent address), major field of study, participation in officially recognized activities and sports, dates of attendance, degrees and awards received, the most recent previous educational agency or institution attended by a student, student level, and full- or part-time status. All students must inform the Registrar’s Office before the end of the two-week period following the first day of classes that this information should not be released without the student’s prior consent. The information listed above will become directory information as of the first day of classes following the end of the one-week period during the summer session.

3. Missouri University of Science and Technology students have access to the educational records identified in Paragraph 1 above. In accordance with Pub. L. 93-380, as amended, the Missouri University of Science and Technology will not make available to students the following material:
 A. Financial records of the parents of students or any information contained therein.
 B. Confidential letters and statements of recommendation which were placed in the education records prior to January 1, 1975, if such letters or statements are not used for the purpose other than those for which they were specifically intended.
 C. Confidential recommendations respecting admission to the university, application for employment, and receipt of an honor or honorary recognition, where the student has signed a waiver of the student’s rights of access as provided in 6.0404 the University Policy on Student Records.

4. The Director of Financial Aid, the appropriate academic department chair, the Director of the Student Health Service, the Vice Chancellor for Student Affairs, the Director of Admissions, and the Registrar are the officials responsible for the maintenance of each type of record listed in Paragraph 1.

5. Any student may, upon request, review his or her records and if inaccurate information is included, may request the expunging of such information from his or her file. Such inaccurate information will then be expunged upon authorization of the official responsible for the file.

6. Students desiring to challenge the content of their record may request an opportunity for a hearing to challenge the content of his or her educational record in order to ensure that the record is not inaccurate, misleading or otherwise in violation of the privacy or other rights of the student, and to provide an opportunity for the correction of deletion of any such inaccurate, misleading, or
otherwise inappropriate data contained therein and to insert into such records a written explanation respecting the content of such records.

7. The university official charged with custody of the records will attempt to settle informally any disputes with any student regarding the content of the university’s educational records through informal meeting and discussions with the student.

8. Upon request of the student or the university official charged with custody of the records of the student, a formal hearing shall be conducted, as follows:
 A. The request for a hearing shall be submitted in writing to the campus Chancellor who will appoint a hearing officer of a hearing committee to conduct the hearing.
 B. The hearing shall be conducted and decided within a reasonable period of time following the request for the hearing. The parties shall be entitled to 10 days prior written notice of the item and place of the hearing.
 C. The hearing shall be conducted and the decision rendered by an appointed hearing official or officials who shall not have a direct interest in the outcome of the hearing.
 D. The decision shall be rendered in writing within a reasonable period of time after the conclusion of the hearing.
 E. Either part may appeal the decision of the hearing official or officials to the campus Chancellor. Appeal from the Chancellor’s decision is to the President of the Board of Curators.

9. The Missouri University of Science and Technology may permit access to or release the educational records without the written consent to a school official with legitimate educational interest. A school official is determined to have legitimate educational interest if the information requested is necessary for that official to (a) perform appropriate tasks that are specified in his or her position or by a contract agreement; (b) perform a task related to a student’s education; (c) perform a task related to the discipline of a student; (d) provide a service or benefit relating to the student or student’s family, such as health care, counseling, job placement or financial aid.

10. If any material or document in the educational record of a student includes information on more than one student, they may inspect and review only such part of such material or document as relates to him or her or to be informed of the specific information contained in such part of such material.

11. Students desiring reproduction of copies of educational records will be charged $.10 per page. Official copies of transcripts are $10.00 per copy for currently enrolled students and alumni.

Schedule of Classes
The most current information regarding the schedule of classes is located at http://registrar.mst.edu/classofferings/index.html.

Course Information
The number in parentheses following the name of the course indicates the number of credit hours given for successfully completing the course. It also reflects the section type; for example, (LEC 3.0) designates a lecture course of three hours credit; (LAB 1.0) designates a laboratory course of one-hour credit and (IND 0.0-15.0) designates independent study or research with variable hours. A lecture credit hour is usually the credit granted for satisfactorily passing a course of approximately 15 classroom hours. A laboratory course of one-hour credit would normally meet three classroom hours per week for 15 weeks.

Three credit hour courses normally meet 50 minutes three times per week, or 75 minutes twice a week, for 15 weeks. The time in class is the same in each case. If you have two classes in succession, there should be at least 10 minutes between classes. Classes meeting Monday-Wednesday-Friday will normally begin on the hour. Classes meeting Tuesday-Thursday will normally alternate between the hour and half hour, beginning at 8:00 a.m. In addition, there is an Academic Free hour 12:00-1:00 on Monday, Wednesday, and Friday.

Students must have completed the stated prerequisite(s) for the course for admission to the course or obtain the ‘Consent of the Instructor’ of the course.

Course Numbers
This section has been prepared to give you a listing and description of the approved undergraduate courses at the Missouri University of Science and Technology. Courses listed are those approved at the time this publication went to press. Changes are made at regular intervals. Electronic catalog descriptions, which are updated during the academic year, are available through JoeSS at http://registrar.mst.edu. This will enable you to keep abreast of new course additions. For current information on when courses are available, consult class offerings available through the Office of the Registrar website at: http://registrar.mst.edu/classofferings.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-99</td>
<td>Courses normally taken by freshmen and sophomores. May not be used as any part of a graduate degree program.</td>
</tr>
<tr>
<td>100-199</td>
<td>Courses normally taken by upper-class students. May not be used as any part of a graduate degree program.</td>
</tr>
<tr>
<td>200-299</td>
<td>Upper-class and restricted graduate courses. Courses so numbered do not give graduate credit for an advanced degree in the field of the department offering the course.</td>
</tr>
<tr>
<td>300-399</td>
<td>Upper-class and graduate courses. Not restricted as to the major subject of the student.</td>
</tr>
</tbody>
</table>

Student levels

<table>
<thead>
<tr>
<th>Hours</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-29</td>
<td>Freshman</td>
</tr>
<tr>
<td>30-59</td>
<td>Sophomore</td>
</tr>
<tr>
<td>60-89</td>
<td>Junior</td>
</tr>
<tr>
<td>90</td>
<td>Senior</td>
</tr>
</tbody>
</table>

Degree Requirements/Catalog Year
The semester (term) that you enter college, after graduation from high school, is stored in the Missouri S&T Student Information System database. This permanent record is referred to as your catalog year and provides the definition of the catalog of graduation that describes the degree requirements that you should follow to reach your degree
goal. Your catalog year can change if you do not remain continuously enrolled. The Academic Council, on April 26, 1990, addressed the issue of students who discontinue enrollment with the following regulation:

Students are responsible for knowing and meeting degree requirements stated in the Undergraduate Catalog, current at the time of their initial enrollment as freshmen. Transfers from community colleges and other universities are permitted to complete degree requirements in effect at the time of their initial enrollment as freshmen at the community college or university. Students may elect to graduate under the most recent degree requirements.

Students who interrupt their enrollment for two consecutive semesters, excluding summer sessions, must meet the degree requirements in effect at the time of readmission. Students who interrupt their enrollment for extenuating circumstances may appeal this regulation to the chairperson of the degree-granting department. The chairperson will notify the Registrar’s office if the student’s original catalog of graduation is reinstated.

Non-enrolled students who intend to complete the degree requirements by transferring work from another institution or through correspondence courses must do so within a year of leaving Missouri S&T. Otherwise, students who exceed this time limitation must meet the degree requirements in effect at the time of graduation. The person may appeal to the chairperson of the degree-granting department to reinstate the catalog in effect during the last term enrolled.

In order to meet accrediting standards and to upgrade course offerings, the degree requirements specified by your catalog can be changed by the faculty under certain conditions. On October 29, 1992 the Academic Council approved the following regulations specifying these conditions:

Students are responsible for knowing and meeting degree requirements stated in the current Undergraduate Catalog at the time of their initial enrollment as freshmen. A student whose initial enrollment is in the summer will use the catalog current the following fall. A student whose initial enrollment is in the spring will use the catalog current the previous fall. Because of the rapid changes in the world today, the Faculty may feel it is in the best interests of the University’s students to make changes in their degree requirements. In the event of such changes after a student enters Missouri S&T, that student will be required to satisfy the new degree requirements, provided the following conditions are met:

1. The total hours required to graduate cannot be increased for a continuously enrolled student, without that student’s permission.
2. The total number of semesters needed to graduate cannot be increased for a continuously enrolled student, without that student’s permission.
3. A new course cannot be substituted for an old course which a continuously enrolled student has already satisfactorily completed, without that student’s permission.

Transfer students from community colleges or other universities will complete the Missouri S&T degree requirements in effect at the time of their initial enrollments at their community colleges or universities. If there are changes in Missouri S&T degree requirements after such students’ initial enrollments at their community colleges or universities, the rules stated above apply.

Missouri S&T Grade Reports on the Web

Students may obtain their grades on the web through Joe’SS. Students who desire a paper copy of their grade report should contact the Registrar’s office.

Grading System

The following system of grades is used:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points Per Credit Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Excellent</td>
<td>4</td>
</tr>
<tr>
<td>B-Super</td>
<td>3</td>
</tr>
<tr>
<td>C-Medium</td>
<td>2</td>
</tr>
<tr>
<td>D-Inferior</td>
<td>1</td>
</tr>
<tr>
<td>F-Failure</td>
<td>0</td>
</tr>
<tr>
<td>I-Incomplete</td>
<td></td>
</tr>
<tr>
<td>S-Satisfactory</td>
<td>Indicates credit has been earned for the course scheduled.</td>
</tr>
<tr>
<td>U- Unsatisfactory</td>
<td>Indicates credit has not been earned for the course scheduled.</td>
</tr>
<tr>
<td>DL-Delayed</td>
<td>Permissible for undergraduate research 390 and must be removed at the end of the next semester or a "U" grad will be assigned by the registrar.</td>
</tr>
<tr>
<td>Y</td>
<td>No Grade available</td>
</tr>
</tbody>
</table>

Grades of "S" and "U" are permitted only for orientation courses, seminars, special problems, special readings, independent study courses (numbered 200, 300, 350 and 390), education laboratories, research, and Pass/Fail courses. Standard grades also may be used for all of the above courses except the Pass/Fail courses.

The purpose of the "I" grade is to allow a student to complete a course when, due to illness or unavoidable absence within the last four weeks (three weeks of classes plus finals weeks) of a Fall or Spring semester, or within the last week and a half plus the final exam period of an eight-week summer session, he/she would otherwise be unable to do so. The intent is to provide a means for completing a course without having to retake the entire subject for lack of fulfillment of one or two requirements of the course.

For a complete explanation of grades and grading options refer to the Student Academic Regulations handbook at: http://registrar.mst.edu/academicregs/index.html

University Communications to Students

Each student, once initially admitted, will be issued a Missouri S&T e-mail account with an address on the mst.edu domain. This is the account used for official University business and official University communications to students. Students are expected to regularly check their Missouri S&T e-mail account for University communications and are responsible for communications sent to this account. Therefore, communications sent to this account will be considered to have fulfilled any University obligation for notification.
Other Programs

Alumni Educational Assistance Program
The source of funding is the Alumni Association.

- **Eligibility:** Normally advanced standing and approval of a special committee.
- **Amount, repayment, renewal and limitations:** Same as work-study employment.

Student Diversity Programs
This scholarship is designed to encourage and support underrepresented minority students (African American, Hispanic American, and Native American) who desire to pursue an engineering or science degree. Scholarships are for freshmen and transfers and vary from $500-$2,000. The Diversity Scholarship also includes services to students to help foster academic, professional, and personal growth. For more information contact us at (573) 341-4212, via email at asksdp@mst.edu or visit http://sdp.mst.edu.

Women in Science and Engineering (WISE)
The mission of the WISE program is to meet the needs of female students within the university community, with the aim of increasing the number of female graduates entering the engineering and science workforce. The WISE office provides a variety of services including: scholarships for incoming freshmen and transfer students, student socials, professional/technical workshops, and mentoring/networking programs. The WISE office also houses the Society of Women Engineers student office, resource library, computer center, and conference room for student meetings. To apply for scholarships and obtain more details, contact the WISE office at (573) 341-7286, women@mst.edu, http://sdowp.mst.edu/.

Athletic Grants
For information on athletic programs at Missouri S&T, contact:

Missouri S&T Athletic Department
Gale Bullman Multi-Purpose Building
Missouri S&T
Rolla, MO 65409-0740
(573) 341-4175

Music/Theatre Awards
For more information on music and theatre awards available at Missouri S&T, write:

Music/Theatre
127 Castleman Hall
Missouri S&T
Rolla, MO 65409-0670

Cooperative Training Programs
For information on the co-op/internship program at Missouri S&T, contact:

Career Opportunities and Employer Relations
303 Norwood Hall
Missouri S&T
Rolla, MO 65409-0240

(573) 341-4309

Transfer Scholarship Program
Missouri S&T offers a significant number of scholarships to new transfer students who will be enrolling at Missouri S&T. For more information on this scholarship program, contact:

Office of Admission, Transfer Admissions
106 Parker Hall
Missouri S&T
Rolla, MO 65409-0250
(573) 341-4165

Missouri Income Tax Deduction (For Non-Missouri Residents Only)
Non-Missouri residents who pay Missouri income tax get a deduction on the non-resident tuition up to the amount of non-resident tuition they pay in conjunction with any non-resident scholarship. For more information contact:

Cashier’s Office
G-4 Parker Hall
Missouri S&T
Rolla, MO 65409-1160
(573) 341-4194

Departmental Scholarships
Various departments within the university offer a number of scholarships to students majoring in that area. Interested students should contact the department in which they are majoring or check the Student Financial Aid website for more information.

ROTC (Army or Air Force)
For more information on the ROTC programs at Missouri S&T, contact:

Army ROTC
301 Harris Hall
Missouri S&T
Rolla, MO 65409-0310
(573) 341-4744

or

Air Force ROTC
206 Harris Hall
Missouri S&T
Rolla, MO 65409-1450
(573) 341-4925

Graduate Student Aid
Federal Work Study, Federal Perkins Loans, University Loans and Ford Direct Loans are available for graduate students through the Missouri S&T Student Financial Assistance Office. Graduate students should contact the department in which they are majoring for information or scholarships, grants, fellowships or assistantships.

Scholarship Reinstatement Policy
Students who lose a renewable scholarship due to not earning the required renewal cumulative grade point average, and are able to raise
their cumulative grade point average after the completion of the next academic year (i.e. spring semester) to the renewal cumulative grade point average, could have their scholarship reinstated for the following academic year.

It is the scholarship recipient’s responsibility to inform the Student Financial Assistance Office that he or she meets the renewal cumulative grade point average to receive their scholarship for the next academic year. This notification must be received in writing by the Student Financial Assistance Office prior to the end of the fourth week of classes in the fall semester.

Once the fourth week of classes in the fall semester has passed, a student cannot receive scholarship funds retroactive for the current or previous semesters based upon meeting the renewal cumulative grade point requirement.

This policy only applies to general operating scholarships. Departmental, Alumni, donor (non-general operating), and state scholarships will not be reinstated under this policy.

Financial Aid Satisfactory Progress Policy

Federal and State regulations require federal and state financial assistance recipients to make satisfactory academic progress toward their degree in order to continue to receive federal financial assistance (i.e. Federal Pell Grant, Federal Supplemental Educational Opportunity Grant, Federal Perkins Loan, Federal Work Study, and Federal Ford Direct Student Loans.) Students who enroll full-time (12 or more hours undergraduate, 9 or more hours graduate) and do not “pass” 18 hours (undergraduate) or 13 hours (graduate) full-time enrollment during the academic year will jeopardize future federal financial aid eligibility. Federal regulations also require federal financial assistance recipients to receive their degree in 150% of the time required to receive a degree. See sfa.mst.edu for complete information.

Required Assessment Testing

All students at Missouri S&T are required to participate in appropriate assessment activities. The requirement to assess students originates from a directive from the Governor’s Office and from the General Assembly of the State of Missouri. Public universities are accountable to the state, and are expected to prove, by demonstrating student learning outcomes, that funds are being spent appropriately and learning objectives are realized.

Consistent with the university’s mission and values, the following seven learning outcomes define skills and knowledge that students are expected to have when graduating from Missouri S&T:

1. an ability to communicate effectively both orally and in writing
2. an ability to think critically and analyze effectively
3. an ability to apply disciplinary knowledge and skills in solving critical problems
4. an ability to function in diverse learning and working environments
5. an understanding of professional and ethical responsibilities
6. an awareness of national and global contemporary issues
7. a recognition of the need for, and an ability to engage in life-long learning

Student learning outcomes are assessed at the course, degree program, and institutional levels. Participation in the assessment activities ensures continual improvement and a quality education for current and future generations of students.

Changes in assessment requirements can affect enrolled students immediately as they are not linked to the catalog year and may change during a student’s undergraduate career.

Student Roles and Responsibilities/ Missouri S&T Policy

All graduating seniors must fulfill assessment requirements as determined by their major field department, consistent with the Office of Institutional Research and Assessment, the Campus Assessment Committee, and the Board of Curators’ guidelines, before graduating.

All other full-time students must fulfill assessment requirements as determined by the campus, consistent with the Board of Curator’s guidelines, before registering for further course work.

Assessment is a process intended to help students and faculty improve student learning and learning experiences. Assessment results help students align their educational goals, learning experiences and outcomes with the courses and services offered by the University. All academic advisors and department chairs have access to the assessment data. Students are encouraged to communicate with their academic advisors and faculty to identify, and enroll in, appropriate courses and seek support services to fulfill their educational goals. Assessment also helps the faculty to improve instruction, pedagogy, course content and technology to better meet the needs of the students.

Compliance is important to Missouri S&T students, degree programs, and the entire institution. Specifically, students must cooperate in the following manner, which is subject to change:

General Education

Students who have completed between 45-75 credit hours will be scheduled to take a general education test such as the Proficiency Profile (formerly called MAPP) test, which measures general education skills in reading, mathematics, and critical thinking. Students will be notified the week they are expected to fulfill this requirement. Should a student fail to meet this requirement as scheduled, registration for future courses will be withheld.

Major Field

Seniors are scheduled to take a major field test, such as the Fundamentals of Engineering (FE) test or the Major Field Test (MFT), before being approved for graduation. The major field test assesses students’ ability to apply disciplinary knowledge and skills in solving critical problems. Some departments administer faculty developed tests in lieu of the FE examination or MFT.

Students receive the MFT notification from their department. Information about FE test dates and requirements are available through the engineering departments.

Student Satisfaction and Engagement

At Missouri S&T, student learning outcomes are also assessed indirectly through surveys of student engagement and satisfaction. Freshmen are scheduled to complete the Cooperative Institutional Research Program (CIRP) survey prior to their first day on campus. The CIRP survey collects information on a student’s academic preparedness, admission decisions,
expectations of college, interactions with peers and faculty, as well as other student demographic characteristics.

Freshmen and seniors are scheduled to complete the National Survey of Student Engagement (NSSE), which obtains information about student participation in degree programs and activities that institutions provide for their learning and personal development.

All students are scheduled to complete the Student Satisfaction Inventory (SSI), which measures student satisfaction and priorities, as well as what issues are important to them.

Residential Life

The Missouri S&T Residential Life housing is composed of three separate residence hall complexes, Thomas Jefferson Hall, the Quadrangle Complex, and the Residential College, and two apartment complexes, Nagogami Terrace Apartments and Miner Village. The department is also responsible for the rental management of the Solar Houses in the Solar Village. The Residential Life Department’s intention in operating all of these facilities is to provide students with a living environment that is best designed to meet the academic and personal needs of the individual student. Each residence hall complex is administered by a professional live-in Resident Director (RD) and is staffed by paraprofessional students called Resident Assistants (RAs). All residence hall staff members work to develop academic living environments and are trained to help students cope with the challenges associated with college. Their efforts are supervised by the Residential Life staff and they work closely with the Counseling Center staff and other members of the Student Affairs Division.

The Residential Life Department strives to provide students with facilities and services that will best serve the lifestyle needs of Missouri S&T students. Various living arrangements are available to students, including quiet floors, specialized learning communities and interest area communities, upperclassmen housing, double rooms, suite-style housing, cooperative living units, and married housing. All rooms are furnished with beds, closets or wardrobes, desks, chairs, bookshelves, and study lamps. Students have the option of bringing personal items to give their room their own individual touch. Each community has its own study room and TV lounge. Other facilities in the residence hall include laundry facilities, computer learning centers, meeting areas, game rooms, and vending machines, depending on the complex.

The residence hall communities are administered with input from students. Each complex has its own governing body and the Residence Hall Association (RHA) is a representative group of all residence hall students. These groups play a major role in defining the policies that govern the residence halls and sponsor a significant number of social, diversity, community service and educational programs. Representatives for these groups are selected in community or complex elections.

Being a residential university, Missouri S&T requires freshman and sophomores to reside in campus-approved housing; the residence hall complexes, an approved fraternity house, an approved sorority house, or Christian Campus Fellowship house. Exceptions may be granted for married students, students whose parents reside in the Rolla area, military veterans, students over 21 years of age, or other justified situations.

Thomas Jefferson Hall, the largest residence hall complex, is located at the north end of the campus. This is a co-ed facility that is capable of housing up to 720 residents in two high-rise towers. Although this community is comprised of a predominantly undergraduate population, graduates have chosen to live in this area. Thomas Jefferson also houses the Voyager Learning Community and the Holistic Community.

The Quadrangle residence hall complex is located on the south end of the campus. It houses approximately 320 residents in three halls: McAnerney, Farrar, and Kelly. All of these halls are co-ed facilities with Farrar Hall providing cooperative living environments and Holtman Hall being designated to house students over age 21 in single rooms and students interested in the Holistic Community. The facilities and the environment in Holtman Hall are administered with the intent of trying to meet the unique needs of its special population.

The Residential College houses approximately 540 students and provides commons areas to host gatherings, teach learning communities, or showcase speakers. Additional amenities include faculty and staff residences, a reception and service area, and a computer learning center. Living accommodations will vary between four-person single-deluxe suites with a semi-private bath to four-person double suites with two semi-private half baths.

Nagogami Terrace, located on the west side of the campus, includes 36 two-bedroom apartments that have outside exits that face directly into a courtyard setting. While both married and single graduate and undergraduate students are housed in this community, priority is given to students who are married or with family, graduate students, and then undergraduate students. Miner Village is located on the north/west side of campus and is made up of five buildings of 2 and 4 bedroom apartments. The complex has a large clubhouse that has a pool table, media room, gym and a study room. Within walking distance to campus. It is a great option for students looking for the apartment lifestyle. Priority for these apartments is given to upperclassmen and students who are over 21. The Solar Village consists of three, one bedroom-one person Solar Houses.

Meals are served in dining halls located in or near each complex. Dining halls offer full-meal service on the weekdays and partial-meal service on the weekends when school is in session. Throughout the year, special meals are served to provide more variety in the cafeteria service. Seven meal plans are available that can be used at all on-campus retail and dining locations. These plans are designed to allow students the opportunity to select the meal plan that is best tailored to meet their needs. Students who live in the residence halls are required to contract for one of these seven plans. Students who live in the University’s apartments or who live off-campus have the option of purchasing a dining plan if they so choose.

How to Apply

Applications and information regarding university housing are sent beginning in October to students who are accepted for admission. If you are interested in more information about university housing, contact:

Residential Life Office
205 W. 12th Street
Missouri University of Science and Technology
Rolla, MO 65409-0510
reslife@mst.edu
http://reslife.mst.edu
(573) 341-4218
Housing Expenses by Semester 2013-2014

Residence Halls

<table>
<thead>
<tr>
<th>Semester</th>
<th>TJ</th>
<th>QUAD</th>
<th>RES COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>$2,957.50</td>
<td>$2,407.50</td>
<td>$3,380</td>
</tr>
<tr>
<td>Spring</td>
<td>$2,957.50</td>
<td>$2,407.50</td>
<td>$3,380</td>
</tr>
<tr>
<td>Total</td>
<td>$5,915</td>
<td>$4,815</td>
<td>$6,760</td>
</tr>
</tbody>
</table>

Several factors influence the cost of affiliating with fraternities and sororities. Consequently, the cost varies from chapter to chapter, but compares favorably with other types of student housing. To obtain the most accurate information, contact an individual fraternity or sorority or the Student Life Office. Meals are available by each fraternity or sorority and additional meal plans are available through Residential Life.

Additional information about the housing and food services offered by the University is available through:

Residential Life Office
205 W. 12th Street
Missouri University of Science and Technology
Rolla, MO 65409-0510
reslife@mst.edu
http://reslife.mst.edu
(573) 341-4218

Student Conduct

A student enrolling in Missouri S&T assumes an obligation to behave in a manner compatible with the university’s function as an educational institution. The University’s “Standard of Conduct” and “Rules of Procedures in Student Conduct Matters” are printed in the “Student Handbook” and the “Student Academic Regulations” and can be found on the web. Other departments and organizations, such as Residential Life and Computer Services, have specific policies and standards for their residents and/or users, as well as procedures for handling violations.

See: http://communitystandards.mst.edu

S&T Police Department

Parking

All student-operated vehicles should have either a valid campus parking permit or student registration decal affixed properly to the vehicle. Missouri S&T Parking, Security and Traffic Safety Regulations, as adopted by the Parking, Security and Traffic Safety Committee and approved by the Chancellor, provide for the payment of established fees for parking privileges and set fees for violation of those regulations. The University Police Department has the responsibility of enforcing parking regulations at Missouri S&T.

The size of the student body, faculty, and staff, coupled with the fact that a large number of students live off-campus, leads to a relatively large number of motor vehicles on and near the campus. This traffic load, in turn, complicates parking for the campus citizen and creates a hazard for vehicles and pedestrians. The Committee has prescribed the rules governing the classification and use of parking lots, the qualifications for parking on those lots, and the rules for application, issuance, and use of parking permits.

Specific information on current regulations and other details pertaining to parking can be obtained at the University Police Department, G-10 Campus Support Facility, (573) 341-4303. The regulations may also be found at: http://police.mst.edu/parking/parking

Missouri S&T Parking: Rules in Capsule Form

1. All parking on campus requires either a purchased permit or payment at a meter. Decals (permit and registration stickers) must be affixed to the outside of the rear window or bumper on the driver’s side of the vehicle. Temporary tags shall be affixed to the inside rear window on the driver’s side of the vehicle or hung on a rearview mirror.

2. All vehicles shall be parked HEADING into the parking spaces. (Do not back into or pull through the space.)

3. A visitor is anyone OTHER THAN an employee, student or member of their family.

4. Regulations pertaining to area permits and metered parking are enforced YEAR ROUND from 7:30 a.m. to 4:30 p.m. except on Saturdays, Sundays and official University holidays. Other regulations are enforced at all times.

5. Permit and metered parking at Thomas Jefferson Residence Hall and the Multi-Purpose Building shall be enforced 24 hours a day 7 days a week.

6. Employees and students lending their vehicle to a visitor will be responsible for any violations occurring on campus.

7. Parking permit owners shall park only in the area to which the purchased permit allows access.

8. Employees and students without parking permits shall use only metered spaces.

9. Specially marked disabled parking, driveways, yellow curbs and zones, spaces marked for 24 hour enforcement, fire lanes, vehicle types and areas not designated as a parking area, etc., shall be enforced 24 hours a day 7 days a week.

10. University driveways, yellow curbs and zones, and any other area not specifically designated as a parking area shall not be used at any time.

11. The Director of University Police, with the concurrence of the Parking Committee Chair, shall have the authority to suspend all or part of the parking regulations for specific periods of time.

The full and complete set of Missouri S&T Parking Rules and Regulations can be found on our website: http://police.mst.edu/parking/parking/.

Lost and Found

The University Police Department is the central “Lost and Found” repository for the campus. Any lost and found items should be turned into the University Police for reclamation purposes. If an item is lost, information should be filled out with University Police, (573) 341-4300, or can be reported by accessing: http://police.mst.edu/aboutus/services/lost/ in case the item is turned in at a later date.

Campus Security

Missouri State Uniform Crime Reporting (UCR) Statistics

Every law enforcement agency in the State is required to report crime data monthly to the Missouri State Highway Patrol (MSHP). MSHP creates and maintains computer files of the Missouri data and supplies
information not only to the Federal Bureau of Investigations (FBI) for use in national crime statistics, but also to local agencies and organizations. To access crime data for the Missouri S&T Police Department submitted to the MSHP visit the MSHP Statistical Analysis Center: http://www.mshp.dps.mo.gov/MSHPWeb/SAC/data_and_statistics_ucr.html.

Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act (CLERY)

As required by the U.S. Department of Education, the CLERY Act requires higher education institutions to make public certain crime data. Review the annual CLERY Report submitted by the Missouri S&T Police Department. A paper copy of the report can be requested by contacting the Missouri S&T Police Department at (573) 341-4300 or by responding to the department which is located in G-10 Campus Support Facility.

Daily Crime Report

The CLERY Act also requires that crime information be made available to the public within two working days. Review the Daily Crime Report in the lobby of the Missouri S&T Police Department located in G-10 Campus Support Facility or at: http://police.mst.edu/crimeinfo/ucr/

University Police

The mission of the Missouri S&T Police Department is to support the academic and campus community in fulfilling its commitment to teaching, research, and service. The functions performed by the Missouri S&T Police Department include many services offered by a small municipal police agency, as well as certain service functions unique to the University setting. The Missouri S&T Police Department has an authorized strength of 23 full-time employees, including 12 state-commissioned police officers, six security guard, two parking control officers and three administrative staff members. Missouri S&T Police Officers are empowered under Chapter 172.350 of the Missouri Revised Statutes. As such the Police Officers are commissioned and armed. Additionally all Missouri S & T Police Officers possess Rolla City Police commissions as well. Police Officers patrol on foot and by vehicle all properties owned by the Missouri University of Science and Technology 24 hours 7 days a week. The Security Guards perform additional security checks on the main campus during evening and night hours. In addition to the full-time staff, the department employs six Campus Service Officers (CSO’s), who are students that assist on a part-time basis. Missouri S&T Police Department also has a Reserve Police Officer Program where part-time officers are used on an as-needed basis.

Duties of the Missouri S&T Police Department include, but are not limited to, preventative patrols, the investigation of crimes, crime prevention through active campus involvement, service to students and others in emergencies, special event coverage, overseeing parking lot operations, and the enforcement of state laws, city ordinances, and University rules and regulations.

Reporting Crimes at Missouri S&T

All crime victims are highly encouraged to report incidents to the Missouri S&T Police Department regardless of how seemingly insignificant the crime. Missouri S&T policy requires employees to promptly report all criminal acts occurring on campus. To report a crime, the victim or witness need only call the Missouri S&T Police Department. A police officer will meet with the person to gather information and prepare an official report. A log of all reported crimes is posted at the Missouri S&T Police Department (G10 Campus Support Facility) and on our website, http://police.mst.edu/crimeinfo/ucr/, under Crime Statistics to meet Clery Act requirements.

Security of Campus

Accountability of the security of campus facilities originates with the department chair. Areas of responsibility include, but are not limited to, both interior and exterior entryways, exists, and windows, and items of value within the department. Areas not under a specific department shall be under the responsibility of the next higher level within the division.

The department chair is ultimately answerable for security problems existing within his/her area of control, but can designate a dependable and reliable individual(s) areas of security responsibility.

A particularly sensitive area in building access control is the issuance of keys by departments to faculty, staff, and students. Department key issuance and control shall comply with guidelines set forth in BPM-404 Keys to University Buildings: http://www.umsystem.edu/ums/rules/bpm/bpm400/manual_404.

Buildings shall be secured during the evening hours at the earliest reasonable time. Any facility open for an extended period after normal operating hours for that building shall require a permit to be open for the hours specified on the permit.

During the academic year in which residence halls are open, those halls shall be secured during the evening hours according to Housing Department regulations. Faculty, staff, and students are encouraged to prevent access by unauthorized personnel, in both residence halls and other campus buildings, by verifying any door entered or exited has closed and locked.

Maintenance of campus facilities involving security problem areas, such as broken locks, windows, door, etc., shall involve reporting the security problem as soon as possible to the Physical Facilities department, who shall rectify the security breach within a timely manner.

Alcohol/Illegal Drugs Policies:

Alcoholic Beverages

The use or possession of any alcoholic beverage is prohibited on all University property, except in the President’s residence and the Chancellors’ residences, and the sale, use, or possession may, by appropriate University approval be allowed in approved University Alumni Centers or Faculty Clubs, and for single events and reoccurring similar events in designated conference, meeting, or dining facilities provided by University food services, subject to all legal requirements. Further information pertaining to alcoholic beverages can be obtained from the S&T Alcohol Handbook: http://stuaff.mst.edu/resources/handbook/index-student/.

Illegal Drugs

University of Missouri regulations prohibit the unlawful possession, use, distribution, and sale of alcohol and illicit drugs by University students and employees on University-owned property and at University or supervised activities. Local, state, and federal laws also prohibit the unlawful possession, use, distribution, and sale of alcohol and illicit drugs. Violation of the University of Missouri regulations and federal and state laws can result in disciplinary action up to and including expulsion for students and discharge for employees.
Victim of Sexual Assault Information

The following information is provided to assist a person who has been the victim of a sexual assault.

Emergency Medical Examination/Evidence Collection

Receiving medical care immediately following a rape, attempted rape, or sexual assault is extremely important for your well-being. It is essential that you obtain:

- Emergency medical exam if you are injured.
- A general medical exam to ensure that you haven’t obtained injuries that you are unaware of or unable to determine.
- A medical/legal examination for the collection of evidence if you think there is any possibility you will want to prosecute the offender. The exam must be conducted within 48 hours of the assault and you must NOT clean up before the exam to avoid loss or contamination of evidence.
- Testing for sexually transmitted diseases. AIDS, and possible pregnancy (as part of follow-up treatment).

For medical emergencies, call 911 to have an ambulance dispatched.

Other sources of medical information for victims include Missouri S&T Student Health Services (available during business hours).

Emotional Support

The need for emotional support and assistance after a rape, attempted rape, or sexual assault is great. In the aftermath of such a violation and loss of control, it may be difficult to consider what steps to take.

Contact a close friend or family member to talk with and assist in making decisions. Contact the Missouri S&T Counseling Center whose services are strictly confidential and contacting this support service does not obligate you to take any further action.

Reporting of Incident

You may wish to report the assault in order to have the alleged offender apprehended and/or for the protection of self or others. If this is the case, successful apprehension and/or prosecution of the offender depends greatly on a rapid and accurate report of the crime. Information about the assault can assist law enforcement authorities in providing and improving prevention strategies for the protection of the victim and others in the community.

You have the option of making a report for the purpose of assisting the police in protecting the community without obligation to participate in the prosecution. While the actual prosecution of the offender is pursued by the Phelps County Prosecutor (not by the victim), prosecution is unlikely to occur without the consent and assistance of the victim. You have the right to choose not to contact the Missouri S&T Police, but you are strongly encouraged to report the assault to the police department.

Anonymous or Third Party Reporting

Even if you may not want to prosecute the offender to have it known you were the victim of an assault, you can choose to report the assault anonymously. Or somebody who you have told about the assault can report it. This type of reporting will provide the department with general information that may be useful in preventing additional assaults on campus. To make an anonymous report, call the police department and request to speak with an officer.

Disciplinary Actions

Whether or not you choose to report the assault to law enforcement or participate in criminal prosecution, you may decide to take action through the campus judicial system. If you were assaulted by another Missouri S&T student, on or off-campus, the accused may be charged under the University of Missouri Standard of Conduct. The judicial officer at Missouri S & T is available to discuss campus judicial procedures. While the judicial officer may investigate the complaint and impose appropriate discipline with or without the victim’s consent, discussing a matter of sexual assault with her/him does not compel the victim to participate actively in pursuing disciplinary charges. The judicial officer’s phone number is (573) 341-4292.

Contact with Offender

In situations where the accused and the accuser may be in close contact with each other because of class schedules and/or living arrangements, adjustments to housing or class schedules may be made. The Director of Residential Life has the authority to give the accuser and/or accused the option of changing living arrangements. If the accuser and the accused refuse to change living arrangements, the Director has the authority to change the living arrangements of either person. The judicial officer shall give the parties the option of changing class schedules to avoid contact. However, change of class schedules cannot be required until after disciplinary proceedings have concluded.

Student Design and Experiential Learning Center (SDELC)

116 Kummer Design Center
Chris Ramsey (Director)

The Student Design and Experiential Learning Center (SDELC) was established in 2000 to better support S&T’s multi-disciplinary student design teams. The center’s mission includes offering experiential learning opportunities that enhances classroom learning while exposing students to real open ended challenges that builds confidence in skills and knowledge. Students learn and practice critical problem solving techniques necessary for success in the real world including product/process development, project management, and team-based leadership. Experiences range from service learning opportunities to student competitions.

Located in the Kummer Student Design Center, the SDELC offers collaborative design space, fabrication centers (machining, electrical, welding, and composites), and administrative support. The center provides unique training opportunities ranging from safety (including 10-30 hr. OSHA training) to leadership programs (course credit available).
The SDELCC continues the S&T legacy of educating industry leaders who enter the workforce ready to produce with confidence. Experiences provided through the center are cornerstones to successful industry careers.

Visit our website at: design.mst.edu; call: (573) 341-7546; e-mail: sdelc@mst.edu for more information or to learn how to join a team.

Student Diversity Programs (SDP)

The mission of Student Diversity Programs’ office is to assist in actively supporting students from ethnic populations that have been under-represented in science and engineering professions. The staff supports programming that will better ensure minority student success on campus and after graduation. The office also helps promote awareness about diversity-related issues to the campus community.

SDP through its programs, partnerships and ongoing assessments of the learning, styles and personality traits will foster an academic environment that will ensure our students success. Through execution of these initiatives, the university will develop a pool of committed and gifted Missouri S&T’s ambassadors which could be utilized to recruit other underrepresented minority students to the campus.

SDP through its programs, partnerships and ongoing assessments of the learning, styles and personality traits will foster an academic environment that will ensure our students success. Through execution of these initiatives, the university will develop a pool of committed and gifted Missouri S&T’s ambassadors which could be utilized to recruit other underrepresented minority students to the campus.

Activities include (but are not limited to) academic recognition events, off and on campus recruitment programs, mentoring, leadership and professional development and scholarships.

For more information about SDP and its events, programs and scholarships, visit our website at http://sdpw.mst.edu/. Also, you may contact us directly at (573) 341-4212 or via email at asksdp@mst.edu.

Student Health Services

Student Health offers a wide range of primary health care for currently enrolled students at Missouri S&T. Multiple providers are available to deliver care for acute illness and injury as well as provide limited longer term services for ongoing medical issues. The Student Health Fee covers most of the costs but some care and medications may require a copay. Specialty and hospital services can be billed to private insurances. It is highly recommended that all students have some form of health insurance. An Aetna group policy is available and information on this plan may be obtained at the Cashier’s Office or Student Health Complex.

Measles and Rubella Immunization Policy

Incoming students born after 1956 must have documented proof of two measles immunizations. Both immunizations must have been given after 1 (one) year of age. Acceptable documentation is defined as an immunization record signed by a doctor or health record from a high school or a branch of the military. A grace period of 6 weeks is allowed to meet this requirement. Students not in compliance with this policy will be notified by e-mail of the need to provide acceptable documentation. In addition, a “hold” will be placed on the records of the students not in compliance.

Exemptions from immunization are permitted for medical, religious, philosophical reasons. Students who exempt themselves from immunizations for these reasons must sign the Measles Wavier Form (parents must sign for students under the age of 18) available at Student Health. The form must be completed EACH semester and kept on file at Student Health. For their own protection, students who have waived immunizations may be required to leave campus in case of a measles or rubella outbreak.

Students matriculating only in off-campus or continuing education/extension courses are excluded from the measles immunization requirement.

Meningitis Immunization

Beginning with the 2004-05 school year and in compliance with State Law (SB 686), proof of meningitis immunization must be provided by the student in order to move into university approved housing. If the student has not had the immunization, he may sign a waiver (parents must sign for students under the age of 18). Proof of meningitis immunization or a signed waiver will be kept on file at Student Health and will be available to the Residence Halls, Greek Housing and other university housing.

Other Immunizations

The following are recommended by the American College Health Association:

- Diphtheria/Tetanus (in past 10 years)
- Tdap booster (in past 10 years)
- Hepatitis A (series of 2 injections)
- Hepatitis B (series of 3 injections)
- PPD (tuberculosis skin test in past year)
- Varicella (series of 2 injections)
- Human Papillomavirus Vaccine (HPV) (series of 3 injections)

Tuberculosis Policy

Missouri University of Science and Technology takes every reasonable step to protect students from exposure to infectious diseases. Students from endemic areas account for 95% of the risk of tuberculosis (TB) outbreak on campus. Untreated TB can result in serious health problems for the student and for other people who come in contact with him or her. In order to ensure a healthy campus, beginning with the Winter Semester 2010 and until updated again, all incoming students will be screened for potential TB. Those who do not pass the screening will then be target tested with the Quantiferon-TB Gold blood test for tuberculosis (QFT-G). This blood test will be accepted from outside the United States if it is completed within 3 months prior to enrollment. Otherwise, the student will be required to complete the screening at the scheduled clinic held on campus or will need to stop by Student Health to pick up the order for the test and will be directed to Quest Laboratory located on Hwy 72 in Rolla, MO.

The QFT blood test will be billed to the student’s insurance. If the blood test comes back positive, there is then a process in place per the Student Health policy on continuing the work up.

All students who test positive will be offered treatment. Enrollment is contingent upon completion of this screening process and work up. Students who do not complete the above will have a “hold”
placed on their account and will not be able to enroll in the following semester until this testing is completed.

Student Organizations

Academic and Departmental

Honor and Professional

Alpha Chi Sigma, Alpha Nu Sigma, Alpha Psi Omega, Alpha Sigma Mu, American Association of Drilling Engineers, Blue Key, Chi Epsilon, Epsilon Mu Eta, Eta Kappa Nu, Industrial Designers Society of America, Kappa Kappa Psi, Kappa Mu Epsilon, Keramos, National Residence Hall Honorary, Omega Chi Epsilon, Order of Omega, Phi Alpha Theta, Phi Eta Sigma, Phi Sigma Pi, Phi Sigma, Pi Epsilon Tau, Pi Tau Sigma, Psi Chi, Sigma Gamma Epsilon, Sigma Gamma Tau, Sigma Tau Delta, Society of Women Engineers, Tau Beta Pi, Tau Beta Sigma

Intercultural

African Student Association, Association for Black Students, Chinese Students and Scholars, India Association, International Student Club, Iranian Students Association, Korean Students Association, Libyan Student Association, Malaysian Students Organization, Saudi Students Association, Taiwanese Student Association, Turkish Students Association

Media and Publication

KMNR Radio Station (89.7 FM), Missouri Miner, Rollamo, Southwinds

Programming

ASUM, St. Pat’s Celebration Committee, Student Union Board

Governing

Council of Graduate Students, Greek Independent Board, Interfraternity Council, Panhellenic Council, Residence Hall Association (RHA), Student Council

Recreation and Sports

Faith Based and Spiritual

All Nations Christian Fellowship, Anglers, Backpacking Club, Baptist Student Union, Campus Crusade for Christ, Catholic Newman Center, Chi Alpha, Christian Campus Fellowship, Climbing Club, Club Baseball, Common Call Campus Ministry, Fellowship of Christian Athletes, Koinonia (Student Fellowship of Church of Christ), Latter-Day Saint Student Association, Lutheran Student Fellowship, Muslim Student Association, Restoration Campus Ministries, The Navigators, Voices of Inspiration, Wesley House

Residence Hall

Quadangle Hall Association (QHA), Residential College Association (RCA), Thomas Jefferson Residence Hall Association (TJHA)

Service

Alpha Phi Omega (APO), Circle K International, FIRST Alumni Association, Habitat for Humanity, Intercollegiate Knights (IK), Lambda Sigma Pi, Omega Sigma

Social and Special Interest

Academic Competition Team, BBQ Club, Black Man’s Think Tank, Blue Sabres, College Republicans, Collegiate Eagle Scout Association, DaVinci Society, Delta Omicron Lambda, Eco Miners, Fraternal Order of Leaders, Free Thinkers Society, Independents, M-Club, Military Aerospace Society, Miners in Space, Perfect 10 Improv, Photo Club, PsyCo, Radio Club (Amateur), Secular Student Alliance, Show Me Aerospace Society, Miners in Space, Perfect 10 Improv, Photo Club, PsyCo, Radio Club (Amateur), Secular Student Alliance, Show Me Anime, STAT-Students Today Alumni Tomorrow, Student Veterans Association, Technical Innovators & Entrepreneurs, Toastmasters

Student Design Groups

Advanced Aero-Vehicle Group, Concrete Canoe Team, Engineers Without Borders, Formula SAE, Human Powered Vehicle Team, Hydrogen Design Solutions, International Genetically Engineered Machines (iGEM), Mars Rover Design Team, Miner Baja SAE, Miners In Space, Robotics Competition Team, Solar Car Team, Solar House Team, Steel Bridge Team

Fraternities

Alpha Epsilon Pi, Alpha Phi Alpha, Beta Sigma Psi, Delta Lambda Phi, Delta Sigma Phi, Delta Tau Delta, Kappa Alpha, Kappa Alpha Psi, Kappa Sigma, Lambda Chi Alpha, Omega Psi Phi, Phi Beta sigma, Phi Kappa Theta, Pi Kappa Alpha, Pi Kappa Chi, Sigma Chi, Sigma Nu, Sigma Phi Epsilon, Sigma Pi, Sigma Tau Gamma, Tau Kappa Epsilon, Theta Xi, Triangle

Sororities

Chi Omega, Delta Sigma Theta, Kappa Delta, Phi Sigma Rho, Zeta Tau Alpha
I. Symbolic Thought & Communications

1. **Linguistic Studies** (9 semester hours): You are required to take two courses in written communication and one course in oral communication. You must have a grade of "C" or above in each course.

2. **Mathematical** (3 semester hours). The course must be college algebra or above with a "C" or above in each course.

For more information about any recognized organization, or how to get involved on campus, contact the Department of Student Life at (573) 341-6771, stulife@mst.edu or http://studentlife.mst.edu.

Volunteerism and Service

At Missouri S&T, we realize that our impact goes far beyond our campus. As a result, the Office of Student Life is committed to contributing to the betterment of our local, surrounding, and global communities. We do this by offering students a variety of opportunities to become actively engaged through service. All of which is possible due to the mutually beneficial partnership that exists between community organizations and the University. Annual events such as the Civic Engagement Fair, Make A Difference Day, Martin Luther King Day of Service, and the Miner Challenge Alternative Spring Break program are some of the volunteerism highlights of the academic year. Learn how to get involved in volunteer activities by joining our listserv at http://studentlife.mst.edu/volunteerismvolvementhomepage/ or by watching campus announcements for opportunities scheduled throughout the year.

For more information on how you can get involved in volunteerism and service, please contact the Department of Student Life in 218 Havener Center at (573) 341-6771 or stulife@mst.edu.

Teacher Education Program

Secondary Teaching Majors

If preparing for secondary school teaching, you are required to have a teaching major. The major may be in one of the following areas: Biological Science, Chemistry, Economics, English, History, Mathematics, Physics, and Psychology. By careful program planning, it is possible to earn your certificate in more than one area.

While your program of study may be strengthened by taking certain elective courses, such electives should be taken after consultation with your academic program advisor, the coordinator of education and/or looking on website http://teachereducation.mst.edu

General Education Requirements

General education requirements are intended to provide you with the intellectual knowledge and skills for basic education. This body of knowledge and skills is arranged according to two broad categories: systems of symbolic thought and communication represented by linguistic and mathematical studies, and systems of intellectual inquiry represented by basic academic disciplines. In addition, you must complete one course in cultural diversity, and the general education requirements may be fulfilled at the same time.

The following are generic requirements for all education students. However, any degree requirement not included in these general education requirements must be included in the professional requirements or subject matter requirements for each degree program.

I. Symbolic Thought & Communications

1. **Linguistic Studies** (9 semester hours): You are required to take two courses in written communication and one course in oral communication. You must have a grade of "C" or above in each course.

2. **Mathematical** (3 semester hours). The course must be college algebra or above with a "C" or above in each course.

II. Systems of Intellectual Inquiry

1. **Humanities**: At least one course each from two of the following areas required: art, music, philosophy, literature, and theater.

2. **Natural Science**: One course in biological sciences and one in physical science is required. One of these two courses must include a laboratory.

3. **Social and Behavioral Science**: One course in each of the following areas is required:
 - A. American History,
 - B. American Government and
 - C. General Psychology.

Secondary Education

In addition to the prescribed general education courses, if you are preparing to become a secondary school teacher you must complete the following secondary professional education courses:

- **EDUC 40** Perspectives In Education 2
- **EDUC 104** Teacher Field Experience 2
- **EDUC 164** Aiding Elementary, Middle And Secondary Schools 2
- **EDUC 174** School Organization & Adm For Elementary & Secondary Teachers 2
- **EDUC 216** Teaching Reading In Content Area 3
- **EDUC 251** Historical Foundation Of American Education 3
- **EDUC 280** Teaching Methods And Skills In The Content Areas 6
- **EDUC 298** Student Teaching Seminar 1
- **EDUC 299** Student Teaching 12

The required courses of at least one teaching major.

You may major in English with English Certification (9-12); Economics, History or Psychology with Social Studies Certification (9-12); Mathematics with Mathematics Certification (9-12); Biological Sciences with Biology Certification (9-12); Chemistry with Chemistry Certification (9-12); or Physics with Physics Certification (9-12).

You must meet Missouri S&T degree requirements and, in addition, course requirements for certification. The necessary course requirement arrangements will be coordinated through the education office. Please pick up a sheet from the education office for your discipline area.

The Honors Academy

The Missouri S&T Honors Academy offers students the opportunity to be a part of a community of outstanding scholars who are seeking an enhanced educational experience.

At Missouri S&T, Honors Academy students are recognized for their academic excellence and are provided with individualized attention and opportunities to establish leadership development skills, interact with faculty members, and participate in special projects including undergraduate research, service learning, and other beneficial experiences.

Qualifications

Incoming freshmen are eligible to apply if:

1. Their ACT score is 29 or higher/SAT is 1440 or above, &
2. They rank in the top 10% of their high school class or have a minimum GPA of 3.5.

Incoming transfer students and students currently enrolled at Missouri S&T are eligible to apply if:

1. They have a minimum GPA of 3.5 and
2. A minimum of 24 graded, college-level credits.

New Student Honors Seminar

To participate in Honors Academy, students participate in New Student Honors Seminar their first year at Missouri S&T. New Student Seminar meets monthly throughout the fall and spring semester. Students have the opportunity to hear from speakers across the campus. To participate, students must apply to the Honors Academy (http://ugs.mst.edu/honors) once admitted, the Office of Undergraduate Studies will enroll the student in the no cost, no credit Honors Seminar. (Transfer students may join New Student Honors Seminar during either the Fall or Spring semester.)

Honors Academy (Sophomore-Senior Year)

Following their first year, Honors Academy students must maintain a minimum GPA of 3.5 to continue their participation in the program. Honors Academy students will enroll in and complete 15 credit hours of "Honors" course work to include 12 hours of "Honors" course work and 3 hours of Senior Project. The "Honors" course designation is based on extra work conducted in regular Missouri S&T courses wherein the instructor agrees to approve and oversee the effort.

Course requirements: One course must be outside of the major field of study. During the senior year, Honors Academy students will complete 3 hours of Senior Thesis/Project, write a thesis and present their findings to the Honors Committee. No more than 3 credit hours may be individual study courses (300, 302 & 390).

Honors Distinctions

Honors Academy students who graduate with a 3.5 GPA or better and have at least 15 credit hours of "Honors" course credits and present their thesis findings will earn the distinction of "Honors Academy Fellow" at graduation. This distinction will be noted on their diploma, transcript, and commencement program. For more information, please contact the Office of Undergraduate Studies at (573) 341-7276.

Women’s Programs

Women’s Programs mission is to serve as an educational and professional development resource center for all students and promote awareness of female and diversity-related issues to the campus.

Women’s Programs provides activities and programs for students to learn about diversity in leadership from the female perspective. Our goal is to encourage student involvement and strategic leadership in campus and community organizations through participation in: guest lectures, workshops, professional development, networking skills, scholarships, Women In Science and Engineering (WISE), student organizations (SWE) and mentoring/advising. The ultimate goal is to enable students to assume leadership and management positions after completing their degree.

For more information contact Women’s Programs at:
215 Centennial Hall
(573) 341-7286
women@mst.edu
http://sdowp.mst.edu/

Writing Across the Curriculum

Writing is important for professionals in all fields, and Missouri S&T graduates report that communication skills have been crucial to their professional success. In recognition of the importance of writing, general education requirements ensure that all students take courses that emphasize writing skills. Further, as part of the university’s Writing Across the Curriculum program, courses in every discipline give students practical experience in writing the kinds of documents demanded by the academic and professional fields for which they are preparing. The Writing Center was established to support student success in these courses and throughout a student’s career.

Writing is not a skill that can be learned in a single course or semester; rather, writing proficiency develops throughout a college career and over the course of a lifetime. Improvement comes only with practice and constructive criticism. Writing Center services are designed to offer resources, encouragement, and feedback that will help students develop strong writing skills.

Tutoring

The most important way we support student writers is through peer tutoring, a key part of the academic experience at Missouri S&T. Many hundreds of students seek tutoring each semester, often for multiple assignments. Our tutors are undergraduate students who represent a wide range of majors. They have been identified by professors and Writing Center staff as among the best student writers on campus. Each tutor receives intensive and ongoing training to help other students become strong writers as well.

Tutors work individually with students on all types of documents, including essays, research papers, laboratory reports, proposals, résumés, and more. They can help at any stage of the writing process, from understanding the assignment to organizing ideas and revising drafts. The tutors are trained to help students identify areas for improvement and teach them how to make those improvements most effectively. Tutoring is free, and students can make as many appointments as they wish throughout the semester.

Additional Services

The Writing Center offers a range of writing resources in addition to tutoring. We maintain a library of citation style guides, grammar handbooks, and information on writing specific types of documents; these are available for consultation at any time during office or tutoring hours. We also offer a series of handouts on specific writing topics; these are free, and many are available on our website. A student newsletter, The Write Track, appears once each semester; written entirely by our tutors, its features address a range of topics of special interest to Missouri S&T undergraduates. Writing Center staff periodically offer workshops and presentations related to writing; a schedule of these presentations can be found on our website. Finally, a computer learning center located in 114 Campus Support facility (adjacent to the Writing Center) is equipped with writing, editing, and desktop publishing software, as well as printers, scanners, and Smartboard technology. When not in use for classes or
workshops, this facility is available for student use during Writing Center office and tutoring hours.

Writing Center facilities and services are available to all Missouri S&T undergraduates free of charge. The Writing Center is located in 113 Campus Support Facility. Its hours vary each semester, and they are posted on our website at http://writingcenter.mst.edu. Students may drop in whenever the Writing Center is open, but they are encouraged to use our online scheduling tool to make tutoring appointments.
Degree Programs

Missouri S&T offers Bachelor of Science, Bachelor of Arts, MBA, Master of Science, Master of Engineering, Doctor of Philosophy, and Doctor of Engineering degrees. You can major in engineering, science, business, or the liberal arts. You can get a background for law or medicine or other professional studies.

In many disciplines there are emphasis areas which are areas of concentration within a degree program. If you choose an emphasis area, you will take some of your elective hours in specified courses in that area. Your advisor can guide you toward the election of courses you should take if you choose an emphasis area.

Degree Programs and Emphasis Areas are listed below.

- aerospace engineering
- applied mathematics (emphasis areas in actuarial science, algebra/discrete mathematics, applied analysis, computational mathematics, secondary education, statistics)
- architectural engineering (emphasis in structural engineering, construction engineering and project management, environmental systems for buildings, and construction materials)
- biological sciences (pre-medicine and secondary education)
- business and management systems
- ceramic engineering
- chemical engineering (emphasis in biochemical engineering)
- chemistry (emphasis areas in biochemistry, polymer and coatings science, pre-medicine chemistry, and secondary education)
- civil engineering (emphasis areas in construction engineering, environmental engineering, geotechnical engineering, materials engineering, structural engineering, transportation engineering, water resources engineering)
- computer engineering (emphasis areas in computers and architecture, integrated circuits and logic design, embedded computer systems, computational intelligence, networking and software engineering, security and reliability)
- computer science
- economics (emphasis area in economics/business and secondary education) (business administration-cooperative program with the University of Missouri-Columbia)
- electrical engineering (emphasis areas in circuits and electronics, communications and signal processing, computer engineering, controls and systems, electromagnetics, optics and devices, power and energy
- engineering management (emphasis areas in industrial engineering and management of technology)
- English (emphasis area in secondary education)
- environmental engineering
- explosives engineering
- geological engineering (emphasis areas in engineering geology and geotechnics, environmental protection and hazardous waste management, groundwater hydrology and contaminant transport, petroleum, energy and natural resources, and quarry engineering)
- geology & geophysics (emphasis areas in geochemistry, geology, geophysics, groundwater & environmental geochemistry, and petroleum geology)
- history (emphasis area in secondary education)
- information science and technology (emphasis area in human-computer interaction and enterprise resource planning)
- mechanical engineering (emphasis areas in control systems, energy conversion, environmental systems, instrumentation, manufacturing processes, materials science, mechanical design and analysis, thermal science)
- metallurgical engineering (emphasis areas in chemical metallurgy, manufacturing metallurgy, physical metallurgy)
- mining engineering (emphasis areas in explosives engineering, quarry engineering, coal, mining and the environment, mining health and safety, sustainable development)
- nuclear engineering
- petroleum engineering
- philosophy
- physics (emphasis areas in applied physics, geophysics, and secondary education)
- psychology (emphasis areas in cognitive neuroscience, human services, human resources/personnel, psychology of leadership, usability of technology, secondary education)
- teacher education program (secondary education certification)
- technical communication

Bachelor of Arts Degree

General Requirements

This degree can be earned in the following areas: biological sciences, chemistry, economics, English, history, philosophy, and psychology.

A minimum of 120 credit hours is required for a Bachelor of Arts degree with an average of at least two grade points per credit hour to be obtained. At least 45 hours of the student’s work must be taken of the upper-class (course numbered 200 pr above) level.

Requirements for the Bachelor of Arts degree follow:

I. Basic Skills and Concepts (a)

1. Composition: ENGLISH 20 and one additional three hour composition course(b) 6 hrs.
2. Western Civilization (HISTORY 111 and HISTORY 112) 6 hrs.
3. Foreign languages, (c)(d) 12 hours of a single foreign language or 16 hours (8+8) of two foreign languages.
 A. At least three semesters of basic study in a single foreign language or two semesters in each of two foreign languages: French, German, Russian, Spanish, or an approved substitute language.
 B. One year of basic study in one foreign language, either French, German, Russian, Spanish, or an approved substitute, and a humanities or social sciences course taught in a foreign country and employing the language of that country.
 C. One year of basic study in each of two foreign languages: French, German, Russian, Spanish, or an approved substitute language.
II. General Education Requirements

1. Sciences (12 hrs.): At least one course taken in each of the biological (biological sciences), physical (chemistry, geology and geophysics, and physics), and mathematical (mathematics/statistics and computer science) sciences, but not to include MATH 1 or COMP SCI 1. A laboratory also may count — at the discretion of the student’s major department — toward the total requirement.

2. Humanities (12 hrs.): At least one course in each of the three areas of literature (English and American), philosophy, and fine arts (art, music and theater), but not to include studio and performance offerings. This requirement is exclusive of courses in the student’s major.

3. Social Sciences (12 hrs.): Courses in at least two of the following areas: economics, political science, psychology, and sociology. This requirement is exclusive of courses in the student’s major.

IV. Minor Field Requirements

1. Specific minor field requirements in each discipline are given in the entry of that discipline.

2. A cumulative grade point average of 2.0 must be earned in all course work taken in the major field. Upper-class (200- and 300-level) courses completed with grades of “D” may not be included in the major field without the approval of the chairman of the department concerned.

3. At least nine hours of upper-class work in the major field must be completed in residence at Missouri S&T.

V. Elective Credits

1. In consultation with his or her advisor, each student will elect sufficient additional courses to complete a minimum of 120 credit hours.

2. Basic ROTC (military science and aerospace studies) may be taken in the freshman and sophomore years. Up to 12 credit hours (depending on the student’s major) of advanced courses in ROTC may be credited toward a degree.

(c) This requirement cannot be satisfied through foreign civilization courses which are taught in English. A student who has studied French or Spanish prior to enrolling in courses at Missouri S&T will be required to take a placement exam that will determine the appropriate course for his/her level of preparation. Students may not enroll in or receive credit for a course taken below their placement level. All course placement requires instructor’s approval. A student may receive foreign language credit by examination with a score of 3, 4, or 5 on the language or literature AP exam or with a score in the 75th percentile or above on the CLEP exam.

(d) Upon approval of the department chair students seeking teacher certification may substitute 11-16 hours of certification courses for their foreign language requirement. Students electing to make this substitution must complete the certification program to receive their chosen Bachelors of Arts degree.

(e) The mathematics/statistics requirement may be satisfied by (1) examination or (2) the presentation of 2.5 high school units, including 1.5 units of algebra and excluding general mathematics. The student will not, however, receive hour credit so he or she must take another course to fulfill the 12 hours.

VI. General Education Communications Requirements

Each department will provide students with opportunities to enhance their writing and speaking skills (beyond the required class) by requiring that they complete at least two Communications Intensive courses, at least one of which should be in the student’s major. Communication Intensive (CI) courses may be focused on writing, speaking, or combinations thereof. Two Communications Emphasized (CE) courses may be used at the equivalent of one CI course (for example, four CE courses would substitute for two CI courses, but an appropriate substitute for the one CI course in the student’s major). These requirements will be formally tracked and monitored by the CAPS advising system to ensure that each graduating student is meeting the Communications component of the General Education requirement.

Bachelor of Science Degree

This degree can be earned in the following areas: aerospace engineering, applied architectural engineering, biological sciences, business and management systems, ceramic engineering, chemical engineering, chemistry, civil engineering, computer engineering, computer science, economics and information science and technology, electrical engineering, engineering management, environmental engineering, geological engineering, geology and geophysics, interdisciplinary engineering, mathematics, mechanical engineering, metallurgical engineering, mining engineering, nuclear engineering, petroleum engineering, physics, and psychology.

Accreditation

Missouri S&T bachelor’s level engineering programs in the aerospace engineering, applied architectural engineering, ceramic engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, engineering management, geological engineering, geology and geophysics, mechanical engineering, metallurgical engineering, mining engineering, nuclear engineering, and petroleum engineering, are accredited by:
Missouri University of Science and Technology

Engineering Accreditation Commission of ABET
111 Market Place, Suite 1050
Baltimore, MD 21202-4012
Telephone: (410) 347-7700

Missouri law requires that all applicants for registration as professional engineers be graduates of engineering programs accredited by the Engineering Accreditation Commission of ABET or possess an education which includes at the minimum a baccalaureate degree in engineering and which, in the opinion of the registration board, equals or exceeds the education received by a graduate of a program accredited by EAC/ABET. Applicants who receive advanced degrees from Missouri S&T engineering programs, but do not have undergraduate engineering degrees, may not be eligible for registration in Missouri. Such applicants may wish to consider studying toward a bachelor’s degree in their chosen engineering field. If so they should consult with their department chairman regarding specific requirements. All eligible graduates are strongly encouraged to seek professional engineer registration.

General Education Communications Requirements

Each department will provide students with opportunities to enhance their writing and speaking skills (beyond the required English 20 class) by requiring that they complete at least two Communications Intensive courses, at least one of which should be in the student’s major. Communication Intensive (CI) courses may be focused on writing, speaking, or combinations thereof. Two Communications Emphasized (CE) courses may be used at the equivalent of one CI course (for example, four CE courses would substitute for two CI courses, but two of the CE courses must be in the student’s major). These requirements will be formally tracked and monitored by the CAPS advising system to ensure that each graduating student is meeting the Communications component of the General Education requirement.

Dual Bachelor’s Degree

Combination curricula leading to two baccalaureate degrees can be arranged in any two fields. The amount of additional credit required for the second baccalaureate degree will be based on the student’s educational background and determined for each case by the academic department which offers the curriculum leading to the second degree. The chair of the department will submit a list of the specific course and credit hour requirements, together with the student’s transcript, to the Provost for approval. This list will then be forwarded to the Registrar and constitute the official requirement for the second degree. Since the B.A. degree is unspecified as to major there will be no dual Bachelor of Arts degree offerings. A student entering Missouri S&T with a baccalaureate degree must take a minimum of 30 hours to receive another bachelor’s degree.

When requirements for a degree in two departments have been completed without either degree being awarded, both degrees may be awarded at the same commencement.

Engineering Degree Requirements

All Engineering degree programs must be consistent with the following minimum requirements.

The requirements of the degree program shall consist of 128-132 credit hours. Additional hours may be required for specific choices of electives or Emphasis Areas. Courses that are at a lower level of coverage than the required courses in the curriculum (e.g. algebra, trigonometry, Intro to Physics, etc.) may not be counted toward the degree program credit hours. An average of at least two grade points per credit hour must be obtained for all credits counted toward the degree. In addition, an average of at least two grade points per credit hour must be obtained for all credits taken in the student’s major department.

The degree program shall include all courses in the Common Engineering Freshman Year, as listed in the current catalog under the Freshman Engineering Program.

The degree program shall include a minimum of 21 credit hours as follows:

- ENGLISH 20
- HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90
- ECON 121 or ECON 122
- The remaining courses must be chosen from the list of approved humanities/social sciences courses, published on the website for the Office of Undergraduate Studies (http://ugs.mst.edu). Departments may further specify the requirements for these electives.
Minors

You can elect to combine a recognized minor program with your bachelor of arts or bachelor of science degree programs in the following areas:

- aerospace engineering (p. 48)
- american studies (p. 94)
- applied mathematics (p. 113)
- art (p. 55)
- bioinformatics (p. 56)
- biological sciences (p. 56)
- business (p. 59)
- chemistry (p. 68)
- cognitive neuroscience (p. 141)
- communication studies (p. 147)
- computer science (p. 80)
- computer engineering (p. 76)
- creative writing (p. 94)
- digital supply chain management (p. 110)
- electronic and social commerce (p. 59)
- economics (p. 82)
- energy technology
- engineering management (p. 91)
- enterprise resource planning (p. 96)
- entrepreneurship (p. 59)
- ethics
- explosives engineering (p. 99)
- film and literature (p. 55)
- finance (p. 99)
- French (p. 99)
- geological engineering (p. 100)
- geology (p. 104)
- German (p. 99)
- global studies (p. 107)
- global sustainable economics (p. 82)
- history (p. 107)
- industrial/organizational psychology (p. 141)
- information science & technology (p. 110)
- international economics (p. 82)
- leadership communication (p. 147)
- literature (p. 94)
- literature and film (p. 94)
- marketing (p. 112)
- management (p. 59)
- mathematics (p. 113)
- military science (p. 124)
- mineral process engineering (p. 125)
- mining engineering (p. 125)
- mobile business and technology (p. 110)
- multiculturalism & diversity (p. 130)
- music (p. 131)
- nuclear engineering (p. 131)
- petroleum engineering (p. 134)
- philosophy (p. 136)
- philosophy of technology (p. 136)
- physics (p. 137)
- political science (p. 140)
- pre-law (p. 141)
- pre-MBA (p. 59)
- pre-medicine (p. 141)
- psychology (p. 141)
- psychology of leadership (p. 141)
- psychometrics (p. 141)
- Russian (p. 99)
- science, technology & politics (p. 140)
- sociology
- Spanish (p. 99)
- studio art (p. 55)
- sustainability (p. 148)
- sustainable business (p. 59)
- technical communication (p. 94)
- theatre (p. 149)
- writing (p. 94)
Certificates

• design
• explosives engineering (p. 99)
• technical writing
Aerospace Engineering

The Aerospace Engineering program is offered in the Department of Mechanical and Aerospace Engineering. In aerospace engineering, you will apply the laws of physics and mathematics to problems of aircraft flight and space vehicles in planetary atmospheres and adjoining regions of space. Maybe you will design space shuttles, rockets, or missiles. Possibly you might design military, transport, and general aviation aircraft, a V/TOL (vertical take-off and landing) aircraft, or a UAV (unmanned aerial vehicle). You could design a spacecraft to travel to Mars or to a more distant planet.

You’ll be able to tackle problems in the environmental pollution of air and water, or work on wind effects on buildings and structures, or wind energy harnessing. Designing all types of transportation systems, including high-speed vehicles, urban rapid transit systems, and undersea craft might be some of the challenges you will undertake.

Your professional training in aerospace engineering will be directed generally toward the analysis and design of aerospace vehicles, including aircraft, missiles, and spacecraft with special emphasis on the fundamental treatment of aerospace science.

You will accomplish your goals through your basic training in aerodynamics, dynamics, stability and control, structures, and propulsion including cross-linkage among these areas. You will use this knowledge to design, build, and flight test aerospace systems.

Your studies at Missouri S&T will include both basic science and engineering science, mathematics, and liberal arts courses as well as advanced aerospace engineering courses. Within aerospace engineering, you can choose nine hours of technical electives in a special interest area such as aerodynamics, structures, composites, flight dynamics, controls, propulsion, and aeroelasticity.

Your design courses will be integrated with Missouri S&T’s computer graphics system to unify the graphical capabilities of the computer into your design experience. Undergraduate research opportunities are also available through the NASA Space Grant Consortium and the OURE program.

Classes and laboratories are held in Toomey Hall. Laboratory facilities include a Mach 1.5 to 4 supersonic blowdown wind tunnel with a five-inch diameter jet with instrumentation for Schlieren photography, pressure, temperature, and turbulence measurements. A large subsonic wind tunnel, capable of speeds up to 300 miles per hour, has a test section 48 in. wide, 32 in. high, and 11 feet long. Other facilities include a flight simulation laboratory, space systems engineering laboratory, aerospace structural test equipment, propulsion component analysis systems, and shock tubes.
3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4. an ability to function on multidisciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility
7. an ability to communicate effectively
8. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
9. a recognition of the need for, and an ability to engage in life-long learning
10. a knowledge of contemporary issues
11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Requirements for a Minor in Aerospace Engineering

A student who receives a bachelor of science degree in an accredited engineering program from Missouri S&T may receive a minor in aerospace engineering by completing the 15 hours of courses listed below. Students must satisfy the prerequisite requirements for each course. The department granting the bachelor of science degree shall determine whether or not courses taken for the minor may also be used to fulfill the requirements of the B.S. degree.

AERO ENG 161 Aerospace Vehicle Performance 3
AERO ENG 213 Aerospace Mechanics I 3
AERO ENG 231 Aerodynamics I 3
AERO ENG 251 Aerospace Structures I 3
AERO ENG 200 level 3-hour lecture course (student choice) 3

Bachelor of Science Aerospace Engineering

Entering freshmen desiring to study Aerospace Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state an Aerospace Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

A Cumulative GPA of 2.5, and math science GPA of 2.25 are the minimum requirements for admission to the Aerospace Engineering program.

Students must comply with the requirements specified in the current online catalog published by the Registrar. For the Bachelor of Science degree in Aerospace Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Aerospace Engineering. Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen to satisfy the following requirements:

1. All students are required to take one American history course/ political science course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122.
2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.
3. Once course should be in the ethics area. Select from PHILOS 223, PHILOS 225, or PHILOS 235.
4. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20, and a literature course.
5. Any specific departmental requirements in the general studies area must be satisfied.
6. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Aerospace Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application. Indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:

Free electives. Each student is required to take two hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses.

Free Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freshman Year</td>
</tr>
<tr>
<td></td>
<td>First Semester</td>
</tr>
<tr>
<td></td>
<td>FR ENG 10</td>
</tr>
<tr>
<td></td>
<td>CHEM 1 & CHEM 2 & CHEM 4</td>
</tr>
<tr>
<td></td>
<td>ENGLISH 20</td>
</tr>
<tr>
<td></td>
<td>MATH 14 & H/SS History Elective</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sophomore Year</td>
</tr>
<tr>
<td></td>
<td>First Semester</td>
</tr>
<tr>
<td></td>
<td>COMP SCI 73 or 74</td>
</tr>
</tbody>
</table>

Missouri University of Science and Technology
COMP SCI 77 or 78 $^\text{10}$ & AERO ENG 1604 & 3
CIV ENG 506 & MECH ENG 2194 & 3
MATH 224 & MATH 2044 & 3
PHYSICS 244 & CIV ENG 1104 & 3
AERO ENG 1614 & Elective/Literature & 3

Junior Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO ENG 2134 3</td>
<td>AERO ENG 2514 3</td>
</tr>
<tr>
<td>AERO ENG 2314 3</td>
<td>AERO ENG 261 3</td>
</tr>
<tr>
<td>AERO ENG 377 3</td>
<td>AERO ENG 271 3</td>
</tr>
<tr>
<td>ELEC ENG 281 3</td>
<td>AERO ENG 282 2</td>
</tr>
<tr>
<td>Electives-Advanced Math/Cmp Sc 5 3</td>
<td>Elective/Ethics 11 3</td>
</tr>
<tr>
<td>Elective/Communications 7 3</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO ENG 235 3</td>
<td>AERO ENG 281 or 382 3</td>
</tr>
<tr>
<td>AERO ENG 253 3</td>
<td>Electives-Technical 6 3</td>
</tr>
<tr>
<td>AERO ENG 280 or 380 2</td>
<td>Electives-Technical 6 3</td>
</tr>
<tr>
<td>AERO ENG 283 2</td>
<td>AERO ENG 285 1</td>
</tr>
<tr>
<td>Electives-Technical 7 3</td>
<td>Electives Free 9 2</td>
</tr>
<tr>
<td>Elective/Communications 7 3</td>
<td>Electives-Hum/Soc Sci 3</td>
</tr>
</tbody>
</table>

Total Credits: 128

1. CHEM 1, CHEM 2 and CHEM 4 or an equivalent training program approved by Missouri S&T.
2. Must be one of the following: POL SCI 90, HISTORY 112, HISTORY 175, or HISTORY 176.
3. Must be one of the following: ECON 121 or ECON 122.
4. A grade of "C" or better in CHEM 1, MATH 14, MATH 15, MATH 22, MATH 204, PHYSICS 23, PHYSICS 24, CIV ENG 50, CIV ENG 110, and computer programming elective, AERO ENG 160, AERO ENG 161, and MECH ENG 219, as prerequisite for follow-up courses in the curriculum and for graduation.
5. Must be one of the following: AERO ENG 330, COMP SCI 228, MATH 203, MATH 208, STAT 213, STAT 215, or any 300-level math or computer science course approved by the student’s advisor.
6. Electives must be approved by the student’s advisor. Nine hours of technical electives must be in Mechanical and Aerospace Engineering. Three hours of departmental technical electives must be at the 300-level. AERO ENG 377 and the 300-level Asteroid Mining course co-listed with Geological Engineering are not to be used for 300-level technical elective.
7. This course can be selected from ENGLISH 60, ENGLISH 160, SP&M S 85, or the complete four-course sequence in Advanced ROTC (MIL ARMY 105, MIL ARMY 106, MIL ARMY 207, and MIL ARMY 208 or MIL AIR 350, MIL AIR 351, MIL AIR 380, and MIL AIR 381).
8. Choose 100-or higher-level course from the approved list. One of the other courses taken in humanities/social science should be a prerequisite for this course.
9. Each student is required to take two or more hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses.
10. Computer Science requirement can be satisfied by taking COMP SCI 53 and COMP SCI 54.
11. Must be a course on engineering ethics, business ethics, bio ethics, social ethics, or any ethics course approved by the student’s advisor.

Note: All Aerospace Engineering students must take and pass the Aerospace Engineering Assessment Exam prior to graduation.

S N Balakrishnan, Curators Professor
PHD University of Texas Austin

Victor Birman, Professor
PHD Technion, Haifa, Israel

Douglas A Bristow, Assistant Professor
PHD University Of Illinois Urbana-Champaign

K Chandrashekhara, Curators Professor
PHD Virginia Polytechnic Institute

Kirk Le Christensen, Assistant Teaching Professor
PHD University of Missouri-Rolla

Donald Cronin, Emeritus Professor
PHD California Institute of Technology

Kyle Jordan DeMars, Assistant Professor
PHD University of Texas Austin

L R Dharani, Curators Professor
PHD Clemson University

Lian Duan, Assistant Professor
PHD Princeton University

Walter Eversman, Curators Professor1
PHD Stanford University

Fathi Finaish, Professor
PHD University of Colorado

Leslie Sour Gertsch, Associate Professor
PHD Colorado School of Mines

Kelly O Homan, Associate Professor
PHD University Of Illinois Urbana-Champaign

Serhat Hosder, Assistant Professor
PHD Virginia Polytechnic Institute

K M Isaac, Professor
PHD Virginia Polytechnic Institute

Leslie Koval, Emeritus Professor1
PHD Cornell University

K Krishnamurthy, Professor
PHD Washington State University
command and staff leadership experience in preparation for active duty. Leadership laboratory provides cadets with the knowledge and practical experience necessary for leadership. The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officer skills. In addition to the academic ROTC class, all cadets attend a two-hour leadership laboratory each week and two hours of physical training. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.

Although Air Force ROTC is set up as a four-year program, students can choose a four, three, or a half, or three year course of study. The first two years of the program, called the General Military Course (GMC), cover basic introductory military topics as well as communication and leadership. The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officer skills. In addition to the academic ROTC class, all cadets attend a two-hour leadership laboratory each week and two hours of physical training. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.

Scholarships, which may cover up to full tuition and fees, based on residency are available to qualified cadets. A monthly stipend is given during the academic year to each cadet on scholarship and also to members of the POC. Students who receive an AFROTC scholarship also receive an annual $2000 supplement from Missouri S&T. Lastly, scholarship recipients receive a $900/year book allowance to offset costs. ROTC scholarship recipients are eligible to receive other Missouri S&T scholarships. Students do not have to be on a scholarship to complete our program and be an Air Force officer.

There is no obligation connected in taking Air Force ROTC for a non-scholarship cadet during the freshman and sophomore years. Obligations begin only at the start of a student’s last two years of the program or after a ROTC scholarship is awarded and activated.

Students usually attend summer field training prior to their junior year, before enrollment into the POC. Entrance into the POC is based on an extensive evaluation and selection process during the student’s sophomore year. Cadets who complete the POC in good standing and earn their academic degree are commissioned as Second Lieutenants and serve on active duty for four or more years, depending on their selected Air Force career field.

The Air Force ROTC unit at Missouri S&T is organized as an objective wing, with associate groups, squadrons, and flights. Freshmen and sophomore cadets are assigned to one of the flights. They receive instruction from POC cadets in basic military customs and courtesies, drill movements, and many other facets of Air Force operations. Additionally, they are offered the opportunity to visit Air Force bases and discuss career opportunities with Air Force members. Junior and senior cadets are assigned and rotated through various leadership positions, gaining experience in management procedures.

The Bachelor of Science in Architectural Engineering (B.S.E.) requires satisfactory completion of 128 credit hours. In your third and fourth years, most of your course work will be in engineering sciences. Also in your Department of Aerospace Studies. The mission of Air Force ROTC is to develop quality leaders for the Air Force. As the largest source of Air Force officers, Air Force ROTC offers a number of opportunities for Missouri S&T students who wish to become commissioning officers by offering professional, academic, and military training. Leadership, communication, and basic military skills are the focus of the ROTC program. In addition to helping a student succeed during college, Air Force ROTC also fosters self-confidence and self-discipline.

Opportunities in the Air Force are excellent, with over 100 possible career fields available. Career field availability depends on academic discipline, medical condition, desires of the individual, and needs of the Air Force. As newly commissioned Second Lieutenants on active duty, Air Force ROTC graduates can serve worldwide, performing challenging and rewarding duties in highly technical, scientific, and operational areas. A few of these include design, research, engineering, systems development, space operations, computer science, procurement, flying, management, acquisitions, and maintenance.

Although Air Force ROTC is set up as a four-year program, students can choose a four, three, or a half, or three year course of study. The first two years of the program, called the General Military Course (GMC), cover basic introductory military topics as well as communication and leadership. The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officer skills. In addition to the academic ROTC class, all cadets attend a two-hour leadership laboratory each week and two hours of physical training. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.

Scholarships, which may cover up to full tuition and fees, based on residency are available to qualified cadets. A monthly stipend is given during the academic year to each cadet on scholarship and also to members of the POC. Students who receive an AFROTC scholarship also receive an annual $2000 supplement from Missouri S&T. Lastly, scholarship recipients receive a $900/year book allowance to offset costs. ROTC scholarship recipients are eligible to receive other Missouri S&T scholarships. Students do not have to be on a scholarship to complete our program and be an Air Force officer.

There is no obligation connected in taking Air Force ROTC for a non-scholarship cadet during the freshman and sophomore years. Obligations begin only at the start of a student’s last two years of the program or after a ROTC scholarship is awarded and activated.

Students usually attend summer field training prior to their junior year, before enrollment into the POC. Entrance into the POC is based on an extensive evaluation and selection process during the student’s sophomore year. Cadets who complete the POC in good standing and earn their academic degree are commissioned as Second Lieutenants and serve on active duty for four or more years, depending on their selected Air Force career field.

The Air Force ROTC unit at Missouri S&T is organized as an objective wing, with associate groups, squadrons, and flights. Freshmen and sophomore cadets are assigned to one of the flights. They receive instruction from POC cadets in basic military customs and courtesies, drill movements, and many other facets of Air Force operations. Additionally, they are offered the opportunity to visit Air Force bases and discuss career opportunities with Air Force members. Junior and senior cadets are assigned and rotated through various leadership positions, gaining experience in management procedures.

Bradley K Chronister, Lecturer
BACHELOR US Air Force Academy

Benjamin H Seabough, Lecturer
BACHELOR University of Missouri-Rolla

Michael John Sowa, Lecturer
MASTERS Lesley University

Architectural Engineering

Emphasis areas include structural engineering, construction engineering and project management, environmental systems for buildings, and construction materials.

Architectural engineers plan, design, and supervise construction of many essential facilities and structures for residential, commercial, industrial and institutional buildings. These building systems include electrical, communications and control, lighting, heating, ventilating, air conditioning, fire protection, plumbing, and structural systems. Architectural engineers are problem solvers applying the latest in high-tech equipment and sophisticated procedures to address challenges concerning our environment and infrastructure. The diversity of architectural engineers complements the use of multiple systems to the intent and purpose of the project’s design.

The Bachelor of Science in Architectural Engineering (B.S.E.) requires satisfactory completion of 128 credit hours. In your first two years, you will complete mathematics, physics, English, architectural design and other prerequisite courses. In your third and fourth years, most of your course work will be in engineering sciences. Also in your Department of Aerospace Studies. The mission of Air Force ROTC is to develop quality leaders for the Air Force. As the largest source of Air Force officers, Air Force ROTC offers a number of opportunities for Missouri S&T students who wish to become commissioning officers by offering professional, academic, and military training. Leadership, communication, and basic military skills are the focus of the ROTC program. In addition to helping a student succeed during college, Air Force ROTC also fosters self-confidence and self-discipline.

Opportunities in the Air Force are excellent, with over 100 possible career fields available. Career field availability depends on academic discipline, medical condition, desires of the individual, and needs of the Air Force. As newly commissioned Second Lieutenants on active duty, Air Force ROTC graduates can serve worldwide, performing challenging and rewarding duties in highly technical, scientific, and operational areas. A few of these include design, research, engineering, systems development, space operations, computer science, procurement, flying, management, acquisitions, and maintenance.

Although Air Force ROTC is set up as a four-year program, students can choose a four, three, or a half, or three year course of study. The first two years of the program, called the General Military Course (GMC), cover basic introductory military topics as well as communication and leadership. The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officer skills. In addition to the academic ROTC class, all cadets attend a two-hour leadership laboratory each week and two hours of physical training. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.
fourth year you will complete engineering design courses in general and specific areas.

Courses in structural, electrical, mechanical and lighting design are directed toward providing reliable and efficient structures such as stadiums, retail complexes, office buildings and airports. Courses in construction engineering include studies in construction techniques, cost estimating, quality control/quality assurance, and contract administration. History, architectural design and humanities provide the necessary tools to appreciably coexist in the fabric of society.

Architectural engineering is a broad field of endeavor. Because of this breadth, courses are required in each of the above areas. Although you, as a architectural engineer, may specialize within a given area, by the very nature of the profession you will be required to interact with specialists in the other areas. You will find that you will be working with architects and engineers in the other disciplines in the planning, design, and construction of complex facilities.

Architectural engineers also must be effective in communicating with the public. You may be expected to work with property owners, concerned citizens, city officials, attorneys, and even medical doctors for concerns related to public health measures. The results of your work as a architectural engineer will be seen everywhere. Projects in which you will become involved must be economical, appreciable to self and community, and provide a reasonable life expectancy. Use of computer hardware and software is a key component of the BSAE program of study.

Mission Statement

The Architectural Engineering Program will provide students with the tools necessary to solve architectural engineering problems critical to our society’s well-being. This will be accomplished through a comprehensive, forward-looking and broad-based architectural engineering curriculum emphasizing fundamentals, practical applications, oral and written communication skills, computer applications skills, and professional practice issues and ethics. The program will prepare graduates for entry into the architectural engineering profession, for life-long learning, and to function as architectural engineers in a global society.

Architectural Engineering Program Educational Objectives

Consistent with the mission statement, graduates of the Missouri S&T Architectural Engineering Program will demonstrate, within a few years of graduation:

1. technical competency
2. an ability to communicate effectively
3. continuing professional development
4. managerial competence
5. an ability to work in teams
6. professional responsibility

Program Outcomes

Consistent with the program educational objectives listed above, the Missouri S&T Architectural Engineering program graduates will have:

1. an ability to apply knowledge of mathematics, science, and engineering
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4. an ability to function on multi-disciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility
7. an ability to communicate effectively
8. an understanding of the impact of engineering solutions in a global, economic, architectural, and social context
9. a recognition of the need for, and an ability to engage in life-long learning
10. a knowledge of contemporary issues including architectural principles and the historical development and significance of architecture
11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Architectural Engineering Bachelor of Science

Entering freshmen desiring to study Architectural Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Architectural Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Architectural Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Architectural Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112 (preferred), HISTORY 175, or HISTORY 176. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved list for, English, foreign languages, music, philosophy, speech and media studies, or theater.
2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.
3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.
4. Any specific departmental requirements in the general studies area must be satisfied.
5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chair.

The Architectural Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Elective Footnote:

Each student is required to take three hours of free elective in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of Engineering and Science must be at least three credit hours.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CHEM 4</td>
<td>1 IDE 20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FR ENG 102</td>
<td>1 MATH 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 1 & CHEM 2</td>
<td>5 PHYSICS 23</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 14</td>
<td>4 General Ed Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Ed Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CIV ENG 12</td>
<td>3 IDE 150</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CIV ENG 502</td>
<td>3 STAT 213</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 22</td>
<td>4 CIV ENG 1102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 24</td>
<td>4 CIV ENG 120</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ARCH ENG 3</td>
<td>2 ARCH ENG 103</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ART 203</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 204</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>ARCH ENG 2172</td>
<td>3 ARCH ENG 205</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CIV ENG 2302</td>
<td>3 ARCH ENG 223</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ELEC ENG 281</td>
<td>3 ARCH ENG 371</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH ENG 227</td>
<td>3 CIV ENG 216</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ARCH ENG 204</td>
<td>3 HISTORY 270</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>ARCH ENG 210</td>
<td>1 ARCH ENG 298</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ARCH ENG 221</td>
<td>3 ARCH ENG Technical Elective</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>ARCH ENG 248</td>
<td>3 CIV ENG 229</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HISTORY 375</td>
<td>3 General Education Elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ARCH ENG Technical Elective</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 ENG MGT 137</td>
<td>3 Free Elective</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 128

1. All general education electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.
2. A grade of ‘C’ or better required to satisfy graduation requirements.
3. A grade of ‘C’ or better may be required in ARCH ENG technical elective prerequisite courses. Refer to the Missouri S&T undergraduate catalog for this prerequisite information.
4. Choose technical electives from approved lists under Emphasis Areas for Architectural Engineering Students.
5. Each student is required to take three hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of Engineering and Science must be at least three credit hours.

Note: All Architectural Engineering students must take the Fundamentals of Engineering examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree, however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Emphasis Areas and Course Listings by Area for Architectural Engineering Students

Area I, Structural Engineering

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 301</td>
<td>Special Topics</td>
</tr>
<tr>
<td>ARCH ENG 319</td>
<td>Applied Mechanics In Structural Engineering</td>
</tr>
<tr>
<td>ARCH ENG 320</td>
<td>Structural Analysis II</td>
</tr>
<tr>
<td>ARCH ENG 322</td>
<td>Analysis And Design Of Wood Structures</td>
</tr>
<tr>
<td>ARCH ENG 323</td>
<td>Computer Methods of Structural Analysis</td>
</tr>
<tr>
<td>ARCH ENG 326</td>
<td>Advanced Steel Structures Design</td>
</tr>
<tr>
<td>ARCH ENG 327</td>
<td>Advanced Concrete Structures Design</td>
</tr>
<tr>
<td>ARCH ENG 328</td>
<td>Prestressed Concrete Design</td>
</tr>
<tr>
<td>ARCH ENG 329</td>
<td>Foundation Engineering II</td>
</tr>
<tr>
<td>ARCH ENG 374</td>
<td>Infrastructure Strengthening With Composites</td>
</tr>
</tbody>
</table>
Degree Programs

Degree Programs

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 375</td>
<td>Low-Rise Building Analysis And Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 384</td>
<td>Structural Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Area II, Construction Engineering and Project Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 342</td>
<td>Construction Planning and Scheduling Strategies</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 345</td>
<td>Construction Methods</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 346</td>
<td>Management Of Construction Costs</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 348</td>
<td>Green Engineering: Analysis of Constructed Facilities</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 349</td>
<td>Engineering And Construction Contract Specifications</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 313</td>
<td>Managerial Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 364</td>
<td>Value Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 375</td>
<td>Total Quality Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Area III, Environmental Systems for Buildings

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 301</td>
<td>Special Topics</td>
<td>0-6</td>
</tr>
<tr>
<td>ARCH ENG 366</td>
<td>Indoor Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 372</td>
<td>Residential Renewable Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 345</td>
<td>Energy and Sustainability Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Mechanical Emphasis Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH ENG 309</td>
<td>Engineering Acoustics I</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 366</td>
<td>Solar Energy Technology</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 375</td>
<td>Mechanical Systems For Environmental Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Electrical Emphasis Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 235</td>
<td>Controllers For Factory Automation</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 352</td>
<td>Photovoltaic Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 111 & COMP ENG 112</td>
<td>Introduction To Computer Engineering and Computer Engineering Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Area IV, Construction Materials

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 319</td>
<td>Applied Mechanics In Structural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 313</td>
<td>Composition And Properties Of Concrete</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 318</td>
<td>Smart Materials And Sensors</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 356</td>
<td>Concrete Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>CER ENG 377</td>
<td>Principles Of Engineering Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Architectural Engineering Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 103</td>
<td>Architectural Materials And Methods Of Construction</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 204</td>
<td>Architectural Design II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 205</td>
<td>Building Electrical and Lighting Systems</td>
<td>3</td>
</tr>
<tr>
<td>ART 203</td>
<td>Architectural Design I</td>
<td>3</td>
</tr>
</tbody>
</table>

Architectural Engineering Courses (cross–list with existing civil engineering courses)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH ENG 001</td>
<td>Engineering Communications</td>
<td>2</td>
</tr>
<tr>
<td>ARCH ENG 3</td>
<td>Special Topics</td>
<td>0-6</td>
</tr>
<tr>
<td>ARCH ENG 101</td>
<td>Special Problems</td>
<td>1-6</td>
</tr>
<tr>
<td>ARCH ENG 200</td>
<td>Special Topics</td>
<td>0-6</td>
</tr>
<tr>
<td>ARCH ENG 202</td>
<td>Cooperative Engineering Training</td>
<td>1</td>
</tr>
<tr>
<td>ARCH ENG 210</td>
<td>Senior Seminar: Engineering In A Global Society</td>
<td>1</td>
</tr>
<tr>
<td>ARCH ENG 217</td>
<td>Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 221</td>
<td>Structural Design In Metals</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 223</td>
<td>Reinforced Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 247</td>
<td>Ethical, Legal And Professional Engineering Practice</td>
<td>2</td>
</tr>
<tr>
<td>ARCH ENG 248</td>
<td>Fundamentals Of Contracts And Construction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 298</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 300</td>
<td>Special Problems</td>
<td>6</td>
</tr>
<tr>
<td>ARCH ENG 301</td>
<td>Special Topics</td>
<td>6</td>
</tr>
<tr>
<td>ARCH ENG 320</td>
<td>Structural Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 322</td>
<td>Analysis And Design Of Wood Structures</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 323</td>
<td>Computer Methods Of Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 326</td>
<td>Advanced Steel Structures Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 327</td>
<td>Advanced Concrete Structures Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 328</td>
<td>Prestressed Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 345</td>
<td>Construction Methods</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 346</td>
<td>Management Of Construction Costs</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 349</td>
<td>Engineering And Construction Contract Specifications</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 374</td>
<td>Infrastructure Strengthening With Composites</td>
<td>3</td>
</tr>
<tr>
<td>ARCH ENG 390</td>
<td>Undergraduate Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Civil Engineering Courses (required courses, emphasis area, and/or technical electives)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 215</td>
<td>Fundamentals of Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 216</td>
<td>Construction Materials, Properties And Testing</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 229</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 230</td>
<td>Engineering Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 313</td>
<td>Composition And Properties Of Concrete</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 317</td>
<td>Asphalt Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 329</td>
<td>Foundation Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 341</td>
<td>Professional Aspects Of Engineering Practice</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 345</td>
<td>Construction Methods</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 346</td>
<td>Management Of Construction Costs</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 349</td>
<td>Engineering And Construction Contract Specifications</td>
<td>3</td>
</tr>
</tbody>
</table>

Daniel R Abbott, Lecturer
MS University of Missouri-Rolla
Bate Bate, Assistant Professor
PHD Georgia Institute of Technology
Art

The study of art can broaden and intensify your experiences and help you gain a better perspective on the world.

Missouri S&T offers courses in art appreciation, art history, study of film, art in the community, and sculpture and applied courses in design, painting, and photography. Non-credit courses are available from time to time in other applied art or special interest courses.

Art Minor

The Art Minor offers students the opportunity to pursue an area of focus in studio art, art history, and film studies.

Requirements:
The minor requires 15 hours, including ART 80 Art Appreciation, which is a required course. Students may take additional hours from these offerings:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 85</td>
<td>Study Of Film</td>
<td>3</td>
</tr>
<tr>
<td>ART 222</td>
<td>Revolution And Romanticism In The Arts 1785 - 1832</td>
<td>3</td>
</tr>
<tr>
<td>ART 255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILOS 330</td>
<td>Topics course from the following series:</td>
<td></td>
</tr>
<tr>
<td>ART 101</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>ART 201</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>ART 301</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

In addition, students may take up to six hours of Studio classes.

Film and Literature Minor

The Film and Literature Minor is an interdisciplinary and inter-textual course of study in which students will explore the connections between different mediums, increasing the pleasure and understanding of each.

Requirements:
The minor requires 12 hours, including the following required courses: ART 85 Study Of Film (3 hours) and the core course ENGLISH 177 Literature And Film (3 hours).

In addition, students will take 6 hours of electives in the field of literature and film studies. These electives can include but are not limited to:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH 278</td>
<td>Thematic Studies In Literature And Film</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART 250</td>
<td>Thematic Studies In Film & Literature</td>
<td>3</td>
</tr>
<tr>
<td>ART 251</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studio Art Minor

The Studio Art Minor offers students the opportunity to pursue an area of focus in painting, drawing, photography, etc.

Requirements:
The minor requires 15 hours, including ART 80 Art Appreciation, which is a required course. Students may take additional 12 hours from these offerings:
ART 20 Drawing I 3
ART 40 Painting I 3
ART 64 Sculpture 3
ART 130 Advanced Drawing 3
ART 150 Advanced Painting 3
ART 203 Architectural Design I 3
ART 221 Introduction to Photography 3

Stuart W Baur, Associate Professor
PHD University of Missouri-Rolla

Lucille Joan Myers, Lecturer
MED Lesley University-Cambridge

Leo Soisson, Lecturer
MFA Southern Illinois University-Edwardsville

Andrew Max Tohline, Lecturer
MA Ohio University

Arts, Languages & Philosophy

ALP courses

101 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable

Bioinformatics Minor Curriculum

Bioinformatics is the rapidly-developing field that applies computational methods to address biological questions, and includes new advances in computer science, mathematics, and biology. Students entering the field of bioinformatics should have some training in each of these fields.

The minor is designed for students pursuing a BS who would have the necessary prerequisites for the required courses. Students pursuing a BA may participate if the prerequisites for the required courses are fulfilled. Each department (Biological Sciences, Computer Science, Mathematics) will designate a minor advisor. The student's minor advisor will be chosen from outside of their major area of study.

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 110</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIO SCI 231</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 331</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 53</td>
<td>Introduction To Programming</td>
<td>4</td>
</tr>
<tr>
<td>& COMP SCI 54</td>
<td>and Introduction To Programming Laboratory</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 153</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 238</td>
<td>File Structures And Introduction To Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI/COMP SCI 311</td>
<td>Bioinformatics (It is strongly recommended that this course be taken after the other Bio Sc and Cmp Sc requirements.)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Special Topics</td>
<td>0-6</td>
</tr>
<tr>
<td>or STAT 346</td>
<td>Regression Analysis</td>
<td></td>
</tr>
<tr>
<td>or STAT 353</td>
<td>Statistical Data Analysis</td>
<td></td>
</tr>
</tbody>
</table>

One additional course, 200 or above in Math, or 300 or above in Bio Sc or Cmp Sc, outside of the major area of study, and as agreed upon by the minor advisor (3+ hrs)

Biological Sciences

Biology encompasses the study of life and living organisms. Biology embraces a vast and rapidly expanding body of knowledge and inquiry, including:

- Biochemistry, sub-cellular biology, and molecular biology
- Anatomy and physiology of cells, tissues, organs, and organ systems of all forms of life
- Evolution, natural history, and biodiversity of all forms of life
- Ecology of organisms, populations, communities and ecosystems

Biology draws on the physical sciences (chemistry, physics, mathematics, and earth sciences), as well as the behavioral sciences, for analysis and interpretation of life processes and interrelationships.

The study of biology provides an academic foundation for career and postgraduate opportunities in:

- Industry and government labs (chemical, agriculture, pharmaceutical, environmental, etc)
- Education (teaching and graduate study)
- Healthcare (human medicine, dentistry, pharmacy, veterinary medicine, physical therapy, etc)

The core curriculum required of all biological sciences majors consists of basic course work in introductory biology, biodiversity, cellular biology, evolution, genetics, and ecology. A variety of advanced courses offer greater depth and specific information leading to proficiency and preparation for employment and other postgraduate activities.

At Missouri S&T, faculty members active in research teach all biological sciences courses. Classes are small, providing exceptional opportunity for discussion and individual attention. Most undergraduate students participate in research, learning techniques and developing skills that will prepare them for postgraduate opportunities. A background in mathematics and physical sciences, together with supporting course work in the humanities and social sciences, provides a well-rounded educational experience and enhanced understanding.

Missouri S&T students who have received their B.S. degrees in biological sciences have an excellent record of success. Average performance on nationally normed achievement examinations has been very high, and acceptance of Missouri S&T students in professional schools of medicine, dentistry and pharmacy, and subsequent performance of our students in these professional schools, remains exceptional. Missouri S&T biological sciences graduates have been accepted into prestigious graduate study programs in many areas, including biochemistry, microbiology, immunology, molecular genetics and genetic engineering, marine biology, cell and mammalian physiology, human physiology, environmental science, plant physiology, and evolution. Employment opportunities are varied and the prospects for graduates in the biological sciences remain promising. The broad educational resources and depth of understanding gained by Missouri S&T biology students provide preparation and a competitive edge for a broad variety of jobs and graduate study programs.
Minor Curriculum

A student wishing to minor in biological sciences must take a minimum of 20 hours of biological sciences course work, which should include BIO SCI 110, BIO SCI 112, BIO SCI 113, BIO SCI 114, BIO SCI 211 and at least seven hours of advanced Bio Sc to be selected upon consultation with a Biology advisor. Students minoring in biological sciences should declare these intentions prior to the junior year.

Bioinformatics Minor

Students majoring in biological sciences are eligible to pursue a minor in bioinformatics. See the description of the bioinformatics minor under the heading.

The Biological Sciences Department offers Bachelor of Science and Bachelor of Arts degrees. Most students pursue a B.S. degree, which prepares students for careers in biology or postgraduate study including medical school, graduate school, and other options. Two emphasis areas are also offered under the B.A. option: pre-medicine and secondary education.

Bachelor of Arts Biological Sciences Degree Requirements

Specific requirements for the B.A. degree in biological sciences include a minimum of 120 semester hours of credit, including 30 hours of biology core courses.

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 102</td>
<td>Introduction To Biological Science</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIO SCI 111</td>
<td>Principles of Biology</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 112</td>
<td>General Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>BIO SCI 113</td>
<td>Biodiversity</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 114</td>
<td>Biodiversity Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 212</td>
<td>Cell Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 231</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 251</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 310</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Advanced courses, 200 level or higher (at least one with laboratory and one 300 level)</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td>General Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>& CHEM 2</td>
<td>and General Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 3</td>
<td>and General Chemistry</td>
<td></td>
</tr>
<tr>
<td>& CHEM 4</td>
<td>and Introduction To Laboratory Safety & Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>CHEM 221</td>
<td>Organic Chemistry I</td>
<td>8</td>
</tr>
<tr>
<td>& CHEM 223</td>
<td>and Organic Chemistry II</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics & Physical Science

Various courses in mathematics, physics, and/or geology chosen in consultation with academic advisor. (Note: Proficiency in College Algebra must be demonstrated by a grade of "C" or better in a College Algebra course or by examination)

Computer Science/Statistics (Select one of the following:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 53</td>
<td>Introduction To Programming</td>
<td>3</td>
</tr>
<tr>
<td>or COMP SCI 74/78</td>
<td>Introduction To Programming Methodology</td>
<td></td>
</tr>
<tr>
<td>STAT 115</td>
<td>Statistics For The Social Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Statistical Tools For Decision Making</td>
<td>3</td>
</tr>
</tbody>
</table>

General Requirements for BA

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition</td>
<td>6</td>
</tr>
<tr>
<td>ENGLISH 20 Exposition And Argumentation</td>
<td></td>
</tr>
<tr>
<td>One additional composition course</td>
<td></td>
</tr>
<tr>
<td>Western Civilizations</td>
<td>6</td>
</tr>
<tr>
<td>HISTORY 111 Early Western Civilization</td>
<td></td>
</tr>
<tr>
<td>HISTORY 112 Modern Western Civilization</td>
<td></td>
</tr>
<tr>
<td>Foreign Language (three semesters of a foreign language)</td>
<td>12</td>
</tr>
<tr>
<td>Humanities (including one class in each of literature, philosophy, and fine arts)</td>
<td>12</td>
</tr>
<tr>
<td>Social Sciences (including classes in two of the following three subjects: economics, political science, psychology)</td>
<td>12</td>
</tr>
</tbody>
</table>

Elective credits: In consultation with his or her advisor, each student will elect sufficient additional courses to complete a minimum of 120 semester credit hours.

Bachelor of Arts Biological Sciences Pre-Medicine Emphasis Area Degree Requirements

The student will fulfill the requirements for a Bachelor of Arts in Biological Sciences as outlined above. The following classes are also required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 226</td>
<td>Organic Chemistry I Lab</td>
<td>2</td>
</tr>
<tr>
<td>& CHEM 228</td>
<td>and Organic Chemistry II Lab</td>
<td></td>
</tr>
</tbody>
</table>

Select 2 semesters of College (General) Physics and labs from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 31</td>
<td>College Physics I</td>
<td>6</td>
</tr>
<tr>
<td>& PHYSICS 35</td>
<td>and College Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>& PHYSICS 22</td>
<td>and General Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 25</td>
<td>General Physics II</td>
<td>5</td>
</tr>
<tr>
<td>& PHYSICS 26</td>
<td>and General Physics Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

The following classes are highly recommended:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 241</td>
<td>Human Anatomy</td>
<td>5</td>
</tr>
<tr>
<td>BIO SCI 242</td>
<td>Human Physiology</td>
<td>4</td>
</tr>
<tr>
<td>& BIO SCI 243</td>
<td>and Human Physiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 361</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Arts Biological Sciences Secondary Education Emphasis Area Degree Requirements

You may earn a B.A. Degree in Biological Sciences from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with this emphasis area. This program can be completed in four
academic years, and student teaching is arranged with public schools within 30 miles of the Rolla campus.

Students interested in this emphasis area should consult with the advisor for Biological Sciences Education majors in the Biological Sciences Department.

In order to successfully complete this emphasis area, students must have at least a 22 ACT, maintain a cumulative GPA of at least 2.5, and attain at least a 2.5 GPA average for all biology courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must attain at least a 2.5 GPA average for all biology courses. Students must also meet all requirements listed under the Teacher Education Program in this catalog. Students who do not meet all the teacher certification requirements will not be eligible for the Secondary Education Program in this catalog. Students who do not meet all the GPA requirements to be accepted into the program.

A degree in this emphasis area requires 131 credit hours. The required course work.

A degree in this emphasis area requires 131 credit hours. The required courses are provided below. A minimum grade of “C” is required by the department in all mathematics and statistics courses counted toward this degree.

Humanities: 18 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 20</td>
<td>Exposition And Argumentation</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 60</td>
<td>Writing And Research</td>
<td>3</td>
</tr>
<tr>
<td>or ENGLISH 160</td>
<td>Technical Writing</td>
<td></td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>Principles Of Speech</td>
<td>3</td>
</tr>
</tbody>
</table>

At least one course in each of the following: Literature, Philosophy and Fine Arts

Social Sciences: 15 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 111</td>
<td>Early Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112</td>
<td>Modern Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 275</td>
<td>History Of Science</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>American Government</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematics/Physical Science: 9 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3</td>
<td>Fundamentals Of Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 31</td>
<td>College Physics I</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 51</td>
<td>Physical And Environmental Geology</td>
<td>3</td>
</tr>
</tbody>
</table>

Computer Science/Statistics: 3 semester hours

3 semester hours of Computer Science or Statistics

Chemistry: 17 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td>General Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>& CHEM 2</td>
<td>and General Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 3</td>
<td>and General Chemistry</td>
<td></td>
</tr>
<tr>
<td>& CHEM 4</td>
<td>and Introduction To Laboratory Safety & Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>CHEM 221</td>
<td>Organic Chemistry I</td>
<td>8</td>
</tr>
<tr>
<td>& CHEM 223</td>
<td>and Organic Chemistry II</td>
<td></td>
</tr>
</tbody>
</table>

Biological Sciences: 27 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 102</td>
<td>Introduction To Biological Science</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 111</td>
<td>Principles of Biology</td>
<td>5</td>
</tr>
<tr>
<td>& BIO SCI 112</td>
<td>and General Biology Lab</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 113</td>
<td>Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>& BIO SCI 114</td>
<td>and Biodiversity Lab</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 151</td>
<td>Introduction to Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>& BIO SCI 212</td>
<td>and Cell Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 231</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 235</td>
<td>Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 251</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 310</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Education: 42 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 40</td>
<td>Perspectives In Education</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 104</td>
<td>Teacher Field Experience</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 164</td>
<td>Aiding Elementary, Middle And Secondary Schools</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 174</td>
<td>School Organization & Adm For Elementary & Secondary Teachers</td>
<td></td>
</tr>
<tr>
<td>EDUC 216</td>
<td>Teaching Reading In Content Area</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 251</td>
<td>Historical Foundation Of American Education</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 280</td>
<td>Teaching Methods And Skills In The Content Areas</td>
<td>6</td>
</tr>
<tr>
<td>EDUC 298</td>
<td>Student Teaching Seminar</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 299</td>
<td>Student Teaching</td>
<td>12</td>
</tr>
<tr>
<td>PSYCH 155</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 208</td>
<td>Psychological & Educational Development Of The Adolescent</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 354</td>
<td>Psychology Of The Exceptional Child</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Science Biological Sciences Degree Requirements

A minimum of 130 credit hours is required for a Bachelor of Science degree in Biological Science.

A minimum grade of “C” is required for each Biological Science course used to fulfill the B.S. degree requirements.

These requirements for the B.S. degree are in addition to credit that is received for basic ROTC. The Biological Science B.S. degree must include 46 semester hours of biological sciences course work, to include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 102</td>
<td>Introduction To Biological Science</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>or BIO SCI 111</td>
<td>Principles of Biology</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 112</td>
<td>General Biology Lab</td>
<td>2</td>
</tr>
<tr>
<td>BIO SCI 113</td>
<td>Biodiversity</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 114</td>
<td>Biodiversity Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 212</td>
<td>Cell Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIO SCI 231</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 235</td>
<td>Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 251</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 310</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Advanced biological sciences or approved course work in other departments for a total of 46 credit hours of biology-related classes to include at least one laboratory course from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 222</td>
<td>Microbiology Lab</td>
<td></td>
</tr>
</tbody>
</table>
or BIO SCI 245 Human Anatomy Physiology I Lab
or BIO SCI 247 Human Anatomy and Physiology II Laboratory
or BIO SCI 332 Molecular Genetics Laboratory

22 semester hours of chemistry to include general chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1 & CHEM 2 & CHEM 3 & CHEM 4</td>
<td>General Chemistry and General Chemistry Laboratory and General Chemistry and Introduction To Laboratory Safety & Hazardous Materials</td>
</tr>
<tr>
<td>CHEM 221 & CHEM 226 & CHEM 223 & CHEM 228</td>
<td>Organic Chemistry I and Organic Chemistry I Lab and Organic Chemistry II and Organic Chemistry II Lab</td>
</tr>
<tr>
<td>CHEM 361</td>
<td>General Biochemistry</td>
</tr>
</tbody>
</table>

8 semesters of College (General) Physics and labs

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 31</td>
<td>College Physics I</td>
</tr>
<tr>
<td>or PHYSICS 21</td>
<td>General Physics I</td>
</tr>
<tr>
<td>or PHYSICS 22</td>
<td>General Physics Laboratory</td>
</tr>
<tr>
<td>PHYSICS 35</td>
<td>College Physics II</td>
</tr>
<tr>
<td>or PHYSICS 25</td>
<td>General Physics II</td>
</tr>
<tr>
<td>or PHYSICS 26</td>
<td>General Physics Laboratory</td>
</tr>
</tbody>
</table>

Calculus

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 8</td>
<td>Calculus With Analytic Geometry I</td>
</tr>
<tr>
<td>or MATH 14</td>
<td>Calculus For Engineers I</td>
</tr>
</tbody>
</table>

12 semester hours of humanities, excluding foreign language, and to include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 20 & ENGLISH 60</td>
<td>Exposition And Argumentation and Writing And Research (entering students will normally take ENGLISH 20 either semester of the first year)</td>
</tr>
<tr>
<td>HISTORY 112</td>
<td>Modern Western Civilization (or equivalent)</td>
</tr>
<tr>
<td>or HISTORY 175</td>
<td>American History To 1877</td>
</tr>
<tr>
<td>or HISTORY 176</td>
<td>American History Since 1877</td>
</tr>
<tr>
<td>or POL SCI 90</td>
<td>American Government</td>
</tr>
</tbody>
</table>

9 hours of social sciences, to include

Elective credits: In consultation with his or her advisor, each student will elect sufficient additional courses to complete a minimum of 130 credit hours.

Robert Steven Aronstam, Professor
PHD University Of Rochester

Ronald L Frank, Associate Professor
PHD Ohio State University

Chen Hou, Assistant Professor
PHD University of Missouri-Columbia

Yue-Wern Huang, Professor
PHD Univ Of Wisconsin Madison

Melanie R Mormile, Professor
PHD University of Oklahoma, Norman

Dev K. Niyogi, Associate Professor
PHD University Of Colorado Boulder

Katie B. Shannon, Associate Teaching Professor
PHD Harvard Medical School

Matthew Scott Thimgan, Assistant Professor
PHD The University of NC at Chapel Hill

Ann E West, Adjunct Assistant Professor
PHD Univ Of Colorado Boulder

David J Westenberg, Associate Professor
PHD University of CA - Los Angeles

Terry J Wilson, Associate Teaching Professor
MASTER Missouri State University

Business and Management Systems

Business and Management Systems is an undergraduate degree based on broad, foundational core courses. Professionals in this field analyze organizational needs to provide technology-enabled management and operations.

Today’s business environments have a critical need for professionals who have an understanding of information technologies; are capable of operating in an electronic environment; and are able to synthesize, analyze, and learn from vast amounts of information. These individuals are needed to realize technology’s great potential to support business processes, decision making, and communication.

As a business and management systems major, you will take courses that are rigorous and oriented toward building the foundation necessary for lifetime learning. Studying at Missouri’s technological university, you will benefit from the world-class computer environment and your association with excellent students from around the country and the world. Students in the program are strongly encouraged to participate in summer internships or co-ops with companies before they graduate. There are many opportunities and students benefit greatly in terms of their education and the edge they have seeking full-time employment once they graduate.

Minors

You must see the department advisor and complete a minor application before beginning your minor. Requirements change over time. You will be held to the requirements in force at the time you apply for the minor. Postponing your application for the minor may result in you having to take additional courses to complete the minor. At least six (6) hours of the minor course work must be taken in residence at Missouri S&T.
Minor in Business
A minor in Business and Management Systems* requires the following 15 hours of course work:

FINANCE 250 Corporate Finance I 3
ECON 121 Principles Of Microeconomics 3
or ECON 122 Principles Of Macroeconomics
BUS 110 Introduction to Management and Entrepreneurship 3
BUS 120 Financial Accounting 3
MKT 311 Marketing 3

Minor in Electronic and Social Commerce
The Minor in Electronic and Social Commerce requires the following 15 hours of coursework:

IS&T 241 Electronic and Mobile Commerce 3
Any four of:

IS&T 335 Fundamentals of Mobile Technology for Business
IS&T 351 Technological Innovation Management and Leadership
IS&T 352 Advanced Web Development
IS&T 368 Law and Ethics in E-Commerce
IS&T 385 Human Computer Interaction
IS&T 386 Human-Computer Interaction Prototyping
MKT 331 Digital Marketing and Promotions
MKT 380 Marketing Strategy

Minor in Enterprise Resource Planning (ERP)
A minor in ERP* requires the following 15 hours of course work:

BUS 120 Financial Accounting 3
ERP 246 Introduction to Enterprise Resource Planning 3
ERP 346 Enterprise Resource Planning Systems Design and Implementation 3

AND 6 hours of electives from any other ERP-designated courses at the 300-level 6

Minor in Entrepreneurship
The Minor in Entrepreneurship requires the following 15 hours of coursework:

BUS 110 Introduction to Management and Entrepreneurship 3
BUS 396 Business Models for Entrepreneurship and Innovation 3
MKT 331 Digital Marketing and Promotions 3
Any two of:

BUS 350 Customer Focus and Satisfaction
BUS 380 Strategic Management
IS&T 241 Electronic and Mobile Commerce
IS&T 286 Web and Digital Media Development
IS&T 335 Fundamentals of Mobile Technology for Business
IS&T 351 Technological Innovation Management and Leadership
IS&T 354 Advanced Web and Digital Media Development
IS&T 386 Human-Computer Interaction Prototyping

Minor in Finance
A minor in Finance* requires the following 15 hours of course work:

ECON 121 Principles Of Microeconomics 3
or ECON 122 Principles Of Macroeconomics
FINANCE 250 Corporate Finance I 3
And 9 hours of FINANCE courses at the 300-level (FINANCE 390, Undergraduate Research, is acceptable).

Minor in Management
The minor in Management consists of 15 hours, as follows:

BUS 110 Introduction to Management and Entrepreneurship 3
One course from the following: 3

BUS 230 Business Law
BUS 315 Introduction to Teambuilding and Leadership
BUS 360 Business Operations
BUS 380 Strategic Management
IS&T 361 Information Systems Project Management

And three courses from the following: 9

BUS 311 Business Negotiations
BUS 350 Customer Focus and Satisfaction
BUS 370 Human Resource Management
ENG MGT 254 Introduction to Project Management

Minor in Marketing
A minor in Marketing* requires the following 15 hours of course work:

ECON 121 Principles Of Microeconomics 3
or ECON 122 Principles Of Macroeconomics
MKT 311 Marketing 3
9 hours from the following list: 9

MKT 321 Consumer Behavior
MKT 331 Digital Marketing and Promotions
MKT 350 Customer Focus and Satisfaction
MKT 380 Marketing Strategy
ERP 342 Customer Relationship Management in ERP Environment
Other Marketing electives approved by the department (MKT 300 and above)

Pre MBA Minor
A minor in Pre MBA* will prepare students to enter an accredited MBA program at Missouri S&T or elsewhere. This minor requires the following 39 hours of course work:

PSYCH 50 General Psychology 3
MATH 8 Calculus With Analytic Geometry I 5
or MATH 12 Business Calculus
or MATH 14 Calculus For Engineers I
ECON/STAT 111 Business And Economic Statistics I 3
or STAT 115 Statistics For The Social Sciences I
or STAT 211 Statistical Tools For Decision Making
or STAT 213 Applied Engineering Statistics
or STAT 215 Engineering Statistics
or STAT 217 Introduction To Probability And Statistics
ECON 121 Principles Of Microeconomics 3
ECON 122 Principles Of Macroeconomics 3
BUS 110 Introduction to Management and Entrepreneurship 3
BUS 120 Financial Accounting 3
or ENG MGT 322
BUS 320 Managerial Accounting 3
BUS 230 Business Law 3
or ENG MGT 327 Legal Environment
MKT 311 Marketing 3
or ENG MGT 251 Marketing Management
FINANCE 250 Corporate Finance I 3
or ENG MGT 252
BUS 360 Business Operations 3
or ENG MGT 282
IS&T 50 Introduction to Management Information Systems 3
or ENG MGT 333

*At least 6 hours of the minor course work must be taken in residence at Missouri S&T.

Bachelor of Science
Business and Management Systems

In Business and Management Systems, the Bachelor of Science degree consists of 120 credit hours. First, all undergraduate students in Business and Management Systems are required to complete a prescribed General Education Requirements Core that corresponds to the recommendations of the Missouri State Coordinating Board for Higher Education and consists of 54 credit hours in the areas of Natural Systems, Human Institutions, Quantitative Skills, and Communication Skills. In addition, all undergraduate students are required to complete a 27 credit hour core consisting of courses in Information Technology, Management, and Entrepreneurship. A minimum grade of “C” is required for courses in these areas. Finally, the degree includes 12 credit hours of free electives.

The remaining 27 credit hours of the required 120 credit hours for the Business and Management Systems degree are divided into a prescribed 18 credit hour degree core and 9 credit hours of degree specific electives. A minimum grade of “C” is required in these courses. The electives for this degree are then chosen from business-related upper-level courses.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 50</td>
<td>3</td>
<td>MATH 4</td>
<td>3</td>
</tr>
<tr>
<td>BUS 10¹</td>
<td>1</td>
<td>IS&T 50</td>
<td>3</td>
</tr>
<tr>
<td>BUS 110</td>
<td>3</td>
<td>ENGLISH 65 or TCH COM 65</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>ECON 122</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective²</td>
<td>3</td>
<td>Science Elective²</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory w/ Science Elective³</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 120</td>
<td>3</td>
<td>History Elective</td>
<td>3</td>
</tr>
<tr>
<td>MATH 12</td>
<td>4</td>
<td>FINANCE 250</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 51</td>
<td>3</td>
<td>IS&T 151</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121</td>
<td>3</td>
<td>ERP 246</td>
<td>3</td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>3</td>
<td>POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Elective</td>
<td>3</td>
<td>ECON 211</td>
<td>3</td>
</tr>
<tr>
<td>Speech or Tech Com Elective</td>
<td>3</td>
<td>BUS 380</td>
<td>3</td>
</tr>
<tr>
<td>MKT 311</td>
<td>3</td>
<td>ENGLISH 260 or TCH COM 260</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>3</td>
<td>Business Elective</td>
<td>3</td>
</tr>
<tr>
<td>BUS 320</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>Business Elective</td>
<td>3</td>
</tr>
<tr>
<td>BUS 230</td>
<td>3</td>
<td>BUS 396¹</td>
<td>3</td>
</tr>
<tr>
<td>BUS 360</td>
<td>3</td>
<td>BUS 375</td>
<td>3</td>
</tr>
<tr>
<td>Fine Art, Social Science, or Humanities Electives²</td>
<td>3</td>
<td>Fine Art, Social Science, or Humanities Electives²</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective</td>
<td>3</td>
<td>Free Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 120

A grade of “C” or better is required in the following courses for graduation:
BUS 396, IS&T 50, IS&T 51, IS&T 151, ERP 246, BUS 110, BUS 120, BUS 230, ECON 121, ECON 122, MKT 311, FINANCE 250, BUS 375, BUS 360, BUS 320, BUS 380, and ECON 211.

¹ Writing Intensive Course
² Any course in the following areas not used for other degree requirements: Art, Economics, English, Foreign Language, History, Literature, Music, Philosophy, Political Science, Psychology, Sociology, Theater.
³ Any course in the following areas: Biology, Chemistry, Geology, Geological Engineering, Physics.

Areas of Concentration

All students are required to complete twelve credit hours chosen from 200 or 300 level courses in business, economics, finance, enterprise resource planning, or information science & technology. A “C” or better grade is required in all twelve credit hours. If the student chooses to designate an area of concentration for these courses, focusing at least 3 courses (9 credits) in one area, he or she may do so. Students are not required to choose a concentration area. Areas of concentration are:

E-Commerce

IS&T 352	Advanced Web Development	3
IS&T 241	Electronic and Mobile Commerce	3
IS&T 286	Web and Digital Media Development	3
IS&T 336		3
IS&T 342	E-Commerce Architecture	3
Degree Programs

Enterprise Resource Planning
Any 9 hours of ERP-designated courses at the 300-level.

Finance
FINANCE 350 Corporate Finance II 3
FINANCE 260
FINANCE 360 Investments I 3
Any other 300-level Finance course

ECON 323, ECON 330, or FINANCE 330 cannot be used toward this specialization.

Human-Computer Interaction
IS&T 354 Advanced Web and Digital Media Development 3
IS&T 385 Human Computer Interaction 3
IS&T 386 Human-Computer Interaction Prototyping 3
IS&T 387 Human-Computer Interaction Evaluation 3

Management
BUS 311 Business Negotiations 3
BUS 315 Introduction to Teambuilding and Leadership 3
BUS 370 Human Resource Management 3
IS&T 351 Technological Innovation Management and Leadership

Marketing
MKT 321 Consumer Behavior 3
MKT 331 Digital Marketing and Promotions 3
MKT 350 Customer Focus and Satisfaction 3
MKT 380 Marketing Strategy 3
ERP 342 Customer Relationship Management in ERP Environment 3

Eric Anderson, Adjunct Instructor
JD University of Missouri-Columbia

Robert Berry, Adjunct Instructor
PHD University of Kansas

Darryl Lee Brinkmann, Adjunct Instructor
MA Sangamon State University

Yu Hsien Chiu, Assistant Teaching Professor
MASTER University of Wisconsin-Milwaukee

Craig C Claybaugh, Assistant Professor
PHD University of Wisconsin-Milwaukee

Cassandra Carlene Elrod, Assistant Professor
PHD University of Wisconsin-Milwaukee

Li-Li Eng, Assistant Professor
PHD University of Michigan Ann Arbor

Caroline Fisher, Professor Emeritus
PHD Bowling Green State University

Barry B Flachsbart, Professor
PHD Stanford University

Nobuyuki Fukawa, Assistant Professor
PHD Louisiana State University

Richard H Hall, Professor
PHD Texas Christian University

Ralph C Hanke, Assistant Professor
PHD Pennsylvania State University

Edward J Harvey, Lecturer
MBA University of Missouri

Michael Gene Hilgers, Professor
PHD Brown University

Ray Kluczny, Associate Professor Emeritus
PHD Arizona State University

Kellie Kowalski, Adjunct Instructor
MASTER Northern Arizona University

Bih-Ru Lea, Associate Professor
PHD Clemson University

Ying Chou Lin, Assistant Professor
PHD Old Dominion University

Nicholas Scott Lockwood, Assistant Professor
PHD Indiana University Bloomington

Gina Mowery, Adjunct Instructor
MASTER University of Phoenix

Fui Hoon Nah, Professor
PHD University of British Columbia

Hong Sheng, Associate Professor
PHD University of Nebraska-Lincoln

Keng Leng Siau, Professor
PHD University of British Columbia

Sarah Margaret Stanley, Assistant Professor
PHD Saint Louis University

Wen-Bin Yu, Associate Professor
PHD University of Louisville

Ceramic Engineering

The Ceramic Engineering program is offered under the Department of Materials Science and Engineering.

Ceramic engineers produce materials vital to many advanced and traditional technologies: electronic and optical assemblies, aerospace parts, biomedical components, nuclear components, high temperature, corrosion resistant assemblies, fuel cells, and electronic packaging. Ceramic engineers generally work with inorganic, nonmetallic materials processed at high temperatures. In the classroom, ceramic engineering students learn the relationships between engineering properties and the
chemistry and structure of ceramic materials and go on to apply these scientific principles to the design of new formulations and manufacturing processes. If you are interested in the "why" behind material properties, ceramic engineering will definitely interest you.

Ceramic engineering usually appeals to those who have a strong interest in finding practical applications of the basic sciences, especially chemistry and physics, and can be described as one of the disciplines where 'science and engineering intersect'. Design occurs at the atomic or microstructural level of solid materials. The Missouri S&T department of ceramic engineering specializes in glass and optical materials, electronic materials, and high temperature materials, but the same scientific and engineering principles that are learned can be applied to the design of new materials for other applications, including biomaterials, high strength materials, materials for energy generation, etc.

Most ceramic engineering classes and laboratories are held in McNutt Hall, but other research laboratories on campus are available to our students. Equipment exists for X-ray investigation of materials, for detection of thermally induced changes in chemistry and structure, for high temperature processing, and for measuring a wide variety of electronic, optical, magnetic, mechanical and thermal properties. The Graduate Center for Materials Research makes additional research equipment available to ceramic engineers, including electron microscopes, optical, infrared, and X-ray spectrometers, thermal analyzers, and high temperature/controlled atmosphere furnaces. Students may broaden their experience by assisting faculty in research projects, either for academic credit or for pay.

Undergraduate student organizations are very active and participation in local and national activities is encouraged. Cooperative education and internships are available with companies and research agencies around the country. Additional information about the department is available at http://mse.mst.edu/.

Mission Statement

The department will train the future industrial and academic leaders in ceramic engineering by providing a comprehensive, forward-looking and broad-based curriculum, which emphasizes fundamental principles, practical applications, oral and written communication skills, and professional practice and ethics. The department is distinguished by a nationally recognized graduate program that emphasizes research of significance to the State of Missouri and the nation while providing a stimulating educational environment.

The program educational objectives of the ceramic engineering program:

- Our graduates will be leaders in the science, technology, and management of ceramic engineering.
- Our graduates will serve their profession and society.
- Our graduates will continually enhance their professional skills and educational background.

The specific outcomes of the ceramic engineering program are:

- Ability to apply mathematical, science and engineering principles to ceramic systems;
- An ability to utilize experimental, statistical and computational methods to solve ceramic problems;
- Ability to design a system, component, or process to meet desired needs;
- Ability to function of diverse teams;
- Ability to identify, formulate, and solve engineering problems;
- Understanding of professional and ethical responsibility;
- Ability to communicate effectively;
- The broad education necessary to understand the impact of engineering solutions in a global and societal context;
- Recognition of the need for, and an ability to engage in life-long learning;
- Knowledge and understanding of contemporary issues;
- Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice;
- Integrated understanding of scientific and engineering principles of ceramic structure;
- Integrated understanding of scientific and engineering principles of ceramic properties;
- Integrated understanding of scientific and engineering principles of ceramic processing;
- Integrated understanding of scientific and engineering principles of ceramic performance;
- Ability to apply and integrate knowledge of structure, properties, processing and performance to ceramic selection and process design.

Bachelor of Science Ceramic Engineering

Entering freshmen desiring to study ceramic engineering will be admitted to the Freshman Engineering Program. They will be permitted to state a ceramic engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Ceramic Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student's major department, and an average of at least two grade points per credit hour must be maintained in Ceramic Engineering.

The Ceramic Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Each student’s program of study must contain a minimum of 18 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or 177. The economics course may be either ECON 121 or ECON 122. Some disciplines require one humanities course to be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved lists. Each of these courses must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 to
80 can be selected as one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level.)

3. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages or on approved HSS list.

4. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student's department chairman.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR ENG 10</td>
<td>1</td>
<td>MET ENG 125</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>MATH 15</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23</td>
<td>4</td>
</tr>
<tr>
<td>MATH 14</td>
<td>4</td>
<td>H/SS Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td>H/SS Elective</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CER ENG 102</td>
<td>3</td>
<td>CER ENG 103</td>
<td>3</td>
</tr>
<tr>
<td>CER ENG 104</td>
<td>2</td>
<td>CER ENG 122</td>
<td>2</td>
</tr>
<tr>
<td>CER ENG 111</td>
<td>2</td>
<td>CER ENG 259</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>MATH 204 (or Statistics Elective)</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 24</td>
<td>4</td>
<td>H/SS Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CER ENG 231</td>
<td>2</td>
<td>CER ENG 242</td>
<td>2</td>
</tr>
<tr>
<td>CER ENG 251</td>
<td>3</td>
<td>CER ENG 291</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 110</td>
<td>3</td>
<td>PHYSICS 107</td>
<td>3</td>
</tr>
<tr>
<td>CER ENG 203</td>
<td>3</td>
<td>H/SS Elective</td>
<td>3</td>
</tr>
<tr>
<td>H/SS Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CER ENG 261</td>
<td>1</td>
<td>CER ENG 262</td>
<td>2</td>
</tr>
<tr>
<td>CER ENG 284</td>
<td>4</td>
<td>CER ENG 306</td>
<td>4</td>
</tr>
<tr>
<td>CER ENG 331</td>
<td>3</td>
<td>H/SS Elective</td>
<td>3</td>
</tr>
<tr>
<td>CER ENG 338</td>
<td>3</td>
<td>Statistics Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 124</td>
<td>1</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 137</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 128

Note 1: Students may replace CHEM 1, CHEM 2, and CHEM 3 with CHEM 5, but will need to also take an additional technical elective (with advisor's approval) to reach the 128 hour requirement.

Note 2: Students may substitute MATH 8 and MATH 21 for MATH 14 and MATH 15, respectively.

Note 3: Students may substitute CHEM 3 for MET ENG 125.

1. Eighteen hours of H/SS electives to be taken.
2. Technical electives must be selected from 200 and 300 level engineering and science courses with the advisor’s approval.
3. All Ceramic Engineering students must either take MATH 204 and one statistics course (200-level or higher) or an introductory statistics course (200-level) plus an advanced statistics elective (ECON 211, ENG MGT 356, ENG MGT 366, ENG MGT 381, ENG MGT 382, ENG MGT 385, STAT 346, and STAT 356).
4. All Ceramic Engineering students must take the Fundamentals of Engineering Examination (FE) prior to graduation. A passing grade on this examination is not required to earn a B.S. degree; however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.
5. All Ceramic Engineering students must select an advanced chemistry elective with the advisor’s approval. The courses that can be considered are CHEM 221, CHEM 225, CHEM 237, CHEM 241, CHEM 331, or CHEM 343.

Specific Degree Requirements

1. Total number of hours required for a degree in Ceramic Engineering is 128.
2. The assumption is made that a student admitted in the department has completed 34 hours credit towards graduation. The academic program of students transferring from colleges outside Missouri S&T will be decided on a case-by-case basis.
3. The department requires a total of 18 credit hours of humanities and social science.

Richard K Brow, Curators Professor
PHD Pennsylvania State University

Fatih Dogan, Professor
PHD Technical University of Berlin

William G Fahrenholtz, Curators Professor
PHD University Of New Mexico Main

Gregory E Hilmas, Curators Professor
PHD Univ. of Michigan - Ann Arbor

Wayne Huebner, Professor
PHD University Of Missouri-Rolla

F Scott Miller, Teaching Professor
PHD University Of Missouri-Rolla

Joseph W Newkirk, Associate Professor
PHD University Of Virginia Main Ca

Mohamed N Rahaman, Professor
PHD University Of Sheffield (UK)

Mary R. Reidmeyer, Associate Teaching Professor
PHD University Of Missouri-Rolla
Mission Statement

The Chemical and Biochemical Engineering department:

1. Prepares chemical engineers for successful careers of leadership and innovation in chemical engineering and related fields
2. Expands the knowledge base of chemical engineering through its scholarly pursuits
3. Develops technology to serve societal needs
4. Benefits the public welfare through service to the chemical engineering profession

Chemical & Biochemical Engineering

Emphasis area at bachelor of science level in biochemical engineering

Chemical engineering is the branch of engineering which deals with changing the composition, energy content and state of aggregation of materials. As a chemical engineering student, you will consider the fundamental properties and nature of matter (chemistry), the forces that act on matter (physics) and the precise expressions of the relationships between them (mathematics). Extensive use is made of computers in the application of these sciences to engineering problems.

As a chemical engineer, you may study ways in which pure water can be obtained from the sea; design processes to provide fertilizers, rubber, fibers, and fuels; or team up with other engineers and scientists in biomedical engineering to develop specialized polymeric materials for use in artificial arms, legs and other human organs. You may be instrumental in finding supplemental food sources for man, such as protein from petroleum, wood, or the sea. You might help develop new processes for the application of biochemistry, energy conservation, or environmental control, such as reducing undesirable substances in the air. Or, you might have a hand in the creation of strong lightweight materials to be used in aircraft construction. Your opportunities will be unlimited.

At Missouri S&T, you will have laboratories available which offer training in qualitative and quantitative analysis, basic organic and physical chemistry, physics, unit operations, biochemical engineering, design and automatic process control.

Your studies will give you a broad technical basis with an emphasis on material balances, energy balances, separation processes, rate processes, unit operations, process economics safety and design.

Among its facilities, the department features digital data acquisition and control equipment for research and instruction which allows simultaneous utilization of the system by several people. A full complement of hardware exists for input and output of signals to and from process equipment and instrumentation. The campus computer network makes available a wide variety of professional software. Also included is equipment to measure thermodynamic and physical properties, study biochemical engineering processes, polymers, surface phenomena, fluid mechanics, membranes, chemical kinetics and diffusion.

BSChE Program Educational Objectives:

1. Program graduates become successful in their chosen career path
2. Program graduates undertake responsibility or leadership roles in their industry, business and/or community
3. Program graduates work in teams to improve the economic environment of their industry sector and/or community
4. Program graduates will maintain career skills through life-long learning

Bachelor of Science Chemical Engineering

Entering freshmen desiring to study Chemical Engineering will be admitted to the Freshman Engineering Program. They will be permitted, if they wish, to state a Chemical Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Chemical Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Chemical Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.
2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 200 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.
3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.
4. Any specific departmental requirements in the general studies area must be satisfied.
5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Chemical Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice.
through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:
Free electives. Each student is required to take six hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry) and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

<table>
<thead>
<tr>
<th>Degree Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>FR ENG 10</td>
</tr>
<tr>
<td>CHEM 1</td>
</tr>
<tr>
<td>CHEM 2</td>
</tr>
<tr>
<td>ENGLISH 20</td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
</tr>
<tr>
<td>MATH 14</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year		**Second Semester**	
First Semester	Credits	**Credits**	
CHEM ENG 120	3	CHEM ENG 211, or COMP SCI 77, or COMP SCI 74 and COMP SCI 78, or COMP SCI 53 and COMP SCI 54	1
CHEM 221	3	CHEM ENG 141	3
ECON 121 or 122	3	CHEM ENG 145	3
MATH 22	4	Humanities or Social Science Elective	3
PHYSICS 24	4	Humanities or Social Science Elective	3
		MATH 204	3
		17	16

Junior Year		**Second Semester**	
First Semester	Credits	**Credits**	
CHEM ENG 231	3	CHEM ENG 234	2
CHEM ENG 233	2	CHEM ENG 235	3
CHEM ENG 245	3	CHEM ENG 237	3
CHEM 241	3	CHEM ENG 247	3
Humanities or Social Science Elective	3	Chem & Lab Elective	4
Humanities or Social Science Elective	3		
		17	15

Senior Year		**Second Semester**	
First Semester	Credits	**Credits**	
CHEM ENG 236	3	CHEM ENG 283	2
CHEM ENG 251	3	CHEM ENG 285	3

CHEM ENG 252	1	CHEM ENG 288	1
CHEM ENG 281	3	CHEM ENG 3XX-Chem Eng Elective	7
CHEM ENG 3XX-Chem Eng Elective	3	Free Electives	8
Free Electives	3		

| **Total Credits:** | 128 |

Note: The minimum number of hours required for a degree in Chemical Engineering is 128.

A cumulative grade point average of 2.25 or better is required for admittance as a chemical engineering major.

1. A grade of "C" or better is required to meet chemical engineering degree requirements.
2. From approved list published on the website of Undergraduate Studies. Courses that fulfill the upper level requirement are designated in the list. The prerequisites for the upper level course must be completed with a passing grade.
3. Prior to graduation, all chemical engineering majors must take the Fundamentals of Engineering exam (See Assessment Requirements, Major Field). A passing grade is not required to earn a degree, however it is the first step toward becoming a registered professional engineer. Students must sign a release form giving the University access to their Fundamentals of Engineering examination score.
4. Communications emphasized course (See Bachelor of Science Degree, General Education Communications Requirement).
5. COMP SCI 53 and COMP SCI 54 are 4 credits total.
6. CHEM 151 or CHEM 223 and CHEM 224 or CHEM 243 and CHEM 242 or CHEM 361 and CHEM 362 or BIO SCI 211 and BIO SCI 212. CHEM 361 and CHEM 362 are 5 credits total.
7. Any CHEM ENG 3XX class but only one of CHEM ENG 300, CHEM ENG 390 or CHEM 390H can be used to fulfill this requirement.
8. Each student is required to take six hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of Engineering and Science must be at least three credit hours. ELEC ENG 281 recommended for preparation for Fundamentals of Engineering exam.

Chemical Engineering Biochemical Engineering Emphasis

<table>
<thead>
<tr>
<th>Degree Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>FR ENG 10</td>
</tr>
<tr>
<td>CHEM 1</td>
</tr>
<tr>
<td>CHEM 2</td>
</tr>
<tr>
<td>ENGLISH 20</td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
</tr>
</tbody>
</table>

| **Total Credits:** | 16 | 14 |

Senior Year		**Second Semester**	
First Semester	Credits	**Credits**	
CHEM ENG 236	3	CHEM ENG 283	2
CHEM ENG 251	3	CHEM ENG 285	3
Missouri University of Science and Technology

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 211</td>
<td>3</td>
<td>3</td>
<td>BIO SCI 221</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 212</td>
<td>1</td>
<td>2</td>
<td>BIO SCI 222</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>3</td>
<td>CHEM 141</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 221</td>
<td>3</td>
<td>CHEM 145</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>CHEM 223</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 24</td>
<td>4</td>
<td>CHEM 224</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>MATH 204</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 331</td>
<td>3</td>
<td>CHEM 211</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIO SCI 332</td>
<td>2</td>
<td>CHEM 235</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 231</td>
<td>3</td>
<td>CHEM 247</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 233</td>
<td>2</td>
<td>CHEM 263</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 245</td>
<td>3</td>
<td>ECON 121 or 122</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 241</td>
<td>3</td>
<td>General Education Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 251</td>
<td>3</td>
<td>CHEM 283</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 252</td>
<td>3</td>
<td>CHEM 365</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 264</td>
<td>2</td>
<td>CHEM 266</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 281</td>
<td>3</td>
<td>CHEM 288</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Ed Upper Level Electives</td>
<td>3</td>
<td>General Education Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Education Upper Level Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total Credits: 130

Note: The minimum number of hours required for a degree in Chemical Engineering is 130.

A cumulative grade point average of 2.25 or better is required for admittance as a chemical engineering major.

1 A grade of “C” or better is required to meet chemical engineering degree requirements.

2 From approved list posted on the website of Undergraduate Studies. Courses that fulfill the upper level requirement are designated in the list. The prerequisites for the upper level course must be completed with a passing grade.

3 Prior to graduation, all chemical engineering majors must take the Fundamentals of Engineering exam (See Assessment Requirements, Major Field). A passing grade is not required to earn a degree, however, it is the first step toward becoming a registered professional engineer. Students must sign a release form giving the University access to their Fundamentals of Engineering examination score.

4 Communications emphasized course (See Bachelor of Science Degree, General Education Communications Requirement). COMP SCI 53 and COMP SCI 54 are 4 credits total.

Honors in Chemical and Biological Engineering

CBE requires the student to complete a three semester long project with 6 or 9 credit hours of CHEM ENG 390H, three hours counting towards the technical elective and up to 6 towards free electives. cannot be taken without a GPA of 3.5. It is necessary to start and finish with the same advisor. The report has to be validated by a committee consisting of at least the project advisor and the CBE honors program advisor. A form has to be sent to the department chair to start and another to complete the process. Honors projects have no known solutions and in that, the successful completion of the project shows the ability of the candidates to solve problems. The three semesters make the study in-depth. And the report will contribute towards building good technical writing abilities. This report can be shown to all technical people to make a point about the lasting skills that have been achieved along with the B.S. degree.

Muthanna Hikmat Al Dahhan, Professor
PHD Washington University

Neil L Book, Associate Professor Emeritus
PHD Univ Of Colorado Boulder

Daniel Forciniti, Professor
PHD North Carolina State University

Xinhua Liang, Assistant Professor
PHD University of Colorado-Boulder

Athanasios I Liapis, Professor
PHD Swiss Federal Institute Of Tec

Douglas K Ludlow, Professor
PHD Arizona State University

Parthasakha Neogi, Professor
PHD Carnegie Mellon University

Joontaek Park, Assistant Professor
PHD University of Florida

Michael Stephen Schmidt, Adjunct Professor
MS University Of Missouri-Rolla

Oliver Clifford Sitton, Associate Professor
PHD University Of Missouri-Rolla

Joseph D Smith, Professor
PHD Brigham Young University

Jee-Ching Wang, Associate Professor
PHD Pennsylvania State University

David J Westenberg, Associate Professor
PHD University of CA - Los Angeles
Chemistry

Emphasis areas at Bachelor of Science level in biochemistry, polymer and coatings science, and pre-medicine chemistry. Emphasis area at Bachelor of Arts level in secondary education.

Chemistry is the study of the elements, the compounds they form and the reactions they undergo.

The program of study encompasses the full range of the subject plus mathematics, physics, and, if desired, biology. Students may also pursue special interests such as analytical, biological, electrochemical, environmental, inorganic, nuclear, organic, physical or polymer chemistry.

The B.A. offers a general education degree with a chemistry focus. The B.A. degree may be appropriate for students in pre-professional programs (pre-medicine, pre-veterinary, pre-dentistry, pre-pharmacy, chemical sales and marketing).

Chemists tackle a broad range of challenges, from environmental cleanup and pollution prevention to creating the materials that will take humans to Mars. A Bachelor’s degree in Chemistry will provide many career possibilities. It has been called the central science because it occupies a pivotal place in many disciplines. As such it serves as the foundation for many other professions such as medicine, biotechnology, ceramics, chemical engineering, polymers, materials, metallurgy and environmental sciences.

All students are encouraged to participate in research programs during their undergraduate career. Such participation can lead to valuable experience and the possibility of publications, awards and recognition in the chemistry work place. Students may opt to participate in the campus wide “Opportunities for Undergraduate Research Experience” (OURE). Through OURE they can receive academic credit and a stipend for conducting a research project of mutual interest to the student and a faculty member.

Schrenk Hall is home to the department and where most chemistry classes and laboratories are held. The department has a broad range of modern instrumentation and equipment to prepare the student for the future.

Minor in Chemistry

A minor in chemistry requires a minimum of 19 hours of chemistry course work selected in conjunction with a chemistry faculty advisor. The required courses are CHEM 1, CHEM 2, CHEM 3, CHEM 4, CHEM 8, CHEM 221 and either CHEM 224 or CHEM 226. Three additional hours of chemistry are to be selected from CHEM 151, or other Chem 200 and 300 level courses.

Bachelor of Arts Chemistry

Freshman Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
</tr>
<tr>
<td>MATH 8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3</td>
<td></td>
</tr>
<tr>
<td>CHEM 8</td>
<td></td>
</tr>
<tr>
<td>HISTORY 111</td>
<td></td>
</tr>
<tr>
<td>MATH 21</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 226</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
</tr>
<tr>
<td>HISTORY 112</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>ENGLISH 60</td>
<td>3</td>
</tr>
<tr>
<td>Social Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td>1</td>
</tr>
<tr>
<td>STAT 213</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM Electives (see list below)</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS Electives</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 26</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 241, or 243, or 343</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 242 or 244</td>
<td>1</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective Literature</td>
<td>3</td>
</tr>
<tr>
<td>Social Electives</td>
<td>6</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 310</td>
<td>1</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 120

Students must complete a minimum of 120 credit hours for the Bachelor of Arts in Chemistry degree. Students may have to take more than the minimum number of coursework hours to comply with the B.A. requirements due to variations in minor degree and foreign language requirements within an individual’s program of study.

Elective credits include a required minor in one of the following areas: English, economics, history, philosophy, psychology, sociology, communications, speech, media, political science, music, mathematics, statistics, foreign language, computer science, biology, or art. See Undergraduate catalog for courses required for specific minor. All chemistry majors are encouraged to do research through CHEM 390. A total of 9 credits of a modern foreign language must also be taken as part of the electives above.

Chem Elective must be from one or more of the following: CHEM 321, CHEM 328, CHEM 346, CHEM 355, CHEM 361, CHEM 362, CHEM 363, CHEM 375, CHEM 381, CHEM 384, CHEM 385. This program of study allows students to design, in conjunction with their chemistry advisor, a program for many disciplines including pre-law, business, pre-dentistry, pre-veterinary medicine, as well as pre-medicine. An example of such a program is shown for pre-medical studies:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 110</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 112</td>
<td>2</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 212</td>
<td>1</td>
</tr>
</tbody>
</table>
A grade of “C” or better is required for each Chemistry course counted towards the degree.

Bachelor of Arts
Chemistry
Secondary Education Emphasis Area

Freshman Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td></td>
<td>4 CHEM 3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2</td>
<td></td>
<td>1 CHEM 8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4</td>
<td></td>
<td>1 POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td>MATH 8</td>
<td></td>
<td>1 MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td></td>
<td>3 ENGLISH 60</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td></td>
<td>4 CHEM 223</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 226</td>
<td></td>
<td>1 CHEM 228</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td></td>
<td>4 PHYSICS 25</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td></td>
<td>1 PHYSICS 26</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 40</td>
<td></td>
<td>2 STAT 213</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 104</td>
<td></td>
<td>2 EDUC 174</td>
<td>2</td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td></td>
<td>3 PSYCH 208</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151</td>
<td></td>
<td>4 CHEM 241, or 243, or 343</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 6</td>
<td></td>
<td>3 CHEM 242 or 244</td>
<td>1</td>
</tr>
<tr>
<td>PSYCH 155</td>
<td></td>
<td>3 SP&M S 85</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 175 or 176</td>
<td></td>
<td>3 HISTORY 275</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 164</td>
<td></td>
<td>2 EDUC 280</td>
<td>6</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3 Humanities Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Senior Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Elective</td>
<td>4 EDUC 298</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CHEM 310</td>
<td></td>
<td>1 EDUC 299</td>
<td>12</td>
</tr>
<tr>
<td>PSYCH 354</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EDUC 216</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EDUC 251</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3 Humanities Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

Total Credits: 135

Students must complete a minimum of 135 credit hours for the Bachelor of Arts in Chemistry degree with a Secondary Education Emphasis Area. The degree program is intended to culminate in a Certification Recommendation for an initial Missouri teaching certification. Students should also consult the Secondary Teacher Education Program section for Teacher Certification requirements through the Education department.

For this Bachelor of Arts degree program, the minor degree and foreign language requirements of the typical program of study are waived and there are other course substitutions in lieu of education coursework and requirements. A total of nine humanities credit hours are required to be selected from ENGLISH 105 or ENGLISH 106, PHILOS 5, ART 80, MUSIC 50, or THEATRE 90.

Four hours of a Chemistry Elective must be selected from one or more of the following: CHEM 321, CHEM 328, CHEM 346, CHEM 354, CHEM 361, CHEM 362, CHEM 363, CHEM 375, CHEM 381, CHEM 384, CHEM 385, and CHEM 390. CHEM 390 may not count for more than 3 hr credit toward the degree. All chemistry majors are encouraged to do research through CHEM 390.

A grade of “C” or better is required for each Chemistry course counted towards the degree.

Bachelor of Science
Chemistry

A minimum of 131 credit hours is required for a Bachelor of Science degree in Chemistry and an average of at least two grade points per credit hour must be obtained. These requirements for the B.S. degree are in addition to credit received for algebra, trigonometry, and basic ROTC.

The Chemistry science curriculum requires twelve semester hours in humanities, exclusive of foreign language, and must include ENGLISH 60 or ENGLISH 160. A minimum of nine semester hours is required in social sciences, including either HISTORY 175, HISTORY 176, HISTORY 112, or POL SCI 90. Specific requirements for the bachelor degree are outlined in the sample program listed below.

Freshman Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td></td>
<td>4 CHEM 3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2</td>
<td></td>
<td>1 CHEM 8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4</td>
<td></td>
<td>1 POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td>MATH 8</td>
<td></td>
<td>1 MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td></td>
<td>1 Electives</td>
<td>6</td>
</tr>
<tr>
<td>MATH 8</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PSYCH 155</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HISTORY 175 or 176</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EDUC 164</td>
<td></td>
<td>2 EDUC 280</td>
<td>6</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3 Humanities Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Sophomore Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td></td>
<td>4 CHEM 223</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 226</td>
<td></td>
<td>1 CHEM 228</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td></td>
<td>4 PHYSICS 25</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td></td>
<td>1 PHYSICS 26</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 40</td>
<td></td>
<td>2 STAT 213</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 104</td>
<td></td>
<td>2 EDUC 174</td>
<td>2</td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td></td>
<td>3 PSYCH 208</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year
<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343</td>
<td></td>
<td>3 CHEM 151</td>
<td>4</td>
</tr>
<tr>
<td>ENGLISH 60</td>
<td></td>
<td>3 CHEM 237</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Code</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>CHEM 361</td>
<td></td>
<td>3 CHEM 238</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>CHEM 241</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 242</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 328</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 243</td>
<td>3</td>
<td>CHEM 310 or 390</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 244</td>
<td>1</td>
<td>Chemistry Electives</td>
<td>7</td>
</tr>
<tr>
<td>CHEM 251</td>
<td>4</td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>CHEM 310 or 390</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 131

Notes:

Grade Requirements: Students must complete a minimum of 131 credit hours for a Bachelor of Science in Chemistry degree. A minimum grade of “C” is required for each chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree.

Chemistry Electives: Of these thirteen (13) hours of chemistry electives, three (3) must be chosen from 300 (or 400 with permission) level chemistry courses, and ten (10) hours must be 200 level or higher in chemistry or another technical area with permission of department chairperson.

Electives: There are twenty-six (26) hours of electives. Six (6) elective hours must be completed in the social sciences. Nine (9) elective hours are required in the humanities, exclusive of foreign language. Three of the humanities hours must be literature. Three (3) of the humanities hours are to be at the 100 level or higher.

Students planning to attend graduate school are encouraged to incorporate additional higher level chemistry electives, math, and foreign language, including scientific literature course. Recommended courses include but are not limited to the following:

- Biology, 200 and 300 level, especially BIO SCI 211
- Math 200 and 300 level, especially MATH 204, MATH 208 & MATH 325
- Physics 200 and 300 level, especially PHYSICS 208, PHYSICS 221, PHYSICS 323 & PHYSICS 341
- Statistics, 200 & 300 level, especially STAT 343, STAT 346 & STAT 353
- CER ENG 391 and CER ENG 392, or GEOLOGY 381
- A foreign language series.

Students who plan to teach high school chemistry should consult the Education section of this catalog.

Chemistry Biochemistry Emphasis Area

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td></td>
<td>4 CHEM 3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2</td>
<td></td>
<td>1 CHEM 8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4</td>
<td></td>
<td>1 MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 11</td>
<td></td>
<td>1 BIO SCI 211</td>
<td>3</td>
</tr>
<tr>
<td>MATH 8</td>
<td></td>
<td>5 BIO SCI 212</td>
<td>1</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td></td>
<td>3 Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 131

Notes:

Grade Requirements: Students must complete a minimum of 131 credit hours for the Bachelor of Science in Chemistry degree. A minimum grade of “C” is required for each Chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree.

Electives: There are eleven (11) hours of electives. Students planning to attend graduate school are encouraged to incorporate additional higher level chemistry electives, math, and foreign language, including scientific literature course. Recommended courses include but are not limited to the following:

- Biology, 200 and 300 level, especially BIO SCI 211
- Math 200 and 300 level, especially MATH 204, MATH 208 & MATH 325
- Physics 200 and 300 level, especially PHYSICS 208, PHYSICS 221, PHYSICS 323 & PHYSICS 341
- Statistics, 200 & 300 level, especially STAT 343, STAT 346 & STAT 353
- CER ENG 391 and CER ENG 392, or GEOLOGY 381
- A foreign language series.

Students who plan to teach high school chemistry should consult the Education section of this catalog.
a scientific literature course. Recommended courses include but are not limited to the following:

- Biology, 200 and 300 level especially BIO SCI 315, BIO SCI 335, BIO SCI 370, BIO SCI 375, & BIO SCI 383
- Math 200 and 300 level, especially MATH 204, MATH 208 and MATH 325
- Physics 200 and 300 level, especially PHYSICS 208, PHYSICS 221, & PHYSICS 323
- Statistics, 200 & 300 level, especially STAT 343, STAT 346 & STAT 353
- A foreign language series, French, German or Russian are recommended.

Polymer & Coatings Science Emphasis Area

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>CHEM 3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>CHEM 8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
<td>MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 11</td>
<td>1</td>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>MATH 8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18 16

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td>4</td>
<td>CHEM 223</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 226</td>
<td>1</td>
<td>CHEM 228</td>
<td>1</td>
</tr>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>PHYSICS 25</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>4</td>
<td>PHYSICS 26</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td>1</td>
<td>COMP SCI 53 or 74 and 78</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>STAT 213</td>
<td>3</td>
</tr>
</tbody>
</table>

17 16

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343</td>
<td>3</td>
<td>CHEM 151</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 381</td>
<td>3</td>
<td>CHEM 241</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 381</td>
<td>3</td>
<td>CHEM 242</td>
<td>1</td>
</tr>
<tr>
<td>ENGLISH 60</td>
<td>3</td>
<td>CHEM 384</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>CHEM 385</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 390</td>
<td>3</td>
</tr>
</tbody>
</table>

16 17

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 243</td>
<td>3</td>
<td>CHEM 237</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 244</td>
<td>1</td>
<td>CHEM 238</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 251</td>
<td>4</td>
<td>CHEM 328</td>
<td>3</td>
</tr>
<tr>
<td>CHEM ENG 349</td>
<td>3</td>
<td>Chemistry Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives 6 Electives 4 17 14

Total Credits: 131

Notes:

Grade Requirements: Students must complete a minimum of 131 credit hours for a Bachelor of Science-Chemistry degree. A minimum grade of “C” is required for each Chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree.

CHEM 390 Undergraduate Research: The undergraduate research must be done in Polymers and Coatings Science.

Electives: There are twenty-six (26) hours of electives. Six (6) elective hours must be completed in the social sciences. Nine (9) elective hours are required in the humanities, exclusive of foreign language. Three of the humanities hours must be literature. Three of the humanities hours are to be at the 100 level or higher. Three (3) hours of elective may be chosen from Materials Science related courses numbered in the 300-series.

Students planning to attend graduate school are encouraged to incorporate additional higher level chemistry electives, math, and foreign language, including a scientific literature course. Recommended courses include but are not limited to the following:

- Biology, 200 and 300 level especially BIO SCI 211
- Math 200 and 300 level, especially MATH 204, MATH 208 and MATH 325
- Physics 200 and 300 level, especially PHYSICS 208, PHYSICS 221, PHYSICS 323 & PHYSICS 341
- Statistics, 200 & 300 level, especially STAT 343, STAT 346 & STAT 353
- CER ENG 391 and CER ENG 392, or GEOLOGY 381
- A foreign language series.

Pre-medicine Emphasis Area

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>CHEM 3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>CHEM 8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
<td>MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 11</td>
<td>1</td>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>MATH 8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISTORY 112, or 175, or POL SCI 90</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18 18

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td>4</td>
<td>CHEM 223</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 226</td>
<td>1</td>
<td>CHEM 228</td>
<td>1</td>
</tr>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>PHYSICS 25</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>1</td>
<td>COMP SCI 53 or 74 and 78</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 211</td>
<td>3</td>
<td>STAT 213</td>
<td>3</td>
</tr>
</tbody>
</table>
BIO SCI 212

1

Junior Year

First Semester Credits Second Semester Credits
CHEM 343 3 CHEM 151 4
CHEM 361 3 CHEM 241 3
CHEM 362 2 CHEM 242 1
ENGLISH 60 3 CHEM 363 3
BIO SCI 241 5 BIO SCI 242 5

16 16

Senior Year

First Semester Credits Second Semester Credits
CHEM 243 3 CHEM 237 3
CHEM 244 1 CHEM 238 1
CHEM 251 4 CHEM 310 or 390 1
CHEM 310 or 390 1 CHEM 328 3
Social Sciences Elective 3 Advanced Chemistry Electives 2
Literature Elective 3 Social Sciences Elective 3
Humanities Elective 3

15 16

Total Credits: 133

Notes:

Grade Requirements: Students must complete a minimum of 133 credit hours for the Bachelor of Science in Chemistry degree. A minimum grade of “C” is required for each Chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree.

Chemistry Electives: The advanced Chemistry Elective is chosen from CHEM 321, CHEM 331, CHEM 346, CHEM 381, CHEM 385.

Electives: At least three hours of the humanities or literature electives are to be at the 100 level or higher.

Cynthia Pearl Bolon, Lecturer
PHD University Of Missouri-Rolla

Terry Lynn Bone, Lecturer
PHD University Of Missouri-Rolla

Amitava Choudhury, Assistant Professor
PHD Indian Institute Of Science

Harvest L Collier, Professor Emeritus
PHD Mississippi State University

Richard Dawes, Assistant Professor
PHD University of Manitoba

Nuran Ercal, Professor
PHD Hacettepe University, Turkey.

Shubhender Kapila, Professor
PHD Dalhousie University, Halifax

Nicholas Leventis, Curators Professor
PHD Michigan State University

Gary John Long, Professor
PHD Syracuse University

Yinfa Ma, Curator Teaching Professor
PHD Iowa State University

Paul Ki Souk Nam, Associate Professor
PHD University of Missouri-Columbia

Manashi Nath, Assistant Professor
PHD Indian Institute of Science

V Prakash Reddy, Associate Professor
PHD Case Western Reserve University

Emmalou Theresa Satterfield, Assistant Teaching Professor
MASTER Missouri S&T

Thomas Schuman, Associate Professor
PHD University of AL-Huntsville

Honglan Shi, Research Associate Professor
PHD Missouri S&T

Chariklia Sotiriou-Leventis, Professor
PHD Michigan State University

Pericles Stavropoulos, Associate Professor
PHD Imperial College, London, UK

Jay A Switzer, Professor
PHD Wayne State University

Michael R Van De Mark, Associate Professor
PHD Texas A&M University

Philip D Whitefield, Professor
PHD University Of London (UK)

Jeffrey G. Winiarz, Associate Professor
PHD SUNY at Buffalo

Klaus Hubert Woelk, Associate Professor
PHD University of Bonn-Germany

Civil Engineering

Emphasis areas at all levels in construction engineering, environmental engineering, water resources engineering, geotechnical engineering, structural engineering, materials engineering and transportation engineering.

Civil engineers plan, design, and supervise construction of many essential facilities and structures such as bridges, dams, interstate highways, and buildings. Service to the community, its development and improvement are fundamental aspects of a civil engineering career. Civil engineers are problem solvers applying the latest in high-tech equipment and sophisticated procedures to address challenges concerning our environment and infrastructure.

Included in the study of civil engineering are courses in environmental engineering that are directly related to the solution of hazardous waste and pollution problems, to providing potable and economical water supply systems, and to maintaining a safe environment. Water resources engineering is related to hydraulic and hydrologic engineering, flood control, rainfall, and runoff prediction and the transport in flows. Studies
in geotechnical engineering address the bearing capacities of soils, settlement of foundations, and the design of both deep and shallow foundations. Courses in structural analysis and design are directed toward providing reliable and economical structures such as bridges, buildings, port facilities, and intricate lock and dam facilities. The principles involved in this sequence of courses are also applicable to the design of automobiles, aircraft, spacecraft, and future space structures. Transportation engineering involves the movement of people and cargo from place to place, the design of airports and highways, and traffic studies to maintain efficient flows. Courses in construction engineering include studies in construction techniques, cost estimating, quality control/quality assurance, and contract administration. Materials engineering involves the production, quality control, use, and property analysis of construction materials such as asphalt, concrete, aggregate, wood, masonry, and steel.

Civil engineering is a broad field of endeavor. Because of this breadth, courses are required in each of the above areas. Although you, as a civil engineer, may specialize within a given area, by the very nature of the profession you will be required to interact with specialists in the other areas. You also may find that you will work with engineers in other disciplines such as mechanical, electrical, or geological engineering in the planning, design, and construction of complex facilities.

Civil engineers also must be effective in communicating with the public. You may be expected to work with property owners, concerned citizens, city officials, attorneys, and even medical doctors for concerns related to public health measures.

The results of your work as a civil engineer will be seen everywhere. Projects in which you will become involved must be economical, provide an adequate factor of safety for the particular use, and provide a reasonable life expectancy. To do this adequately and within a reasonable time frame, you will find that, with the exception of your engineering training, the computer is one of the most important and valuable tools you will use to produce a proper design or to complete a specific project. You may expect that your courses taken in civil engineering will require the use of computer hardware and software related to the different areas of study.

Mission Statement

The Civil Engineering Program will prepare students for professional performance in the global society and for life-long learning and continued professional development in the civil engineering profession through a comprehensive, forward-looking and broad-based curriculum in civil engineering emphasizing fundamentals and practical applications, oral and written communication skills, computer applications skills, and professional practice issues and ethics.

Civil Engineering Program Educational Objectives

1. Graduates of the civil engineering program are able to apply their scientific and technical knowledge base as they progress along their career in civil engineering as evidenced by:
 A. having the preparedness and eligibility to pass the PE examination
 B. having led a small design team
 C. being able to independently assess others’ work
 D. being able to integrate their own work with the work of others
 E. keeping up with technological advances

2. Graduates of the civil engineering program are able to identify, formulate, develop, and execute practical, innovative, high quality, and cost efficient solutions for civil engineering problems as evidenced by:
 A. having led or managed a key project task from start to finish
 B. having developed a cost-effective creative design or construction ideas that was ultimately adopted
 C. having completed the design and/or the construction of a significant project that was well put-together

3. Graduates of the civil engineering program are ethical professionals who are able to function as part of a professional enterprise while protecting human health and welfare and the environment in a global society as evidenced by:
 A. an understanding of and the ability to apply design codes
 B. a recognition and an understanding of the political and regulatory environments
 C. having maintained active membership in professional societies
 D. an awareness of current trends and future opportunities in local, regional, and global issues
 E. an active involvement in organizations that promote global societal well-being

4. Graduates of the civil engineering program are professionals whose growth through continuing education, professional development, and professional licensure has positioned them to have a positive impact on regional, national, and global professional communities as evidenced by:
 A. a pursuit of advanced education
 B. keeping up with continuing education requirements
 C. having held positions of increasing responsibility in professional societies or their committees, etc.
 D. having exhibited increasing responsibility in community involvement through participation in civic/social activities and organizations
 E. positive experiences involving networking with clients

5. Graduates of the civil engineering program are professionals who develop individual and team skills to maximize the benefits of their engineering education by applying it in actual situations as evidenced by:
 A. an ability to communicate clearly across disciplines as well as across company divisions
 B. assignment to a leadership or management role
 C. an ability to resolve conflicts in a group or team setting
 D. an ability to apply their knowledge in practical situations
 E. involvement with company marketing and sales operations

Program Outcomes

Consistent with the program educational objectives listed above, the Missouri S&T civil engineering program graduate will have:

1. an ability to apply knowledge of mathematics, science, and engineering
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4. an ability to function on multi-disciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility
7. an ability to communicate effectively
8. an understanding of the impact of engineering solutions in a global, economic, environmental, and social context
9. a recognition of the need for, and an ability to engage in life-long learning
10. a knowledge of contemporary issues
11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
12. be able to apply knowledge of mathematics through differential equations, calculus-based physics, chemistry, and at least one additional area of science
13. be able to design a system, component, or process in more than one civil engineering context
14. be able to explain basic concepts in management, business, public policy, and leadership

Civil Engineering Bachelor of Science

Entering freshmen desiring to study Civil Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Civil Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Civil Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must also be attained in all courses taken in Civil Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.

3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.

4. Any specific departmental requirements in the general studies area must be satisfied.

5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chair.

The Civil Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

<table>
<thead>
<tr>
<th>Freshman Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>FR ENG 10 2</td>
</tr>
<tr>
<td>CHEM 1</td>
</tr>
<tr>
<td>A CHEM 2</td>
</tr>
<tr>
<td>MATH 14</td>
</tr>
<tr>
<td>ENGLISH 20</td>
</tr>
<tr>
<td>General Ed Elective 1</td>
</tr>
<tr>
<td>Freshman Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>CIV ENG 1 2</td>
</tr>
<tr>
<td>CIV ENG 3</td>
</tr>
<tr>
<td>CIV ENG 50 2</td>
</tr>
<tr>
<td>MATH 22</td>
</tr>
<tr>
<td>PHYSICS 24</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>ENG MGT 131 2</td>
</tr>
<tr>
<td>CIV ENG 217 2</td>
</tr>
<tr>
<td>CIV ENG 215</td>
</tr>
<tr>
<td>CIV ENG 230 2</td>
</tr>
<tr>
<td>CIV ENG 261</td>
</tr>
<tr>
<td>General Ed Elective 1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>CIV ENG 210</td>
</tr>
<tr>
<td>CIV ENG 248</td>
</tr>
<tr>
<td>CIV ENG 221</td>
</tr>
</tbody>
</table>
All general education electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog. One general education elective must be from ENGLISH 60, ENGLISH 160, or SP&M S 85.

A grade of ‘C’ or better required to satisfy graduation requirements.

A grade of ‘C’ or better may be required in CE technical and depth elective prerequisite courses. Refer to the Missouri S&T undergraduate catalog for this prerequisite information.

Choose depth electives using Guidelines for Depth and Technical Electives.

Choose technical electives using Guidelines for Depth and Technical Electives.

Guidelines for Depth and Technical Electives

Please consult the Department’s Advising Center or your academic advisor for guidelines regarding the selection of depth and technical electives.

Course Listings by Area

Construction Engineering

CIV ENG 342 Construction Planning and Scheduling Strategies
CIV ENG 345 Construction Methods
CIV ENG 346 Management Of Construction Costs
CIV ENG 348 Green Engineering: Analysis of Constructed Facilities
CIV ENG 349 Engineering And Construction Contract Specifications

Materials Engineering

CIV ENG 312 Bituminous Materials
CIV ENG 313 Composition And Properties Of Concrete
CIV ENG 317 Asphalt Pavement Design

Environmental Engineering

CIV ENG 265 Water And Wastewater Engineering
CIV ENG 360 Environmental Law And Regulations
CIV ENG 361 Remediation Of Contaminated Groundwater And Soil
CIV ENG 362 Public Health Engineering
CIV ENG 363 Solid Waste Management
CIV ENG 364 Environmental Systems Modeling
CIV ENG 366 Indoor Air Pollution
CIV ENG 367 Introduction To Air Pollution
CIV ENG 368 Air Pollution Control Methods
CIV ENG 369 Environmental Engineering Design

Geotechnical Engineering

CIV ENG 229 Foundation Engineering
CIV ENG 314 Geosynthetics In Engineering
CIV ENG 315 Intermediate Soil Mechanics
CIV ENG 316 Geotechnical Earthquake Engineering
CIV ENG 329 Foundation Engineering II
CIV ENG 351 Transportation Applications of Geophysics

Water Resources Engineering

CIV ENG 330 Unsteady Flow Hydraulics
CIV ENG 331 Hydraulics Of Open Channels
CIV ENG 335 Water Infrastructure Engineering
CIV ENG 337 River Mechanics And Sediment Transport
CIV ENG 338 Hydrologic Engineering

Structural Engineering

CIV ENG 318 Smart Materials And Sensors
CIV ENG 319 Applied Mechanics In Structural Engineering
CIV ENG 322 Analysis And Design Of Wood Structures
CIV ENG 323 Computer Methods of Structural Analysis
CIV ENG 326 Advanced Steel Structures Design
CIV ENG 327 Advanced Concrete Structures Design
CIV ENG 328 Prestressed Concrete Design
CIV ENG 374 Infrastructure Strengthening With Composites
CIV ENG 375 Low-Rise Building Analysis And Design

Transportation Engineering

CIV ENG 311 Geometric Design Of Highways
CIV ENG 353 Traffic Engineering
CIV ENG 373 Air Transportation

Note: All Civil Engineering students must take the Fundamentals of Engineering examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree; however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Daniel R Abbott, Lecturer
MS University of Missouri-Rolla

Bate Bate, Assistant Professor
PHD Georgia Institute of Technology

Stuart W Baur, Associate Professor
PHD University of Missouri-Rolla

Jerry R Bayless, Associate Professor
MS Missouri School of Mines

Joel G Burken, Professor
PHD University of Iowa
Chien-Chung Chen, Assistant Teaching Professor
PHD Pennsylvania State University

Genda Chen, Professor
PHD State University of New York-Buffalo

Mohamed Abdelmonem El-Gawady, Associate Professor
DE Swiss Federal Institute of Technology

Richard L Elgin, Lecturer
PHD University of Arkansas

Dimitri Feys, Assistant Professor
PHD Ghent University, Belgium

Mark W Fitch, Associate Professor
PHD University of Texas-Austin

Kamal Khayat, Professor
DE University of California-Berkeley

Roger Allen LaBoube, Emeritus Professor
PHD University of Missouri-Rolla

Ronaldo Luna, Professor
PHD Georgia Institute of Technology

Cesar Mendoza, Associate Professor
PHD Colorado State University

Glenn Morrison, Professor
PHD University of California-Berkeley

John J Myers, Professor
PHD University of Texas-Austin

Daniel B Oerther, Professor
PHD University of Illinois-Urbana

Timothy A Philpot, Associate Professor
PHD Purdue University

David N Richardson, Associate Professor
PHD University of Missouri-Rolla

William P Schonberg, Professor
PHD Northwestern University

William Eric Showalter, Associate Teaching Professor
PHD Purdue University

Lesley Haynes Sneed, Assistant Professor
PHD Purdue University

Richard Wesley Stephenson, Emeritus Professor
PHD Oklahoma State University

Jeffery S Thomas, Associate Teaching Professor
PHD Missouri Science & Technology

Jianmin Wang, Associate Professor
PHD University of Delaware

Lloyd Christopher Wilson, Adjunct Associate Professor
PHD University of Missouri-Rolla

Computer Engineering

Emphasis areas at bachelor of science level in Architecture and Embedded Systems, Integrated Circuits and Logic Design, Computational Intelligence, Networking, and Security and Reliability

The Computer Engineering Program is designed to prepare an engineer to work with software and hardware of computers. In the software world, high level languages and complex programs are often the solution to a problem. In the hardware world, designs also include many aspects of the physical world, like temperature or noise, and often must include compromises between many opposing factors. The ability of a computer engineer to work in both worlds is what distinguishes them from a computer scientist or from an electrical engineer who specializes in computers. Computer scientists typically have little training with hardware. Electrical engineers typically have little training with software. Our students are trained to work with both, since many computer systems cannot be built well without a clear understanding of both.

Computer engineers can be found just about anywhere there are computers. Computer engineers might build the integrated circuits (ICs) that go into your home video game or your cell phone. They might develop the microprocessor that goes into your home computer, deciding what instructions it executes and how it interfaces with memory. Computer engineers also build computer systems that use these integrated circuits – for example, they might put together the ICs to build the motherboard for your home computer or the video card that goes into that computer. Computer engineers also help computers work together, for example developing computer networks or working with parallel processing. Computer engineers also help build embedded computer systems. These are devices with a computer inside them that work directly with their environment. They could be as complicated as a satellite or as everyday as your car, your phone, or even your microwave oven. Computer engineers also build software. They might be found at companies like Microsoft, working strictly with software or helping complex software systems interface better with hardware. They might make computer “smarter” using concepts of computational intelligence. Since computers are such an important part of our lives, the options for computer engineers are wide open.

Our ABET-accredited Computer Engineering Program emphasizes both hands-on experience and training in fundamental concepts and theory. Students participate in many laboratories that include both hardware and software. Many lecture courses include one or more projects that require the student to build something “real” and make it work. All students take a 1-year design course for this reason in their final year in the program. While these projects are challenging, they are also fun and prepare a student to perform immediately on the job when they get out of school. Coursework also concentrates strongly on theory and fundamentals because this background is essential for our students to fully understand the systems they will work on to quickly learn new concepts as their job function changes and to adapt to the rapidly changing world of computers in the future.

Students complete the Freshman Engineering Program, thus obtaining basic science skills and an overview of the various degree programs at Missouri S&T, before entering the main program. This allows students time to consider different career options before they commit to a given degree program. The Computer Engineering Program includes several courses in both Electrical Engineering and Computer Science. The
Program follows the Electrical Engineering Program into the sophomore year, including courses like circuits and electronics, and then branches into computer science courses such as data structures and operating systems.

Students work closely with their advisors to carefully plan each semester class schedule in order to have the correct prerequisites for courses in the following semesters. Working with their advisor, they should also select electives in the program to provide the background in areas they wish to emphasize for their career path.

Double majors – particularly with Electrical Engineering or Computer Science – are a possibility. Students working with their advisor should be able to plan a program that allows them to quickly graduate with more than one degree by sharing some electives and carefully planning additional course work. Students considering taking several more classes should also consider the alternative of working towards an M.S. or Ph.D. degree in graduate school.

Mission Statement and Objectives

The Electrical and Computer Engineering Department strives to contribute to the state, nation, and world through the education of outstanding professionals and leaders in engineering. Our educational focus is on a broad, rigorous education in all areas of electrical and computer engineering with significant hands-on experiences. The program will provide students with an understanding of engineering problem solving at all levels and an appreciation for engineering as a profession. The department has three specific educational objectives as shown below:

Technical competency: Graduates will have a sound knowledge of the fundamentals in electrical or computer engineering that allows them to analyze and solve technical problems, to apply hardware and software tools, to create and evaluate technical products, to learn independently, and to succeed in the workplace and in graduate school.

Engineering perspective: Graduates will be capable of understanding complex projects including their evolution and abstraction and the optimization of associated decisions and risk, both locally and globally.

Professional skills and knowledge: Graduates will have the ability to communicate well in both oral and written form, to interact in teams, to manage and lead technical projects, to manage their career, and to conduct themselves with an understanding of ethics, economics, and intellectual property.

Approved by the faculty September 20, 2007.

Minor Curriculum

A minor in Computer Engineering will require the following:

Pass the ELEC ENG Advancement Exam I (ELEC ENG 151 final) with a "C" or better

Pass the COMP ENG Advancement Exam (COMP ENG 111 final) with a "C" or better

A "C" or better in the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 213</td>
<td>Digital Systems Design</td>
</tr>
</tbody>
</table>

Bachelor of Science Computer Engineering

Entering freshmen desiring to study Computer Engineering will be admitted to the Freshman Engineering Program. They will be permitted to state a Computer Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Computer Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Computer Engineering.

Each student's program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.

2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.
3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.

4. Any specific departmental requirements in the general studies area must be satisfied.

5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Computer Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design. These interrelations are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:

Each student is required to take five hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ENG 102</td>
<td>3</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td>MATH 143</td>
<td>4</td>
<td>MATH 153</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>PHYSICS 233,4</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td>Elective-Hum or Soc (any level)</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 151</td>
<td>3</td>
<td>COMP ENG 1113,6,8</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 152</td>
<td>1</td>
<td>COMP ENG 1123,6,9</td>
<td>1</td>
</tr>
<tr>
<td>MATH 223</td>
<td>4</td>
<td>ELEC ENG 1533,7,9</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 533</td>
<td>3</td>
<td>MATH 2043</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 543</td>
<td>1</td>
<td>COMP SCI 1533</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 243,4</td>
<td>4</td>
<td>COMP SCI 1293</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 213</td>
<td>3</td>
<td>COMP ENG Elective A3,14</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 214</td>
<td>1</td>
<td>ELEC ENG 2133,6,9</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 215</td>
<td>3</td>
<td>ELEC ENG 2163,6,9</td>
<td>1</td>
</tr>
<tr>
<td>ELEC ENG 123</td>
<td>3</td>
<td>COMP SCI 2842</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 124</td>
<td>3</td>
<td>STAT 21712</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree Programs

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 319 or COMP SCI 363</td>
<td>3</td>
<td>COMP ENG Elective 3,15,16</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG Elective B3,15,16</td>
<td>3</td>
<td>COMP ENG Elective 3,15,16</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 3913,17</td>
<td>1</td>
<td>COMP ENG 3923,17</td>
<td>3</td>
</tr>
<tr>
<td>Elective-Hum or Soc (any level)</td>
<td>3</td>
<td>Elective-Hum or Soc (upper level)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>2</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Science Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 128

Notes: Student must satisfy the common engineering freshman year requirements and be admitted into the department.

1. The minimum number of hours required for a degree in Computer Engineering is 128.

2. Students that transfer to Missouri S&T after their freshman year are not required to enroll in Freshman Engineering Seminars.

3. A minimum grade of “C” must be attained in MATH 14, MATH 15, MATH 22, and MATH 204, PHYSICS 23 and PHYSICS 24 (or their equivalents), COMP SCI 53, COMP SCI 54, COMP SCI 153, COMP SCI 158, and COMP SCI 284, COMP ENG 111, COMP ENG 112, COMP ENG 213, COMP ENG 214, COMP ENG 215, COMP ENG 319, COMP ENG 365, COMP ENG 391, and COMP ENG 392, and ELEC ENG 151, ELEC ENG 152, ELEC ENG 153, ELEC ENG 154, ELEC ENG 121, ELEC ENG 122, ELEC ENG 215, and ELEC ENG 216, and the COMP ENG electives A, B, C, and D. Also, students may not enroll in other courses that use these courses as prerequisites until the minimum grade of “C” is attained.

4. Students may take PHYSICS 21 and PHYSICS 22 or PHYSICS 21 and PHYSICS 27 in place of PHYSICS 23. Students may take PHYSICS 25 and PHYSICS 26 or PHYSICS 25 and PHYSICS 28 in place of PHYSICS 24.

5. All electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.

6. Students who drop a lecture prior to the last week to drop a class must also drop the corequisite lab.

7. Students must earn a passing grade on the ELEC ENG Advancement Exam I (associated with ELEC ENG 151) before they enroll in ELEC ENG 153 or ELEC ENG 121 and ELEC ENG 122.

8. Students must earn a passing grade on the COMP ENG Advancement Exam (associated with COMP ENG 111) before they enroll in any course with COMP ENG 111 and COMP ENG 112 as prerequisites.

9. Students must earn a passing grade on the ELEC ENG Advancement Exam II (associated with ELEC ENG 153) before they enroll in ELEC ENG 215 and ELEC ENG 216.

10. Students must take one 200 or 300 level Math course or COMP SCI 228 which requires a MATH 15 (or equivalent) prerequisite, except special problems (MATH 200 or MATH 300).
Students must take IDE 140, MECH ENG 219, MECH ENG 227, PHYSICS 207, PHYSICS 208, CHEM 221, BIO SCI 211, or BIO SCI 231. The following pairs of course are substitutions for any single course: CIV ENG 105 and PHYSICS 107 and PHYSICS 311, PHYSICS 107 and MECH ENG 284, PHYSICS 107 and NUC ENG 205, or ENG MGT 211 and ENG MGT 282.

Students may replace STAT 217 with STAT 215 or STAT 343.

Students may replace ENGLISH 160 with ENGLISH 60.

COMP ENG Elective A must be a 300-level COMP ENG, ELEC ENG, or COMP SCI course with at least a 3-hour lecture component. This normally includes all COMP ENG and ELEC ENG 3xx courses except COMP ENG 300 or ELEC ENG 300, ELEC ENG 38X, ELEC ENG 390, ELEC ENG 391, and ELEC ENG 392 or COMP SCI 300, COMP SCI 310, COMP SCI 385, and COMP SCI 390.

COMP ENG Electives B, C, and D must be 200 or 300-level courses from an approved list of science, mathematics, and engineering courses. This list includes all 200 or 300-level COMP ENG, ELEC ENG and COMP SCI courses except required COMP ENG courses, required ELEC ENG courses, required COMP SCI courses and COMP ENG 391 and COMP ENG 392, COMP ENG 202, ELEC ENG 391 and ELEC ENG 392, ELEC ENG 202, ELEC ENG 28X, COMP SCI 365, COMP SCI 397, and COMP SCI 202.

COMP ENG Electives B, C, and D cannot include more than three hours of COMP ENG 300, COMP ENG 390, ELEC ENG 300, or ELEC ENG 390.

Students pursuing dual degrees in COMP ENG and ELEC ENG may take either COMP ENG 391 or ELEC ENG 391 and COMP ENG 392 or ELEC ENG 392. Students may not receive credit for both COMP ENG 391 and ELEC ENG 391 or COMP ENG 392 and ELEC ENG 392 in the same degree program.

Students are required to take at least three credit hours. ELEC ENG 28X, ELEC ENG 391, ELEC ENG 392, COMP ENG 28X, COMP ENG 391 and COMP ENG 392 may not be used for free electives. No more than once credit hour of COMP ENG 202 or ELEC ENG 202 may be applied to the BS degree for free electives.

Emphasis Areas for Computer Engineering

Note: The following emphasis areas identify courses from which a student may opt to develop a specific emphasis. It is not required that students obtain an emphasis specialty within computer engineering.

Computers and Architecture

Highly Recommended
COMP ENG 313 Principles of Computer Architecture 3
COMP ENG 315 Digital Computer Design 3

Suggested
COMP ENG 316 Advanced Microcomputer System Design 3

Integrated Circuits and Logic Design

Highly Recommended
COMP ENG 311 Introduction To VLSI Design 3
COMP ENG 318 Digital System Modeling 3

Suggested
ELEC ENG 253 Electronics I 3
COMP ENG 312 Digital Systems Design Laboratory 3

COMP ENG 313 Principles of Computer Architecture 3
COMP ENG 315 Digital Computer Design 3
COMP ENG 316 Advanced Microcomputer System Design 3
COMP ENG 317 Fault-Tolerant Digital Systems 3
COMP ENG 355

Embedded Computer Systems

Highly Recommended
COMP ENG 312 Digital Systems Design Laboratory 3
COMP ENG 314 Embedded Processor System Design 3
COMP ENG 331 Real-Time Systems 3

Suggested
COMP ENG 342 Real-Time Digital Signal Processing 3
ELEC ENG 231 Control Systems 3
ELEC ENG 253 Electronics I 3
COMP SCI 206 Software Engineering I 3

Computational Intelligence

Highly Recommended
COMP ENG 345 Digital Image Processing 3
COMP ENG 347 Machine Vision 3
COMP ENG 358 Computational Intelligence 3
ELEC ENG 368 Introduction To Neural Networks & Applications 3

Suggested
ELEC ENG 338 Fuzzy Logic Control 3

Networking and Software Engineering

Highly Recommended
COMP ENG 319 Digital Network Design 3
or COMP SCI 365 Computer Communications And Networks 3
COMP ENG 349 Trustworthy, Survivable Computer Networks 3
COMP ENG 348 Wireless Networks 3

Suggested
COMP ENG 317 Fault-Tolerant Digital Systems 3
COMP SCI 206 Software Engineering I 3
COMP SCI 307 Software Testing And Quality Assurance 3
IS&T 241 Electronic and Mobile Commerce 3

Security and Reliability

Highly Recommended
COMP ENG 317 Fault-Tolerant Digital Systems 3
COMP ENG 319 Digital Network Design 3
or COMP SCI 365 Computer Communications And Networks 3
COMP ENG 349 Trustworthy, Survivable Computer Networks 3

Suggested
COMP ENG 358 Computational Intelligence 3

Levent Acar, Associate Professor
PHD Ohio State University
Daryl G Beetner, Professor
DSC Washington University

Minsu Choi, Associate Professor
PHD Oklahoma State University

Mariesa L Crow, Professor
PHD University of Illinois-Urbana

Kristen Marie Donnell Hilgedick, Assistant Professor
PHD Missouri University of Science & Technology

James L Drewniak, Curators Professor
PHD University of Illinois-Urbana

Richard E Dubroff, Professor
PHD University of Illinois-Urbana

Kelvin Todd Erickson, Professor
PHD Iowa State University

Jun Fan, Associate Professor
PHD University of Missouri-Rolla

Mehdi Ferdowsi, Associate Professor
PHD Illinois Institute of Technology

Steven Leslie Grant, Associate Professor
PHD Rutgers State Univ.-College of Engineering

Victor Khilkevich, Research Associate Professor
PHD Moscow Power Engineering Institute

Chang-Soo Kim, Associate Professor
PHD Kyungpook National University

Jonathan William Kimball, Assistant Professor
PHD University of Illinois-Urbana

Kurt Louis Kosbar, Associate Professor
PHD University of Southern California

Randy Hays Moss, Professor
PHD University of Illinois-Urbana

Theresa Avosuah Odun-Ayo, Assistant Teaching Professor
PHD Missouri University of Science & Technology

David Pommerenke, Professor
DR-ING Technical University Berlin

Jagannathan Sarangapani, Professor
PHD University of Texas-Arlington

Sahra Sedighsarvestani, Associate Professor
PHD Purdue University-W. Lafayette

Pourya Shamsi, Assistant Professor
PHD University of Texas-Dallas

Yiyu Shi, Assistant Professor
PHD University of California-LA

Bijaya Shrestha, Associate Teaching Professor
PHD University of Missouri-Rolla

Ronald Joe Stanley, Associate Professor
PHD University of Missouri-Columbia

Theresa Mae Swift, Assistant Teaching Professor
PHD University of Missouri-Rolla

Steve E Watkins, Professor
PHD University of Texas at Austin

Kevin A Wise, Adjunct Assistant Professor
PHD University of Illinois-Urbana

Cheng Hsiao Wu, Professor
PHD University of Rochester

Donald C Wunsch II, Professor
PHD University of Washington

Chengshan Xiao, Professor
PHD University of Sydney-Australia

Maciej J Zawodniok, Assistant Professor
PHD University of Missouri-Rolla

Yahong Rosa Zheng, Associate Professor
PHD Carleton University

Reza Zoughi, Professor
PHD University of Kansas

Computer Science

The Computer Science Department educates students in a broad range of areas. Students take courses in the design and implementation of software systems and the algorithms (problem solving techniques) used to solve “real world” problems in business, industry, and engineering or as preparation for graduate study. Students are given both the depth and breadth of computer science so necessary to keep them competitive in today’s fast-changing world. While instruction and research are on the leading edge of computing, the department endeavors to keep class sizes small to promote proactive teaching practices and effective interactions between the students and faculty.

In addition to computer science courses, the department’s undergraduate program requires students to be educated in a broad range of general education courses. All computer science seniors are expected to take the capstone course that gives them “real world” experience working in teams composed of fellow students and practicing computer scientists. These teams design, implement, test, and maintain actual software systems. (The sample curriculum shown below provides more detail.)

The Computer Science faculty has a broad range of scholarly interests which include computer security, databases and wireless systems, intelligent systems (artificial intelligence, machine learning, evolutionary computation), data mining, bioinformatics, parallel and distributed processing, software engineering, computer networks, computer vision, computational science, and algorithms. The research being done in these areas involves both undergraduates and graduates and supports the department’s two major areas of excellence: software engineering and critical infrastructure protection. Faculty are not only actively doing research in these areas; they integrate their research experiences into the classroom.

Computer science graduates from Missouri S&T work in a variety of environments. Some work for large companies, others prefer smaller
companies. Many of our graduates have started their own companies. Regardless of their choice of employment, Missouri S&T Computer Science graduates are in high demand as evidenced by the number of companies that specifically recruit our graduates.

The Computer Science Department at Missouri S&T makes use of both its own computer learning center (CLC) as well as university CLCs. The department CLC contains a mix of Linux and Windows computing platforms.

Research laboratories provide support for both undergraduate and graduate students. These laboratories include:

- Computer Vision and Biomedical Imaging Laboratory
- Critical Infrastructure Protection Laboratory
- McDonnell Douglas Software Engineering Laboratory
- Natural Computation Laboratory
- Network Research Laboratory
- Pervasive Computing Laboratory
- Social Computing Research Laboratory
- Web and Wireless Computing (W2C) Laboratory and NSF Industry-University Research Center on Net Centric Software Systems

Wired and Wireless Network Access is available to all students, faculty and staff.

For further information, visit the Department’s web page at http://cs.mst.edu or contact us at 573-341-4491 or at csdept@mst.edu.

Computer Science Minor Curriculum

A student with a minor in computer science must meet the following requirements:

1. COMP SCI 153 and 12 elective hours in computer science beyond COMP SCI 53, COMP SCI 54, COMP SCI 73 & COMP SCI 77 or COMP SCI 74 & COMP SCI 78.
2. A member of the computer science faculty will serve as the student’s minor advisor. The student and his/her minor advisor will plan a course of study to meet the specific interests and needs of the student.
3. Students pursuing a minor in computer science must earn a “C” or better, in COMP SCI 53, COMP SCI 54, COMP SCI 153, COMP SCI 128, and COMP SCI 253 if any of these courses are taken for the minor.

Bioinformatics Minor

Students majoring in computer science are eligible to pursue a minor in bioinformatics. See the description of the bioinformatics minor.

Bachelor of Science Computer Science

A minimum of 128 credit hours is required for a Bachelor of Science degree in Computer Science and an average of at least two grade points per credit hour must be obtained. These requirements for the B.S. degree are in addition to credit received for algebra, trigonometry, and basic ROTC.

The Computer Science curriculum requires twelve semester hours in humanities, exclusive of foreign language, and must include ENGLISH 60 or ENGLISH 160. A minimum of nine semester hours is required in social sciences, including either HISTORY 175, HISTORY 176, HISTORY 112, or . Specific requirements for the bachelor degree are outlined in the sample program listed below.

All computer science majors must earn a “C” or better grade in all COMP SCI courses used to fulfill a B.S. in Computer Science degree requirements as well as in COMP ENG 111, COMP ENG 213, and the required ethics elective.

Sample Course of Study

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 114</td>
<td>1</td>
<td>COMP SCI 153</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 53</td>
<td>3</td>
<td>COMP SCI 128</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 54</td>
<td>1</td>
<td>MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>Laboratory science course(s)</td>
<td>5</td>
</tr>
<tr>
<td>MATH 8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 253</td>
<td>3</td>
<td>COMP SCI 238</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
<td>COMP ENG 111</td>
<td>3</td>
</tr>
<tr>
<td>Literature Elective</td>
<td>3</td>
<td>MATH 206</td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective</td>
<td>4</td>
<td>Physics Elective</td>
<td>4</td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>3</td>
<td>STAT 215</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>History Elective</td>
<td>3</td>
<td>COMP SCI 256</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 284</td>
<td>3</td>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 213</td>
<td>3</td>
<td>COMP SCI 228</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 220</td>
<td>3</td>
<td>ENGLISH 60</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>COMP SCI 206</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmp Sc Electives</td>
<td>9</td>
<td>Cmp Sc Electives</td>
<td>9</td>
</tr>
<tr>
<td>Eng/Science Elective</td>
<td>6</td>
<td>Eng/Science Elective</td>
<td>6</td>
</tr>
<tr>
<td>COMP SCI 397</td>
<td>3</td>
<td>Ethics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 128

1. Any science lecture-laboratory course or course pair totaling at least four hours credit. The laboratory is mandatory in all cases. These course(s) may be selected from: CHEM 1, CHEM 2 and CHEM 4; CHEM 5; BIO SCI 110 and BIO SCI 112; PHYSICS 9 (or PHYSICS 11) and PHYSICS 10; GEOLOGY 51 and GEOLOGY 53; GEOLOGY 52 and GEOLOGY 54; and BIO SCI 115 and BIO SCI 116.
2 Any nine hours that include courses from at least two of the following areas: economics, history, political science, psychology, or sociology. One course must satisfy the Missouri and U.S. Constitution requirement. (see Cmp Sc web page)

3 PHYSICS 23 and PHYSICS 24 or PHYSICS 21-PHYSICS 22/PHYSICS 27 and PHYSICS 25-PHYSICS 26/PHYSICS 28.

4 SP&M S 85 or SP&M S 283.

5 One literature and one humanities course approved on the list maintained on the Computer Science web page.

6 STAT 215, STAT 217 or STAT 343.

7 MATH 203 or MATH 208.

8 Courses chosen from any field so that 128 hours are completed. These and only these courses may be taken pass/fail and only one course may be taken pass/fail each semester. Some courses such as algebra, trigonometry, A&S 110, MATH 8, MATH 14, MATH 15, MATH 21, PHYSICS 21, PHYSICS 22, PHYSICS 23, PHYSICS 24, PHYSICS 25, PHYSICS 26, PHYSICS 27, PHYSICS 28, PHYSICS 31, PHYSICS 35 and the first two years of ROTC do not count toward the free electives.

9 Fifteen hours of elective CS courses excluding COMP SCI 202, COMP SCI 317, and CS x7x courses. At least nine hours must be 300 level or higher, excluding COMP SCI 398. At least nine hours must be lecture courses.

10 Any nine hours chosen from departments that offer a B.S., (or Basic Engineering), excluding computer science. These may not be MATH 8, MATH 14, MATH 15, MATH 21, PHYSICS 21, PHYSICS 22, PHYSICS 23, PHYSICS 24, PHYSICS 25, PHYSICS 26, PHYSICS 27, PHYSICS 28, PHYSICS 31, or PHYSICS 35.

11 PHILOS 225 or PHILOS 235 or PHILOS 340 or PHILOS 368.

12 Laboratory not required.

13 Or ENGLISH 160 Technical Writing.

14 Or CHEM 110, PHYSICS 1, MATH 1, or FR ENG 10.

Donald Bagert, Adjunct Professor
PHD Texas A&M University

William Earl Bond, Adjunct Professor
PHD Rensselaer Polytechnic Institute

Randy Lawrence Canis, Adjunct Professor
JD University of Missouri-Columbia

Sriram Chellappan, Assistant Professor
PHD Ohio State University

Maggie Xiaoyan Cheng, Associate Professor
PHD University of Minnesota

Sajal K Das, Professor
PHD University of Central Florida

Fikret Ercal, Professor
PHD Ohio State University

Alireza Hurson, Professor
PHD University of Central Florida

Wei Jiang, Assistant Professor
PHD Purdue University

Jennifer Lynn Leopold, Associate Professor
PHD University of Kansas

Dan Lin, Assistant Professor
PHD National University of Singapore

Xiaoqing Frank Liu, Professor
PHD Texas A&M University

Sanjay Kumar Madria, Professor
PHD Indian Institute of Technology, India

Bruce M McMillin, Professor
PHD Michigan State University

David M Mentis, Teaching Associate
MASTER Missouri Science and Technology

Chris J Merz, Adjunct Assistant Professor
PHD University of California-Irvine

Angel Ricardo Morales, Assistant Teaching Professor
PHD Texas Tech University

Clayton E Price, Associate Teaching Professor
MASTER University of Missouri - Rolla

Chaman L Sabharwal, Professor
PHD University Of Illinois-Urbana

Sahra Sedighsarvestani, Associate Professor
PHD Purdue University-W. Lafayette

Daniel R. Tauritz, Associate Professor
PHD Leiden University

Donald C Wunsch II, Professor
PHD University of Washington

Zhaozheng Yin, Assistant Professor
PHD Pennsylvania State University

Economics

Economics has been called the “science of scarcity.” It is the study of how individuals allocate scarce resources for production in order to satisfy their human needs and wants. This focus on the human condition places economics firmly into the social sciences area. However the application of economic principles to problems of choice in markets and in financial decision-making also gives economics a central role in the theory of business administration and management.

The Missouri S&T Economics Department offers a relevant business-oriented educational experience while maintaining the social science flavor of the traditional economics degree. The curriculum is based on a broad foundational core, Business and Information and Technology. Students majoring in economics also take up to 33 hours of economics, finance, and management courses.

The Economics courses are taught rigorously and are technically-oriented. They also provide a solid social science education with studies of the social problems of market failure, monopoly, inflation, and the effectiveness of government economic and social policy. Graduated students have an excellent education with job opportunities across the
spectrum including business, finance, study of the law, government and public policy.

The economics program allows for the flexibility of selecting either the Bachelor of Arts or Bachelor of Science programs, depending on which best fits your goals and skills. Either degree will provide you with the necessary skills to compete effectively in the job market or succeed in graduate school.

Students wishing to minor in economics may select from a variety of courses tailored to their own needs. Specific tracks are available in energy/technology and international economics.

Students majoring in an academic area at Missouri S&T other than economics can pursue a secondary B.A. or B.S. in economics to accompany their primary major. See the department chair of economics for more details on this academic option.

The Missouri S&T Economics Department has in place a cooperative Bachelor of Science/Master of Science in Accounting with the College of Business and Public Administration at the University of Missouri-Columbia. A student can take at Missouri S&T up to 90 hours of the 150 hours required for the BS/MS in accounting. The remaining 60 hours must be taken at Columbia. After completing the 90 hours at Missouri S&T, the student must take the GRE exam and be admitted into the UMC graduate program.

Minor in Economics

Students majoring in other disciplines are encouraged to develop a minor in economics. The formal minor in economics is designed to provide students with a solid understanding of economic principles and concepts and the ability to apply this knowledge to a host of economic, public policy and business problems. This program will be of particular benefit to those students whose major field of study may lead them to pursue a management position or later graduate studies in business.

The minor in economics requires the completion of a minimum of 15 hours of economics course work with a grade of “C” or better. Required courses in the minor program include both ECON 121 and ECON 122 and at least one of the intermediate theory courses, ECON 221 and/or ECON 222. The choice of which intermediate theory course depends on which 300 level economic electives the student, in consultation with the department’s minor advisor, selects for their program.

Energy/Technology Minor

(15 hours)

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 121</td>
<td>Principles Of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 122</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 221</td>
<td>Intermediate Microeconomic Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

And 6 hours from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 311</td>
<td>Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 335</td>
<td>Cost-Benefit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 340</td>
<td>Environmental And Natural Resource Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

Global Sustainable Economics Minor

(15 hours)

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 121 & ECON 221</td>
<td>Principles Of Microeconomics and Intermediate Microeconomic Theory</td>
<td>6</td>
</tr>
<tr>
<td>or ECON 122</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>& ECON 222</td>
<td>and Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

And 6 hours from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON/MIN ENG 270</td>
<td>Mining Industry Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 340</td>
<td>Environmental And Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 344</td>
<td>Introduction to Global Eco- and Social-preneurship and Innovation</td>
<td>3</td>
</tr>
<tr>
<td>ECON 351</td>
<td>Economic Development</td>
<td>3</td>
</tr>
<tr>
<td>ECON 355</td>
<td>Energy Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENV ENG 360</td>
<td>Environmental Law And Regulations</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 361</td>
<td>American Environmental History</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 315</td>
<td>Environmental Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

International Economics Minor

(15 hours)

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 121</td>
<td>Principles Of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 122</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 222</td>
<td>Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

And 6 hours from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 322</td>
<td>International Trade</td>
<td>3</td>
</tr>
<tr>
<td>ECON 351</td>
<td>Economic Development</td>
<td>3</td>
</tr>
<tr>
<td>ECON 360</td>
<td>Statistical Models in Actuarial Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Arts Economics

In addition to the general university requirements for a Bachelor of Arts degree, a student must complete:

1. ECON 121, ECON 122, ECON 221 and ECON 222 with a minimum grade of “C” in each.
2. At least 18 additional hours of economics electives, above the 200 level, with a minimum grade of “C” in each.
3. ENG MGT 130 and ENG MGT 131; and STAT 115; or ECON 111; and ECON 211.

Bachelor of Arts Economics (Secondary Education Emphasis Area)

You may earn a B.A. Degree in Economics from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with the emphasis area program. This program can be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Rolla campus.
Students interested in this emphasis area should consult with the advisor for economics in the Economics Department.

In order to successfully complete this emphasis area, students must have at least a 22 ACT, maintain a cumulative GPA of at least 2.5, and attain at least a 2.5 GPA in all economics courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must meet both GPA requirements to be accepted into the program. Students must also meet all requirements listed under the Teacher Education Program of this catalog. Students who do not meet all the teacher certification requirements will not be eligible for the Secondary Education Emphasis Area, even if they have completed all course work.

A degree in this emphasis area requires 129 credit hours. The required courses are provided below. A minimum grade of “C” is required by the department in all mathematics and statistics courses counted toward this degree.

Communications Skills: 9 semester hours
- ENGLISH 20 Exposition And Argumentation 3
- ENGLISH 60 Writing And Research 3
- or ENGLISH 160 Technical Writing 3
- SP&M S 85 Principles Of Speech 3

Humanities: 6 semester hours
Must include 6 hours from 2 of the following 3 areas: Art, Music or Theatre, Philosophy, Literature

Social Sciences: 12 semester hours
- HISTORY 175 American History To 1877 3
- or HISTORY 176 American History Since 1877 3
- POL SCI 90 American Government 3
- PSYCH 50 General Psychology 3
- HISTORY 110 World Regional Geography 3

Natural Sciences: 7 semester hours (including 1 lab)
- Physics or Geology w/Lab 4
- BIO SCI 110 General Biology 3

Mathematics: 3 semester hours
- MATH 2 College Algebra 3-5
- or MATH 4 College Algebra 3

Professional Requirements: 26 semester hours
- EDUC 40 Perspectives In Education 2
- EDUC 174 School Organization & Adm For Elementary & Secondary Teachers 2
- EDUC 216 Teaching Reading In Content Area 3
- EDUC 251 Historical Foundation Of American Education 3
- EDUC 280 Teaching Methods And Skills In The Content Areas 6
- EDUC 298 Student Teaching Seminar 1
- PSYCH 155 Educational Psychology 3
- PSYCH 208 Psychological & Educational Development Of The Adolescent 3
- PSYCH 354 Psychology Of The Exceptional Child 3

Clinical Experience: 16 semester hours
- EDUC 104 Teacher Field Experience 2
- EDUC 164 Aiding Elementary, Middle And Secondary Schools 2
- EDUC 299 Student Teaching 12

Economics: 30 semester hours
- ECON 121 Principles Of Microeconomics 3
- ECON 122 Principles Of Macroeconomics 3
- ECON 221 Intermediate Microeconomic Theory 3
- ECON 222 Intermediate Macroeconomic Theory 3
- ECON 111 Business And Economic Statistics I 3
- or STAT 211 Statistics For The Social Sciences I 3
- or STAT 215 Engineering Statistics 3
- or STAT 217 Introduction To Probability And Statistics 3
- ECON 211 Economic and Business Applications 3
- Econ Electives (200 or 300 level) 9
- BUS 120 Financial Accounting 3

Certification: 20 semester hours
- HISTORY 111 Early Western Civilization 3
- or HISTORY 112 Modern Western Civilization 3
- HISTORY 220 Making Of Modern Civilization 5
- or HISTORY 222 The Making Of Modern France 3
- or HISTORY 224 Making Of Modern Russia 3
- or HISTORY 225 European Diplomatic History 1814 - Present 3
- or HISTORY 321 Ancient Greece 3
- or HISTORY 323 Medieval History I 3
- or HISTORY 324 Medieval History II 3
- or HISTORY 325 History Of Renaissance Thought 3
- or HISTORY 327 Europe In The Age Of The French Revolution And Napoleon 3
- or HISTORY 328 Foundations Of Contemporary Europe 1815-1914 3
- or HISTORY 329 Contemporary Europe 3
- HISTORY 341 Colonial America 9
- or HISTORY 342 Revolutionary America, 1754-1789 3
- or HISTORY 343 Age Of Jefferson And Jackson 3
- or HISTORY 344 Civil War And Reconstruction 3
- or HISTORY 348 Recent United States History 3
- or HISTORY 352 American Intellectual History II 3
- or HISTORY 353 History Of The Old South 3
- or HISTORY 354 History Of The Modern South 3
- or HISTORY 357 History of the American West 3
- or HISTORY 370 History Of Baseball 3
- or HISTORY 380 20Th Century Americans In Combat 3
- or HISTORY 381 The United States In World War II 3
- or HISTORY 382 The United States In Vietnam 3
- or HISTORY 383 U.S. Diplomatic History To World War II 3
- or HISTORY 384 American Diplomatic History Since World War II 3
- POL SCI 316 The American Presidency 3

Areas of Concentration

Students are encouraged to use their electives, both in economics and in general, to develop areas of concentration beyond the core requirements. Among the possibilities are business, finance, and international affairs. Faculty advisors will assist students in establishing these curricular tracks.
Bachelor of Science Economics

In Economics, the Bachelor of Science degrees consist of 120 credit hours. First, all undergraduate students in Economics are required to complete a prescribed General Education Requirements Core that corresponds to the recommendations of the Missouri State Coordinating Board for Higher Education and consists of 42 credit hours in the areas of Individual Expression, Natural Systems, and Human Institutions. In addition, all undergraduate students are required to complete a 39 credit hour core consisting of courses in Information Technology, Management, Quantitative Skills, and Communication Skills. A minimum grade of "C" is required for courses in both the Information Technology and the Management areas. Finally, each degree includes 19 credit hours of free electives.

The remaining 27 credit hours of the required 120 credit hours for the Economics degree are divided into a prescribed 18 credit hour degree core and 9 credit hours of specific degree electives. A minimum grade of "C" is required in these courses. The Economics degree requires courses in advanced Micro, Macro and Statistics. The electives for this degree consist of courses from areas such as Law and Economics, Money and Banking, Energy Economics and E-Commerce.

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 110, or 231, or 235, or 251</td>
<td>3</td>
</tr>
<tr>
<td>Lab w/Living or Physical Science Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 50</td>
<td>3</td>
</tr>
<tr>
<td>MATH 12</td>
<td>4</td>
</tr>
<tr>
<td>History</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 50</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits: 13

Sophomore Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 110</td>
<td>3</td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 151</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 75, or 80, or 102, or 105, or 106, or 177, or 178</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 120</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry, Ge, Ge Eng, or Physics</td>
<td>3</td>
</tr>
<tr>
<td>ART 80, or 85, or MUSIC 50, or THEATRE 90</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits: 15

Junior Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 65</td>
<td>3</td>
</tr>
<tr>
<td>FINANCE 250</td>
<td>3</td>
</tr>
<tr>
<td>ECON 221</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td>ECON 211</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 181</td>
<td>3</td>
</tr>
<tr>
<td>ECON 222</td>
<td>3</td>
</tr>
<tr>
<td>Emphasis Area Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

Credits: 15

Senior Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 260</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 398</td>
<td>2</td>
</tr>
<tr>
<td>Free Electives</td>
<td>13</td>
</tr>
</tbody>
</table>

Credits: 15

Education

The purpose of the Teacher Education Program is to prepare collaborative, technologically adept, effective educators for a diverse and global society.

You may earn a B.A. or B.S. Degree in your chosen field from Missouri S&T and a certificate to teach in the schools of Missouri. The program may be completed in four academic years, although you may wish to carry lighter course loads during the regular academic semesters.

Secondary certification (grades 9-12) may be earned in the following majors: chemistry, physics or biological sciences in the science area; history, economics, or psychology in the social studies area; English in the language arts area; and mathematics in the mathematics area.

For updated information contact the director of Missouri S&T Teacher Education Program and look on the homepage: www.teachereducation.mst.edu.
Secondary Teacher Education Program

Missouri University of Science and Technology is approved by the Missouri State Board of Education to offer professional education programs for purposes of professional certification. Admission to the University does not automatically qualify a student to participate in the professional component of the teacher education program. That participation is granted upon demonstration of a high level of academic and professional competence.

General Education Requirements

General education requirements are intended to provide you with the intellectual knowledge and skills for basic education. This body of knowledge and skills is arranged according to two broad categories: systems of symbolic thought and communication represented by linguistic and mathematical studies and systems of intellectual inquiry represented by basic academic disciplines. In addition, you must complete one course or unit in cultural diversity and the general education requirements can be fulfilled at the same time.

The following are generic requirements for all education students. However, any degree requirement not included in these general education requirements must be included in the professional requirements or subject matter requirements for each degree program.

Symbolic Thought and Communications

1. **Linguistic Studies** (9 semester hours) You are required to take two courses in written communication and one course in oral communication. (You must have a grade of “C” or better in each course.)
2. **Mathematical Studies** (3 semester hours) The course must be college algebra or above.

Systems of Intellectual Inquiry

1. **Humanities** At least one course each from two of the following areas required: art, music, philosophy, literature and theater.
2. **Natural Science** One course in biological sciences and one in physical science is required. One of these two courses must include a laboratory.
3. **Social and Behavioral Science** One course in each of the following areas is required: (1) American History, (2) American Government, and (3) General Psychology.

Secondary Education Certification

In addition to the prescribed general educational courses, if you are preparing to become a secondary school teacher you must complete the following secondary professional education courses and the required courses of at least one teaching major.

You may major in English with English Certification (9-12); Economics, History or Psychology with Social Sciences Certification (9-12); Mathematics with Mathematics Certification (9-12); Biological Sciences, Chemistry or Physics with Certification (9-12).

You must meet Missouri S&T degree requirements and, in addition, course requirements for certification. The necessary course requirements and arrangements will be coordinated through the education office. Please pick up a sheet from the education office for your discipline area or print from www.teachereducation.mst.edu.

Middle School Endorsement

A student may have a second area of certification which is called an endorsement. Any student planning to obtain a middle school endorsement while completing a secondary certification should consider taking the Praxis II in that area. If there are further questions, contact: The Education Office, 573-341-4485.

Missouri State Board of Education Approved Programs

The following professional education programs have been approved by the Missouri State Board of Education for the purpose of teacher preparation and certification.

- **Secondary Education:**
 - English 9-12
 - Mathematics 9-12
 - Social Science 9-12
 - Biology, Chemistry, Physics 9-12

Note: If changes occur at the State level, then the state’s education requirements will supercede those in the catalog and DO NOT fall under the grandfather clause.

Kelly Carter, Lecturer
MA Tennessee Technological University

Christy Ann Green, Lecturer
MASTER University of MO-Columbia

Ed A. Malone, Associate Professor
PHD Southern Illinois University Carbondale

Jana Lynne Neiss, Assistant Teaching Professor
EdD University of Missouri-Columbia

Merilee Krueger Wilsdorf, Associate Teaching Professor
MA University of Nebraska Omaha

Dennis I Wilson, Lecturer
MED Kent State University Main

Gary D Young, Lecturer
BACHELOR Northwest Missouri State University

Aaron R Zalis, Lecturer
EdD Saint Louis University

Electrical Engineering

Emphasis areas at all levels in circuits and electronics, power and energy, communications and signal processing, controls and systems, electromagnetics, optics and devices, and computer engineering.

Electrical engineers are involved in channeling natural resources into uses for society such as heating, lighting, home appliances, consumer products, computing, sensing, control, and communication. They contribute to systems and devices for power, instrumentation, measurement, communication, management, manufacturing, transportation, etc. They are primarily concerned with the processes of generation, transmission, transformation, control, and utilization of energy or information.
Students who are interested in electrical engineering begin in the Freshman Engineering Program, thus obtaining fundamental skills and an overview of the various degree programs at Missouri S&T, before entering the main program. They commit to a given degree program after exposure to the different career options. Once in the program, students gain knowledge in the main areas of electrical engineering, learn to use hardware and software tools in numerous laboratories, and apply engineering concepts in both freshman and capstone design experiences. Educational options include dual major programs (such as electrical and computer engineering degrees), minor programs, emphasis areas, and honors activities (such as the Honors Scholar Program in Electrical Engineering). They may supplement their education with participation in design competitions, professional societies, work internships, research experiences, etc.

The curriculum exposes students to the breadth of electrical engineering and allows them to pursue electives in several areas or to emphasize a specialty. The areas are defined as circuits and electronics, power and energy, communications and signal processing, controls and systems, electromagnetics, optic and devices, and computer engineering.

In circuits and electronics, courses provide study of basic electrical devices — energy sources, resistors, inductors, capacitors, diodes, and transistors — and their interconnection in operational networks. Circuits design and analysis techniques are covered with both analog and digital applications.

In power and energy, courses emphasize the design and applications of motors, generators, transformers, distribution systems, high-voltage devices, and power electronics.

In communications and signal processing, courses include concepts required for the characterization and manipulation of information-bearing signals, modulation systems, wireless networks, image processing, and detection hardware.

In controls and systems, courses emphasize the design and application of circuits and systems to automatically monitor and regulate devices, machines, and processes. Advanced technologies using digital control, intelligent processing, neural networks, and programmable logic controllers are included.

In electromagnetics, courses provide instruction in the interaction, propagation, and transmission of high-frequency waves and signals through space and in conductors. Topics include grounding and shielding, antennas, microwaves, and systems.

In optic and devices, courses provide study of solid-state materials, electronic devices, and optoelectronics. Applications are microfabrication, telecommunications, computing, instrumentation, lasers and fiber optics, nanotechnologies, sensing, and smart technologies.

In computer engineering, courses are offered in computers and architecture, integrated circuits and logic design, embedded computer systems, computational intelligence, networks and software engineering, and software security and reliability.

The Electrical Engineering Program and the related Computer Engineering Program are administered in the same department. Degree programs for B.S., M.S., and Ph.D. are offered. The classrooms and laboratories are located in Emerson Electric Company Hall. Additional research activities are being conducted in various research centers on campus. The department supports chapters for the following student groups: the Institute for Electrical and Electronics Engineers; Eta Kappa Nu; the Electrical and Computer Engineering Honor Society; and the Amateur Radio Club. Various faculty and students participate in other campus organizations and are active in professional societies, design competitions, and technical conferences.

Mission Statement and Objectives

The Electrical and Computer Engineering Department strives to contribute to the state, nation, and world through the education of outstanding professionals and leaders in engineering. Our educational focus is on a broad, rigorous education in all areas of electrical and computer engineering with significant hands-on experiences. The program will provide students with an understanding of engineering problem solving at all levels and an appreciation for engineering as a profession.

There are three educational objectives of the undergraduate program.

Technical competency: Graduates will have a sound knowledge of the fundamentals in electrical or computer engineering that allows them to analyze and solve technical problems, to apply hardware and software tools, to create and evaluate technical products, to learn independently, and to succeed in the workplace and in graduate school.

Engineering perspective: Graduates will be capable of understanding complex projects including their evolution and abstraction and the optimization of associated decisions and risk, both locally and globally.

Professional skills and knowledge: Graduates will have the ability to communicate well in both oral and written form, to interact in teams, to manage and lead technical projects, to manage their career, and to conduct themselves with an understanding of ethics, economics, and intellectual property.

Approved by the faculty September 20, 2007.

Minor Curriculum

A minor in Electrical Engineering will require the following:

Pass the ELEC ENG Advancement Exam I (ELEC ENG 151 final) with at "C" or better

Pass ELEC ENG 153 and ELEC ENG Advancement Exam II with a "C" or better

Pass 12 additional hours of ELEC ENG coursework excluding ELEC ENG 28X, 38X, and 39X. At least 3 lecture hours at the 3XX level are required. A "C" or better is required for all 12 hours. No transfer courses and no more than 3 hours of ELEC ENG 200 or ELEC ENG 300 may be used to meet the requirements. The course choice for the 12 additional hours are subject to the approval of the minor advisor.

* One opportunity will be given to pass the ELEC ENG Advancement Exam I if a student has prior circuit coursework or experience. Otherwise, the student must pass ELEC ENG 151.

Bachelor of Science Electrical Engineering

Entering freshmen desiring to study Electrical Engineering will be admitted to the Freshman Engineering Program. They will be permitted to state a Electrical Engineering preference, which will be used as a
consideration for available freshman departmental scholarships. The focus of the Freshman Engineering Program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Electrical Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Electrical Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities or social sciences course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities or social sciences course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.

3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.

4. Any specific departmental requirements in the general studies area must be satisfied.

5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student's department chairman.

The Electrical Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:

Students are required to take five hours of free electives in consultation with their academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>FR ENG 152</td>
<td>1</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>MATH 153</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23,4</td>
<td>4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>4</td>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td>Elective-Hum or Soc Sci (any level)<sup>5</sup></td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 151<sup>3,6,7</sup></td>
<td>3</td>
<td>ELEC ENG 121<sup>3,6,7,10</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 152<sup>3,6</sup></td>
<td>1</td>
<td>ELEC ENG 122<sup>3,6,7</sup></td>
<td>1</td>
</tr>
<tr>
<td>MATH 22<sup>3</sup></td>
<td>4</td>
<td>ELEC ENG 153<sup>3,7,9</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 111<sup>3,6,8</sup></td>
<td>3</td>
<td>MATH 204<sup>3</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 112<sup>3,6</sup></td>
<td>1</td>
<td>Engineering Science Elective<sup>11</sup></td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 24<sup>3,4</sup></td>
<td>4</td>
<td>COMP SCI 53</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>COMP SCI 54</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 253<sup>3,6,9,10</sup></td>
<td>3</td>
<td>ELEC ENG 271<sup>3,9</sup></td>
<td>4</td>
</tr>
<tr>
<td>ELEC ENG 255<sup>3,6,9,10</sup></td>
<td>1</td>
<td>ELEC ENG 215<sup>3,6,9</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 217<sup>3,6,9</sup></td>
<td>3</td>
<td>ELEC ENG 216<sup>3,6,9</sup></td>
<td>1</td>
</tr>
<tr>
<td>ELEC ENG 218<sup>3,6,9</sup></td>
<td>1</td>
<td>E1 Eng Elective A<sup>10,14</sup></td>
<td>3</td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>3</td>
<td>STAT 217<sup>12</sup></td>
<td>3</td>
</tr>
<tr>
<td>MATH 208</td>
<td>3</td>
<td>ENGLISH 160<sup>13</sup></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>E1 Eng Power Elective<sup>3,6,9,15</sup></td>
<td>3</td>
<td>E1 Eng Elective C<sup>10,14</sup></td>
<td>3</td>
</tr>
<tr>
<td>E1 Eng Power Elective Lab<sup>3,6,9,15</sup></td>
<td>1</td>
<td>E1 Eng Elective E<sup>17</sup></td>
<td>3</td>
</tr>
<tr>
<td>E1 Eng Elective B<sup>10,14</sup></td>
<td>3</td>
<td>ELEC ENG 392</td>
<td>3</td>
</tr>
<tr>
<td>E1 Eng Elective D<sup>10,16</sup></td>
<td>3</td>
<td>Elective-Hum or Soc Sci (upper level)<sup>5</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 391<sup>3</sup></td>
<td>1</td>
<td>Free Elective<sup>18</sup></td>
<td>3</td>
</tr>
<tr>
<td>Free Elective<sup>18</sup></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective-Hum or Soc Sci (any level)<sup>5</sup></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credits: 128

Note: Student must satisfy the common engineering freshman year requirements and be admitted into the department. See Freshman Engineering.

¹ The minimum number of hours required for a degree in Electrical Engineering is 128.
2 Students that transfer after their freshman year are not required to enroll in Freshman Engineering Seminars.

3 A minimum grade of “C” must be attained in MATH 14, MATH 15, MATH 22, and MATH 204, and PHYSICS 24 (or their equivalents), ELEC ENG 151, ELEC ENG 153, ELEC ENG 121, ELEC ENG 122, ELEC ENG 215, ELEC ENG 216, ELEC ENG 217, ELEC ENG 218, ELEC ENG 253, ELEC ENG 255, and ELEC ENG 271, the ELEC ENG power elective (ELEC ENG 205 and ELEC ENG 208 or ELEC ENG 207 and ELEC ENG 209), ELEC ENG 391 and COMP ENG 111 and COMP ENG 112. Also, students may not enroll in other courses that use these courses as prerequisites until the minimum grade of “C” is attained.

4 Students may take PHYSICS 21 and PHYSICS 22 or PHYSICS 21 and PHYSICS 27 in place of PHYSICS 23. Students may take PHYSICS 25 and PHYSICS 26 or PHYSICS 25 and PHYSICS 28 in place of PHYSICS 24.

5 All electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.

6 Students who drop a lecture prior to the last week to drop a class must also drop the corequisite lab.

7 Students must earn a passing grade on the ELEC ENG Advancement Exam I (associated with ELEC ENG 151) before they enroll in ELEC ENG 153 or ELEC ENG 121 and ELEC ENG 122.

8 Students must earn a passing grade on the COMP ENG Advancement Exam (associated with COMP ENG 111) before they enroll in any course with COMP ENG 111 and COMP ENG 112 as prerequisites.

9 Students must earn a passing grade on the ELEC ENG Advancement Exam II (associated with ELEC ENG 153) before they enroll in ELEC ENG 205, ELEC ENG 207, ELEC ENG 208, ELEC ENG 209, ELEC ENG 215, ELEC ENG 216, ELEC ENG 217, ELEC ENG 218, ELEC ENG 253, ELEC ENG 255, or ELEC ENG 271, or other courses with ELEC ENG 153 as a prerequisite.

10 Students must earn a passing grade on the ELEC ENG Advancement Exam III (associated with ELEC ENG 121) before they enroll in ELEC ENG 253 and ELEC ENG 255 or other courses with ELEC ENG 121 as a prerequisite.

11 Students must take IDE 140, MECH ENG 219, MECH ENG 227, PHYSICS 207, PHYSICS 208, CHEM 221, BIO SCI 211, or BIO SCI 231. The following pairs of course are substitutions: CIV ENG 50 and IDE 150, PHYSICS 107 and PHYSICS 311, PHYSICS 107 and CER ENG 284, PHYSICS 107 and NUC ENG 205, or ENG MGT 134 and ENG MGT 253.

12 Students may replace STAT 217 with STAT 215 or STAT 343.

13 Students may replace ENGLISH 160 with ENGLISH 60.

14 ELEC ENG Electives A, B, and C must be chosen from ELEC ENG 205, ELEC ENG 207, ELEC ENG 225, ELEC ENG 231 or ELEC ENG 235, ELEC ENG 243, ELEC ENG 254, and COMP ENG 213.

15 The ELEC ENG Power Elective may be satisfied with ELEC ENG 205 and ELEC ENG 208 or ELEC ENG 207 and ELEC ENG 209.

16 ELEC ENG Elective D must be a 300-level ELEC ENG or COMP ENG course with at least a 3-hour lecture component. ELEC ENG 300 and COMP ENG 300, ELEC ENG 38X, COMP ENG 38X, ELEC ENG 390, COMP ENG 390, COMP ENG 391, ELEC ENG 392 and COMP ENG 392 may not be used for Elective D.

17 ELEC ENG Elective E may be any 200 or 300-level ELEC ENG or COMP ENG course except ELEC ENG 202, ELEC ENG 28X, ELEC ENG 391, and ELEC ENG 392 and COMP ENG 202, COMP ENG 300, COMP ENG 390, COMP ENG 391 and COMP ENG 392.

18 Students are required to take five hours of free elective in consultation with their academic advisors. Credits that do not count toward this requirement are deficiency courses (such as algebra and trigonometry) and extra credits from courses meeting other requirements. Any courses outside of engineering and science must be at least three credit hours. ELEC ENG 28X, ELEC ENG 391, ELEC ENG 392, COMP ENG 28X, COMP ENG 391 and COMP ENG 392 may not be used for free electives. No more than one credit hour of ELEC ENG 202 or COMP ENG 202 may be applied to the BS degree for free electives.

All Electrical Engineering students are encouraged to take the fundamentals of Engineering Examination prior to graduation. It is the first step toward becoming a registered professional engineer.

Emphasis Areas for Electrical Engineering

Circuits and Electronics, Communications and Signal Processing, Computer Engineering, Controls and Systems, Electromagnetics, Optics and Devices, Power and Energy

A declared emphasis area is not required. A student may choose to obtain an Electrical Engineering degree without a formal emphasis or may choose to obtain an Electrical Engineering degree with a declared emphasis in one or more of the emphasis areas of electrical engineering. A major change request is required to add the emphasis area option to the degree program.

For students who seek an Electrical Engineering degree without a formal emphasis, these emphasis areas may guide the choice of their ELEC ENG Electives A, B, C, D, and E as well as their free electives. Students should consult with their advisors on such course selections.

For students who seek an Electrical Engineering degree with a declared emphasis, courses in the declared emphasis area will be applied to ELEC ENG Electives A, D, and E in the degree requirements. For students who choose to have multiple emphasis areas, the additional courses will apply to ELEC ENG Elective B or C and free elective requirements. Students should seek guidance from their advisors on emphasis areas and on courses that are relevant to more than one emphasis area. Students may have an emphasis area or emphasis areas listed on their transcript by completing three three-credit-hour courses in electrical and computer engineering from the designated lists with at least one of the courses being at the 3XX level. This requirement will be satisfied by completing the relevant ABC Elective course, a 3XX course for Elective D, and another 2XX or 3XX for Elective E from the designated listing. The required ELEC ENG courses ELEC ENG 215, ELEC ENG 217, ELEC ENG 253, and ELEC ENG 271 and the course used to satisfy the power requirement (ELEC ENG 205 or ELEC ENG 207) may not be used to meet the three course requirement. Transfer courses do not apply to emphasis areas. A co-listed course may count toward both areas. Experimental courses ELEC ENG 301 or COMP ENG 301 require departmental approval to apply toward an emphasis area.

Circuits and Electronics

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Electronics II</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Degree Programs</td>
<td>ELEC ENG 35X Courses (Excluding ELEC ENG 354)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>

Communications and Signal Processing

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Communication Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td></td>
</tr>
</tbody>
</table>

ELEC ENG 31X Courses

Computer Engineering

Any COMP ENG 213, COMP ENG 215, and 3XX Courses (Excluding COMP ENG 312) See the COMP ENG degree program for details on COMP ENG areas.

ELEC ENG 34X Courses

Electromagnetics

ELEC ENG 37X Courses

Optics and Devices

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Electronic And Photonic Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td></td>
</tr>
</tbody>
</table>

Power and Energy

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Electromechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

or ELEC ENG Power System Design And Analysis

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Power Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>353</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Power Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>353</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEC ENG</th>
<th>Power Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>353</td>
<td></td>
</tr>
</tbody>
</table>

ELEC ENG 30X Courses (Excluding ELEC ENG 200, ELEC ENG 201, ELEC ENG 202, ELEC ENG 300, and ELEC ENG 301 Courses)

<table>
<thead>
<tr>
<th>Levent Acar, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Ohio State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Daryl G Beetner, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC Washington University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minsu Choi, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Oklahoma State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mariesa L Crow, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travis A Dierks, Adjunct Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kristen Marie Donnell Hilgedick, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri University of Science & Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>James L Drewniak, Curators Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Richard E Duboff, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kelvin Todd Erickson, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Iowa State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jun Fan, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mehdhi Ferdowsi, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Illinois Institute of Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mohammad Tayeb Ghars, Research Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steven Leslie Grant, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Rutgers State Univ.-College of Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Victor Khilevich, Research Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Moscow Power Engineering Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chang-Soo Kim, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Kyungpook National University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jonathan William Kimball, Assistant Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurt Louis Kosbar, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Southern California</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randy Hays Moss, Professor³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theresa Avosuahi Odun-Ayo, Assistant Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri University of Science & Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>David Pommerenke, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR-ING Technical University Berlin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jagannathan Sarangapani, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas-Arlington</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sahra Sedighsvarvestani, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Purdue University-W. Lafayette</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pourya Shamsi, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas-Dallas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yiyu Shi, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of California-LA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bijaya Shrestha, Associate Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ronald Joe Stanley, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Columbia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theresa Mae Swift, Assistant Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steve E Watkins, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas at Austin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kevin A Wise, Adjunct Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cheng Hsiao Wu, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Rochester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Richard D. Cole, Professor²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carol Ann Ely, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jason P. Funk, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD UCSD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Levent Acar, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Ohio State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Daryl G Beetner, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC Washington University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minsu Choi, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Oklahoma State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mariesa L Crow, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travis A Dierks, Adjunct Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kristen Marie Donnell Hilgedick, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri University of Science & Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>James L Drewniak, Curators Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Richard E Duboff, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kelvin Todd Erickson, Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Iowa State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jun Fan, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mehdhi Ferdowsi, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Illinois Institute of Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mohammad Tayeb Ghars, Research Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steven Leslie Grant, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Rutgers State Univ.-College of Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Victor Khilevich, Research Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Moscow Power Engineering Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chang-Soo Kim, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Kyungpook National University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jonathan William Kimball, Assistant Professor¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurt Louis Kosbar, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Southern California</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randy Hays Moss, Professor³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theresa Avosuahi Odun-Ayo, Assistant Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri University of Science & Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>David Pommerenke, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR-ING Technical University Berlin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jagannathan Sarangapani, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas-Arlington</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sahra Sedighsvarvestani, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Purdue University-W. Lafayette</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pourya Shamsi, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas-Dallas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yiyu Shi, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of California-LA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bijaya Shrestha, Associate Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ronald Joe Stanley, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Columbia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theresa Mae Swift, Assistant Teaching Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Missouri-Rolla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steve E Watkins, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Texas at Austin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kevin A Wise, Adjunct Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cheng Hsiao Wu, Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Rochester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Richard D. Cole, Professor²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD University of Illinois-Urbana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carol Ann Ely, Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD Missouri State University</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jason P. Funk, Assistant Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHD UCSD</td>
</tr>
</tbody>
</table>
Engineering Management

The Engineering Management degree programs prepare students for leadership roles in today's complex environment as engineers, managers and educators. Graduates are capable of designing, implementing, operating and optimizing sophisticated high technology enterprises in manufacturing, government or service sectors of our global economy.

In today's economy there is a need to see the business unit as a complete, technology driven enterprise and to integrate system components thus ensuring that the company thrives in global competition. In such an environment engineers need both excellent technical and managerial skills to cope effectively with the continuous change that will take place during their careers.

The Engineering Management discipline prepares individuals to successfully integrate engineering and management knowledge while optimizing the use of people, equipment, money and information. The discipline also seeks to develop students into individuals with leadership potential who achieve results in an ethical and sustainable manner.

Missouri S&T’s Engineering Management program has served the needs of students at the B.S., M.S., and Ph.D. level, enabling graduates to pursue career opportunities in the private sector, government, and academia. Furthermore, many alumni now occupy top executive positions in a variety of enterprises.

Mission and Educational Objectives

Mission

The Engineering Management degree equips individuals with engineering and management expertise to prepare them to be leaders in the identification and solution of technical and organizational problems that are complex and evolving.

Engineering Management Educational Objectives:

Graduates of the Engineering Management Program will exhibit proficiency and excellence in the areas of technology, finance, human relations, communications, and professional behavior. Within these areas of proficiency, graduates will exhibit the explicit skills and knowledge as described below.

Technical Knowledge and Analytical Problem Solving: Graduates of the Engineering Management Program are able to analyze and solve complex problems.

Finance: Graduates of the Engineering Management Program are responsible and financially aware managers and leaders who utilize basic finance, accounting, engineering economy and risk analysis methods to manage and identify the financial impact of business opportunities.

Human Relations: Graduates of the Engineering Management Program are competent leaders who develop and utilize the skills and abilities of teams and individuals within the organization.

Communication: Graduates of the Engineering Management Program engage others through effective oral, technical and written communication.

Professional Behavior: Graduates of the Engineering Management Program will continually grow in their awareness and understanding of the societal, ethical, cultural, legal and political issues prevalent in an increasingly global society.

Integration: Graduates of the Engineering Management Program are able to integrate their skills and knowledge in the areas described above.

Minor in Engineering Management

A student who receives a bachelor of science degree in an accredited engineering program from Missouri S&T may receive a minor in Engineering Management by completing 15 hours of the courses listed below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 134</td>
<td>Managing Engineering And Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 147</td>
<td>Engineering Accounting and Finance</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 253</td>
<td>Operations And Production Management</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 200 or 300 level course work chosen in consultation with minor advisor</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Degree Components

The bachelor's program includes the basic chemistry, physics, mathematics and engineering science courses required by all engineering disciplines at Missouri S&T. These courses are followed by required core Engineering Management courses and students then specialize in focused emphasis areas with 18 hours of course work.

Engineering Management Core

- Economic Analysis of Engineering Projects
- Managing Engineering & Technology
- Engineering Accounting and Financial Management
- Marketing Management
- Operations and Production Management
- Project Management
- Quality
- General Management Design & Integration
- Senior Design

As a senior you will take a capstone design course that integrates the technical and managerial skills acquired. Students complete their Bachelor of Science degree requirements by taking the Associate Engineering Manager Certification and a Department Assessment exam prior to graduation.
Emphasis Areas in Engineering Management

Management of Technology focuses on the management aspects of scheduling, budgeting, information system design and development, legal aspects of technology management, managing people, and decision making for positions in project engineering/scheduling, operations management, cost control/estimating, technical marketing/procurement, sales engineering, engineering administration, information systems, and finance economic analysis.

Industrial Engineering focuses on productivity analysis and system optimization for manufacturing and service organizations. Industrial engineering includes a variety of quantitative and qualitative techniques to identify potential improvements in productivity, quality, safety, and other areas. This emphasis area prepares students for positions such as process engineer, project manager, quality engineer, safety engineer, supply chain manager, operations manager and consulting.

General Emphasis Area focus on the convergence of engineering, management, and innovation in high technology environments. A general engineering emphasis allows students to customize their degree program and create a unique engineering emphasis area that focuses on a traditional engineering field or even a unique combination of engineering courses.

Bachelor of Science Engineering Management

Entering freshmen intending to study Engineering Management are admitted to the Freshman Engineering Program. They may, however, state an Engineering Management preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

The Bachelor of Science degree in Engineering Management requires a minimum of 128 credit hours. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Engineering Management.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.

3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.

4. Any specific departmental requirements in the general studies area must be satisfied.

5. Special topics, special problems and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Engineering Management program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:

Free electives. Each student is required to take three hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ENG 10</td>
<td>1</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>MATH 15 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
<tr>
<td>MATH 14 1</td>
<td>4</td>
<td>Humanities Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 22 1</td>
<td>4</td>
<td>MATH 204 1</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 24 1</td>
<td>4</td>
<td>STAT 215 or 217 1</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 50 1</td>
<td>3</td>
<td>ENG MGT 134 1</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 137 1</td>
<td>2</td>
<td>ENG MGT 147 1</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 213 1</td>
<td>3</td>
<td>IDE 150</td>
<td>2</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 253 1</td>
<td>3</td>
<td>ENG MGT 266 1</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 110</td>
<td>3</td>
<td>MECH ENG 227</td>
<td>3</td>
</tr>
</tbody>
</table>
Example Emphasis Area Programs for Engineering Management Students

One unique aspect of the Engineering Management degree is the student’s ability to select an established emphasis area or create a specialized emphasis. Two examples of established emphasis areas are shown below.

Management of Technology

ENG MGT 320 (http://catalog.mst.edu/undergraduate/degreeprogramsandcourses/engineeringmanagement) Technical Entrepreneurship 3

ENG MGT 327 (http://catalog.mst.edu/undergraduate/degreeprogramsandcourses/engineeringmanagement) Legal Environment 3

ENG MGT 356 (http://catalog.mst.edu/undergraduate/degreeprogramsandcourses/engineeringmanagement) Industrial System Simulation 3

ENG MGT 366 (http://catalog.mst.edu/undergraduate/degreeprogramsandcourses/engineeringmanagement) Supply Chain Management Systems 3

ENG MGT Technical Electives (In consultation with your advisor) 6

Industrial Engineering

ENG MGT Materials Handling And Plant Layout 3

ENG MGT Human Factors 3

ENG MGT Industrial System Simulation 3

ENG MGT Introduction To Operations Research 3

ENG MGT Technical Electives (In consultation with your advisor) 6

General

Engineering Area Courses (Engineering Discipline) 15

ENG MGT-Technical Elective 3

Note: All electives must be chosen in consultation with the student’s advisor. Students must satisfy the common engineering freshman year course requirements in addition to the sophomore, junior, and senior year requirements listed above with a minimum of 128 hours.

1. Must have a grade of "C" or better in these courses for graduation. MATH 8 and MATH 21 may be substituted for MATH 14 and MATH 15, respectively.

2. Humanities and Social Science electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.

3. Each student is required to take three hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

4. Students are required to select an emphasis area and maintain a minimum 2.0 GPA for these courses.
5 All Engineering Management students must take the Associate Engineering Manager Certification exam prior to graduation. A passing grade on this examination is not required to earn a B.S. degree. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Associate Engineering Manager Certification score.

Example Emphasis Area Programs for Engineering Management Students

One unique aspect of the Engineering Management degree is the student’s ability to select an established emphasis area or create a specialized emphasis. Two examples of established emphasis areas are shown below.

Management of Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 320</td>
<td>Technical Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 327</td>
<td>Legal Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 356</td>
<td>Industrial System Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 366</td>
<td>Supply Chain Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT Technical Electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Industrial Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 257</td>
<td>Materials Handling And Plant Layout</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 311</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 356</td>
<td>Industrial System Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 382</td>
<td>Introduction To Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT Technical Electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Area Courses (Engineering Discipline)</td>
<td>15</td>
</tr>
<tr>
<td>ENG MGT-Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: All electives must be chosen in consultation with the student’s advisor. Students must satisfy the common engineering freshman year course requirements in addition to the sophomore, junior, and senior year requirements listed above with a minimum of 128 hours.

Randy Lawrence Canis, Adjunct Professor
JD University of Missouri-Columbia

Steven M. Corns, Assistant Professor
PHD Iowa State University

Elizabeth Anne Faragher Cudney, Associate Professor
PHD Missouri S&T

Cihan H Dagli, Professor
PHD University of Birmingham, UK

David Enke, Professor
PHD University of Missouri - Rolla

Abhijit Gosavi, Associate Professor
PHD University of South Florida

Katie Grantham, Associate Professor
PHD University of Missouri-Rolla

Kellie Sue Grasman, Lecturer
MBA University of Michigan Ann Arbor

Stanley W Grzyb Jr, Adjunct Associate Professor
PHD University of MO - Columbia

Ivan Guardiola, Assistant Professor
PHD Texas Tech University

Glenn L. Haley, Lecturer
MASTER Keller Graduate School

Dincer Konur, Assistant Professor
PHD University of Florida

Hongy Lin, Adjunct Professor
PHD University Of Missouri-Rolla

Suzanna K. Long, Assistant Professor
PHD University of Missouri-Rolla

Susan L Murray, Professor
PHD Texas A&M University

Ruwen Qin, Assistant Professor
PHD Pennsylvania State University

Stephen A Raper, Associate Professor
PHD University Of Missouri-Rolla

Michael Stephen Schmidt, Adjunct Professor
MS University Of Missouri-Rolla

Joan Barker Schuman, Assistant Teaching Professor
PHD University of Southern Mississippi

Brian Keith Smith, Assistant Professor
PHD University of Arkansas

Paul D. Smith, Adjunct Professor
MASTER University of Missouri-Rolla

David G Spurlock, Lecturer
PHD University of Illinois Urbana

English

The English program is offered in the Department of English and Technical Communication.

The English curriculum involves the study of language, literature, and culture. Topics include literary history, criticism, literary forms, and detailed examinations of individual authors. Additional genre and theme courses are available, including world literature, literature and film, and literature by women. Linguistics and writing courses include the history and structure of the English language, advanced composition, and desktop publishing.

If you plan to become a secondary school teacher of English/language arts, the department offers an emphasis area in Secondary Education.

Five minors in English also are available. These minors consist of approved course work in American studies, literature, writing, technical communication, and literature and film. You can major in any other academic field and minor in these areas.
In addition to taking the courses in the English curriculum, English majors and minors, will have the opportunity to join the writing staffs of campus publications to contribute work to a creative magazine (*Southwinds*), to participate in Sigma Tau Delta and to attend lectures given by visiting scholars and writers.

English Minor Curriculum

English offers six minors:

All students who minor in English and Technical Communication must have a minor advisor in the English Department, must complete a minor form, and must file it with the English Department. (ENGLISH 20 Exposition And Argumentation cannot be counted toward an English minor.)

Literature To complete this minor, students must take 12 hours of Literature courses offered by the English Department; at least 9 hours of these must be at the 200 or 300 level.

Writing To complete this minor, students must take ENGLISH 281 Theory Of Written Communication, plus 9 hours selected from the following courses: ENGLISH 60, ENGLISH 65, ENGLISH 70, ENGLISH 160, ENGLISH 260, ENGLISH 302, ENGLISH 305, OR ENGLISH 306.

Literature and Film The minor requires 12 hours, including the following required courses: and the core course, ENGLISH 177 Literature And Film (3 hours). In addition, students will take 6 hours of electives in the field of literature and film studies. These electives can include but are not limited to ART 255 (hours); ENGLISH 278 Thematic Studies In Literature And Film (3 hours); ENGLISH 279; ART 250 Thematic Studies In Film & Literature (3 hours); and ART 251 (hours).

American Studies The minor requires 15 hours, including ENGLISH 178 Introduction To American Studies and ENGLISH 378 The American Experience. In addition, the student, in consultation with the minor advisor, will select three courses, one of which must be at the 300 level, from the areas of American art, history, literature, music, or philosophy.

Technical Communication To complete this minor students must take TCH COM 65, TCH COM 240, AND TCH COM 260 plus six additional hours elected from the 300 level technical communication courses.

Creative Writing The minor requires 12 hours including ENGLISH 70 Creative Writing. Students are required to take an advanced writing workshop either ENGLISH 205 Fiction Writing or ENGLISH 208 Creative Nonfiction Writing. In consultation with the minor advisor, students will select two additional courses, one of which must be at the 300-level or higher that emphasize literary craft. Suggested Electives: ENGLISH 205, ENGLISH 208, ENGLISH 245, ENGLISH 362, ENGLISH 372, ENGLISH 376, ENGLISH 380, ENGLISH 382.

Bachelor of Arts

English

The requirements for the English major are as follows:

1. Prerequisites for the English major are ENGLISH 75, ENGLISH 80, ENGLISH 105, and ENGLISH 106. Six of these hours will satisfy the General Education Humanities requirements for the Bachelor of Arts degree.

2. Twenty-four hours of English course work at the 200 and 300 level, including ENGLISH 202 Critical Approaches To Literature and ENGLISH 350 Texts And Contexts.

Of these twenty-four hours a minimum of fifteen hours must be at the 300 level. Only nine hours at the 200 level may count towards fulfilling the major requirements.

Students are strongly recommended to work closely with their advisors in planning their major curriculum.

Bachelor of Arts (Emphasis Area in Secondary Education)

The student will fulfill the general requirements for the Bachelor of Arts degree, except for foreign language and a minor; the requirements for the English major (emphasis in secondary education); and the requirements for Missouri certification in the teaching of English. See Education. Contact the Missouri S&T English Department for advising. Students who do not complete certification requirements must complete regular requirements (foreign language and a minor) in order to receive a B.A. Students preparing for Teacher Certification should note that the requirements for the English major are as follows:

1. ENGLISH 75, ENGLISH 80, ENGLISH 105, ENGLISH 106.
2. Fifteen hours of course work at the 200 or 300 level in English and American literature, including two courses in English Literature; and two American Literature courses, including literature for adolescents.
3. Six hours of linguistics.
4. ENGLISH 202 Critical Approaches To Literature.
6. Twelve hours of writing, including a course in the teaching of writing. Six of these hours will also be satisfied by the General Education Composition requirement for the B.A. degree; three of these hours will also be satisfied by the capstone course.
7. A minimum of fifteen hours must be at the 300 level.

Randall Lee Arthur, Lecturer
MASTER Ball State University

Eric Shane Bryan, Assistant Professor
PHD Saint Louis University

Olivia Anne Burgess, Assistant Teaching Professor
PHD Texas A&M University

Anne Lucile Cotterill, Associate Professor
PHD Washington University

Melissa Ann Green Dereberry, Lecturer
MASTER Missouri State University

Kathryn C Dolan, Assistant Professor
PHD University of CA-Santa Barbara

Kathleen M Drowne, Associate Professor
PHD Univ. N. Carolina Chapel Hill

Fred Ekstam, Assistant Teaching Professor
MASTER University of Missouri/St. Lou

Mathew R Goldberg, Assistant Teaching Professor
MFA University of Arkansas Fayette
Environmental Engineering

Environmental engineers uphold the dual goals of minimizing our impact on the local, regional, and global environment and concurrently improving our standard of living. In this role of preserving environmental and public well-being, environmental engineers face unique issues and must have a strong background in the earth sciences to understand complex environmental problems and then pose and design appropriate engineering solutions. As problem solvers for something as diverse as “the environment,” environmental engineers also need to understand the most current technologies used in practice and have a desire to maintain a high level of learning in this rapidly evolving field.

Drinking water and wastewater treatment are cornerstones of the environmental engineering field, and students’ education in these areas is thorough. Turning river, lake, or even sea water into drinking water requires a unique expertise because each water source offers distinctive challenges. Air pollution is a growing concern on scales ranging from the global atmosphere to the indoor environment. From a fundamental understanding of the chemistry and dynamics of air pollution, students learn how human activities degrade air quality and also how to evaluate and design control technology to reduce emissions from industry and other sources. The geology of a location greatly impacts its water resources, and comprehension of hydrogeology is important to an environmental engineer. The amount and quality of water a geologic formation can produce can influence and limit development of a region. Subsurface hydrology can be the most critical aspect in remediation of contaminated groundwater. Sustainable infrastructure, in terms of energy and environment, is yet another challenge that environmental engineers will have the opportunity to address in their careers.

The environmental engineering work place is diverse. Consulting firms represent a large portion of the work force and many specialize in areas of drinking water and wastewater treatment. The U.S. Environmental Protection Agency, state departments of natural resources, departments of health, and the U.S. Departments of Energy and Defense all have positions that require a wide array of skills and expertise.

The courses and skills learned as an undergraduate student also provide preparation for graduate studies and advanced leadership roles. Many specialized positions require a graduate education. Within the Missouri S&T Environmental Engineering Program, elective courses include topics such as water and wastewater; geo-environmental; air pollution and control; environmental chemistry and processes; and environmental microbiology and processes. Some courses are required in each of these areas to provide breadth, which allows graduates to interact with the wide range of professionals in this particularly interdisciplinary field. Project teams may include health care professionals, city planners, developers, and all types of engineers. Additionally, the ever-developing field of environmental engineering is saturated with legal issues, many of which are yet to have precedents or legal statutes established.

Many courses include laboratory exercises in the Environmental Engineering Program Laboratories in the Civil Engineering Building. In addition to teaching laboratories, the laboratory facilities include a pilot-scale unit-operations laboratory, temperature control facilities, a rooftop greenhouse, and state of the art analytical facilities. Undergraduate-level research is encouraged and promotes participation in environmental research carried out, largely in the Environmental Research Center. In summary, the diverse curricula, interdisciplinary faculty, and superb facilities afford students an excellent opportunity for an unparalleled education and prepare them for a bright future of solving tomorrow’s problems in environmental engineering.

Mission Statement

The Environmental Engineering Program will prepare students for a career in the global, interdisciplinary field of environmental engineering and for life-long development in the profession. The program’s fundamental base in biological and earth sciences and development of specific engineering application skills prepares graduates to approach unique, atypical problems with a true problem-solving approach, develop solutions to benefit society and the environment, and promote these solutions.

Environmental Engineering Program Educational Objectives

Consistent with the mission statement, graduates of the Missouri S&T Environmental Engineering Program will demonstrate, within a few years of graduation:

1. professional development,
2. technical competency,
3. responsibility and knowledge of leadership,
4. an ability to communicate effectively,
5. an ability to work in teams, and
6. a holistic view of problems within their field.

Program Outcomes

Consistent with the program educational objectives listed above, the Missouri S&T environmental engineering program graduates will have:

1. ability to apply knowledge of mathematics including differential equations, probability and statistics, sciences including physics, chemistry, biology, and geology, and engineering fundamentals including fluid mechanics
2. ability to outline and conduct experiments in sciences and in at least two environmental engineering areas
3. ability to carry out the design of an integrated system and its various components and processes for an environmental engineering project
4. effective communication in multi-disciplinary environments
5. ability to identify, evaluate, and solve environmental engineering problems
6. understanding of the responsibility of environmental engineers to practice in a professional and ethical manner at all times
7. ability to communicate effectively using oral, written, and graphic forms
8. ability to provide leadership when working in multi-disciplinary teams
9. understanding of the potential impacts of engineering solutions on society and the environment
10. understanding of the need for up-to-date engineering tools acquired through life-long learning
11. knowledge of contemporary issues related to environmental engineering
12. environmental engineering project management skills and design techniques
13. proficiency as demonstrated by problem solving in at least four environmental engineering areas
14. ability to explain environmental issues associated with air, land, and water systems and associated environmental health impacts

Environmental Engineering Bachelor of Science

Entering freshmen desiring to study Environmental Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Environmental Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Environmental Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Environmental Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, 170, 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.
2. HISTORY 270 or HISTORY 275 is required.
3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.
4. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chair.

The Environmental Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ENG 102</td>
<td>1 IDE 20</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1 & CHEM 2</td>
<td>5 MATH 15</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 14</td>
<td>4 PHYSICS 23</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3 General Education Elective</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Education Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 50</td>
<td>3 CIV ENG 110</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 22</td>
<td>4 CIV ENG 120</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV ENG 261</td>
<td>3 IDE 150</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 3 or GEOLOGY 275</td>
<td>3 CHEM ENG 120</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td>3 ENV ENG 262</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 24</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV ENG 263</td>
<td>3 ENV ENG 369</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV ENG 263</td>
<td>3 STAT 213</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV ENG 230</td>
<td>3 CHEM ENG 141</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 204</td>
<td>3 ENV ENG Technical Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO ENG 50</td>
<td>3 Communications Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Missouri University of Science and Technology
The following classes may be used to fulfill the three depth elective requirements:

- **ENV ENG 360**: Environmental Law And Regulations
- **ENV ENG 361**: Remediation Of Contaminated Groundwater And Soil
- **ENV ENG 362**: Public Health Engineering
- **ENV ENG 363**: Solid Waste Management
- **ENV ENG 364**: Environmental Systems Modeling
- **ENV ENG 365**: Sustainability, Population, Energy, Water, and Materials
- **ENV ENG 366**: Indoor Air Pollution
- **ENV ENG 367**: Introduction To Air Pollution

One class may not be used to fulfill both the air pollution requirement and a depth elective.

Environmental Engineering Technical Electives

The following classes may be used to fulfill the two technical elective courses required for the B.S. in Environmental Engineering:

- **CIV ENG 331**: Hydraulics Of Open Channels
- **CIV ENG 335**: Water Infrastructure Engineering
- **CIV ENG 346**: Management Of Construction Costs
- **CIV ENG 380**: Water Resources And Wastewater Engineering
- **CIV ENG 314**: Geosynthetics In Engineering
- **CIV ENG 386**: Principles Of Environmental Monitoring
- **CHEM ENG 248**: Fundamentals Of Geographic Information Systems
- **CHEM ENG 275**: Geomorphology And Terrain Analysis
- **CHEM ENG 333**: Risk Assessment In Environmental Studies
- **CHEM ENG 335**: Environmental Geological Engineering
- **CHEM ENG 339**: Groundwater Remediation
- **CHEM ENG 376**: Environmental Aspects Of Mining
- **PET ENG 313**: Drilling and Well Design
- **GEOLOGY 275**: Introduction To Geochemistry
- **GEOLOGY 376**: Aqueous Geochemistry
- **GEOLOGY 382**: Air Pollution Control Methods
- **ENG 368**: Remedial Action Systems
- **CHEM 241**: Physical Chemistry
- **CHEM 373**: Physical Chemistry
- **PHYSICS 337**: Chemical Engineering Thermodynamics II
- **CHEM ENG 321**: Chemical Engineering Fluid Flow
- **CHEM ENG 323**: Chemical Engineering Heat Transfer
- **CHEM ENG 374**: Chemical Engineering Thermodynamics
- **CHEM 014**: Environmental Chemistry
- **CHEM 51**: Environmental Chemistry
- **CHEM 221**: Organic Chemistry I
- **BIO SCI 231**: General Genetics
- **BIO SCI 251**: Ecology
- **BIO SCI 321**: Pathogenic Microbiology
- **BIO SCI 322**: Microbiology And Evolution
- **BIO SCI 325**: Microbiology And Evolution
- **BIO SCI 331**: Molecular Genetics
- **BIO SCI 332**: Molecular Genetics Laboratory
- **BIO SCI 370**: Toxicology

Note: All Environmental Engineering students must take the Fundamentals of Engineering examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree, however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Environmental Engineering Depth Electives

The following classes may be used to fulfill the three depth elective courses required for the B.S. in Environmental Engineering:

- **ENV ENG 368**: Air Pollution Control Methods
- **GEO ENG 331**: Subsurface Hydrology

Mark W Fitch, Associate Professor
PHD University of Iowa

Joel G Burken, Professor
PHD University of Texas-Austin
Etymology
Gerald Leonard Cohen, Professor
PHD Columbia University

Explosives Engineering
Jason Baird, Associate Professor
PHD University of Missouri-Rolla

Steve W Hall, Lecturer
BACHELOR University of Missouri - Rolla

Paul Nicholas Worsey, Professor
PHD University of Newcastle-upon-Tyne, United Kingdom

Finance
Ying Chou Lin, Assistant Professor
PHD Old Dominion University

Foreign Languages
(French, German, Russian, Spanish)

Missouri S&T offers courses in French, German, Russian, and Spanish. Previous training is not required for language study at Missouri S&T.

After two semesters of foreign language study on campus, you should be able to converse on an elementary level. You will be introduced to foreign literature in the second or third semester.

A minor in French, German, Russian or Spanish is available. You may fulfill your B.A. language requirement from any of the four foreign languages offered.

French Minor
A French minor will consist of nine hours beyond the 12 hours B.A. foreign language requirement selected in consultation with a faculty advisor.

The additional nine hours must be at the 100 level or higher, with at least two of the courses at the 300 level.

German Minor
A German minor will consist of nine hours beyond the 12 hours B.A. foreign language requirement selected in consultation with a faculty advisor.

The additional nine hours must be at the 100 level or higher, with at least two of the courses at the 300 level.

Russian Minor
A Russian minor will consist of nine hours beyond the 12 hours B.A. foreign language requirement selected in consultation with a faculty advisor.

The additional nine hours must be at the 100 level or higher, with at least two of the courses at the 300 level.

Spanish Minor
A Spanish minor will consist of nine hours beyond the 12 hours B.A. foreign language requirement selected in consultation with a faculty advisor.

The additional nine hours must be at the 100 level or higher, with at least two of the courses at the 300 level.

French

Audra Lynn Merfeld-Langston, Assistant Professor
PHD Pennsylvania State University

Freshman Engineering Program

Entering freshmen desiring to study engineering are admitted to the Freshman Engineering Program. They may state a preference for a major in a particular engineering field if they wish. In the event a preference is stated, it will be used in the consideration for freshmen scholarships, if available, in the preferred department.

The goals of the Freshman Engineering Program are:

1. to provide high quality advising in order to enhance the likelihood of student academic success, and
2. to provide information about careers in the various engineering fields so that students can make an informed decision regarding an engineering major.

Students will complete a set of required courses common to all engineering fields and then may apply for admission as degree candidates to the program of their choice.

Common Engineering Freshman Year

The following courses are common to all the engineering programs offered at Missouri S&T and are normally taken while the student is in the Freshman Engineering Program.

MATH 14 & MATH 15
Calculus For Engineers I and Calculus For Engineers II
Geological engineers work on a variety of projects that involve the earth's resources and its inhabitants. For example, a geological engineer may be involved in the design of a project to protect wetlands. A geological engineer may be involved in the cleanup of lead contaminated soil which threatens peoples' homes. Geological engineers may develop safe drinking water supplies in parts of the world where infant mortality is many times higher than it is in the United States. Geological engineers work on protecting infrastructure like bridges, buildings and utilities from earthquake damage. Geological engineers evaluate the use of naturally-occurring materials like clay to prevent the spread of subsurface contamination. Geological engineers are interested in the development of renewable energy resources to conserve traditional sources of energy. Geological engineers work with the environment to improve conditions for everyone and the world around us.

The curriculum for geological engineers includes the familiar engineering subjects like math, chemistry, physics and mechanics. However, geological engineers also take courses that are focused on the earth - its soil, rock and fluids; these courses frequently include field work! Of course, geological engineers also are well-trained in engineering design and such design courses typical focus on projects that help people and society through careful consideration of where, when, and how the earth's resources are utilized.

Because the use and conservation of the earth's resources is an ever-growing concern and responsibility, there is an increasing need for geological engineers in a wide variety of areas including industry, government agencies, and research applications. Scholarships are available as are summer internships and, ultimately, challenging and rewarding permanent employment.

Mission Statement

It is the mission of the Geological Engineering program to teach integrated concepts of geology and engineering in such a manner that graduates will graduate as competent, ethical, professional geological engineers. The program is designed to provide background in geological and engineering sciences courses in the lower division which support the applied analysis and design concepts courses taught in the upper division. It is expected that the students will have gained the ability to identify and, through analysis and design, solve problems resulting from the interaction of man's activities with the geologic environment. The curriculum is intended to blend theoretical concepts with practical application, so as to offer the student a well-rounded education, and to include sufficient discussion and project oriented work with real-world issues to provide the student with a thorough awareness of the graduate's responsibility to society. Since geological engineering students are oriented toward careers in environmental protection, social awareness and the engineer's responsibility to both client and society is strongly emphasized throughout the curriculum, particularly in the senior seminar and design courses.

Program Objectives and Outcomes

Objectives: Graduates will be prepared to serve public and private interests as future professional geological engineers practicing in the State of Missouri, the nation, and international situations; they will be prepared to ultimately achieve the status of licensed engineers.

Outcome Group 1: General Engineering and Science Competence.

Graduates will be well trained in the fundamentals of general engineering, mathematics, and the sciences; with particular focus on geology and engineering applications.

Outcomes:

1. Students will have a fundamental knowledge of basic mathematical principles particular to Geological Engineering, and to prepare them to write the Fundamentals of Engineering Exams.
2. Students will have a fundamental knowledge of basic science principles particular to Geological Engineering, and to prepare them to write the Fundamentals of Engineering Exams.

3. Students will have a fundamental knowledge of general engineering mechanics particular to Geological Engineering (including design, statics, mechanics of materials), and to prepare them to write the Fundamentals of Engineering Exam.

4. Students will have a fundamental knowledge of basic geology topics particular to Geological Engineering (geological processes, identification of rocks and minerals, visualize and solve problems in 3 and 4 D, and to apply principles of geology and geophysics).

5. Students will have the ability to apply mathematics including differential equations, calculus based physics and chemistry to geological engineering.

Outcome Group 2: Geological Engineering Competence. Graduates will acquire a broad knowledge of geological engineering principles and practices and understand what practicing geological engineers do.

1. Students will have a fundamental knowledge of principles associated with geological engineering and closely related disciplines, and to design solutions to geological engineering and geomechanics problems.

2. Students will have an applied specific knowledge of aspects of geological engineering and closely related disciplines, including specialization in one or more emphasis area of geological engineering.

3. Students will learn the importance of professional licensure and the appropriate path to professional licensure.

4. Students will learn practical professional skills required of practicing engineers.

5. Students will learn what some practicing professionals in our field do as a part of their job.

6. Students will gain exposure to international engineering situations.

Outcome Group 3: Problem solving skills. Graduates will have the ability to use mathematics and scientific principles and analytical and other problem-solving skills necessary to systematically solve problems within the environmental, economic, social, political, and professional constraints of society and the geological engineering community, by themselves and in teams.

Outcomes:

1. Students will be able to conduct experiments, design projects, and analyze and interpret data.

2. Students will be able to design components and integrated systems to solve a typical geological problem associated with subsurface conditions or the environment.

3. Students will be able to successfully work in design teams.

4. Students will have the ability to function on multidisciplinary teams.

5. Students will have an appreciation for the inherent uncertainty and variability of naturally occurring materials and the risks and difficulties of decision making and engineering design within such a framework, especially with respect to the economic and optimum use of resources.

6. Students will have the ability to understand how to use non-invasive imaging technologies for geotechnical, environmental, hydrologic, and structural investigations.

7. Students will have the ability to use state-of-the-practice computer software.

8. Students will have the ability to use state-of-the-practice accepted field methods and equipment.

9. Students will have the confidence to provide leadership and communicate effectively in a multidisciplinary team in order to analyze and interpret data, transmit results, make proposals, and prepare reports.

Outcome Group 4: Social Skills. Graduates will possess the highest level of personal and professional ethics, have a broad based knowledgeable of Humanities and Social Sciences, and have the communication and personal skills necessary to be leaders and effective members of multidisciplinary teams.

Outcomes:

1. Students will have knowledge of, and appreciation for, historical and contemporary issues and the impact of such issues, by taking non-technical classes as part of an engineering education.

2. Students will have broad knowledge of environmental, economic, social, political and professional issues relevant to the practice of engineering in today’s world.

3. Students will be able to communicate effectively.

4. Students will understand how to development personal and professional ethics and professional responsibility.

5. Students will be encouraged to join a professional society.

6. Students will be encouraged to participate in extra-curricular activities.

7. Students will be encouraged to become leaders.

Outcome Group 5: Life-long learning skills. Graduates will have the skills and motivation to continue learning throughout their careers.

Outcome:

1. Students will understand the need for and attain the skills to develop life-long learning.

Minor in Geological Engineering

Geological Engineering offers employment opportunities for a broad spectrum of disciplines including Civil, Mining, Nuclear, and Petroleum Engineering as well as for geologists and geophysists. A minor in Geological Engineering or Engineering Geology, therefore, enhances the academic credentials of a student and broadens employment choices. A minor in Geological Engineering requires 15 hours of Missouri S&T credit to include the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 50</td>
<td>Introduction to Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 275</td>
<td>Geomorphology And Terrain Analysis</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 331</td>
<td>Subsurface Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 341</td>
<td>Engineering Geology And Geotechnics</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 15

1. GEOLOGY 51 may be substituted for geology and geophysics majors.

2. To be selected with geological engineering advisor approval.
Bachelor of Science
Geological Engineering

Entering freshmen desiring to study Geological Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Geological Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Geological Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student’s major department, and an average of at least two grade points per credit hour must be maintained in Geological Engineering.

The Geological Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Each student’s program of study must contain a minimum of 18 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either or ECON 122. Some disciplines require one humanities course to be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.
2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.
3. Some departments list specific requirements; e.g. a psychology course, a literature course, and/or a second semester of economics. Selections should be made to ensure that these requirements are met.
4. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages. Students who select the foreign language option are urged to take more than one course.
5. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student’s Program Head.

The Geological Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

<table>
<thead>
<tr>
<th>Bachelor of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL ENGINEERING</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>MATH 14</td>
</tr>
<tr>
<td>CHEM 1</td>
</tr>
<tr>
<td>CHEM 4</td>
</tr>
<tr>
<td>CHEM 2</td>
</tr>
<tr>
<td>ENGLISH 20</td>
</tr>
<tr>
<td>FR ENG 10</td>
</tr>
<tr>
<td>H/S S Electivea</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sophomore Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>MATH 22</td>
</tr>
<tr>
<td>PHYSICS 24</td>
</tr>
<tr>
<td>GEO ENG 248</td>
</tr>
<tr>
<td>GEO ENG 50</td>
</tr>
<tr>
<td>Economics Elective</td>
</tr>
<tr>
<td>ECON 121 or 122</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Junior Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>IDE 150</td>
</tr>
<tr>
<td>CIV ENG 110</td>
</tr>
<tr>
<td>GEOLOGY 220</td>
</tr>
<tr>
<td>HumSoc Sc Electivea</td>
</tr>
<tr>
<td>Earth Energy Electivec</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>Geophysics Elective</td>
</tr>
<tr>
<td>GEO ENG 310</td>
</tr>
<tr>
<td>GEO ENG 331</td>
</tr>
<tr>
<td>GEO ENG 341</td>
</tr>
<tr>
<td>GEO ENG 350 or GEOLOGY 352</td>
</tr>
<tr>
<td>CIV ENG 215 or MIN ENG 331</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total Credits: 128</td>
</tr>
</tbody>
</table>

a The sequence of course selection must provide both breadth and depth of content and must be selected from the list of approved HumanitiesSocial Science electives available from your advisor. A total of 18 hours of humanities and social science credit is required.

b The ChemistryGeochemistry elective must be selected from chemistry, geochemistry or biology courses as approved by your advisor.

c Students should select GEO ENG 356, or other Earth Energy Electives such as PET ENG 232, PET ENG 240, or GEOLOGY 340.
d The Technical Communications elective can be selected from ENGLISH 60, ENGLISH 160, SP&M S 85, or the complete four-course sequence in Advanced ROTC (MIL ARMY 105, MIL ARMY 106, MIL ARMY 207, and MIL ARMY 208 or AERO ENG 350, AERO ENG 351, AERO ENG 380, and AERO ENG 381).

e To be selected from GEO ENG 371, GEO ENG 381, MIN ENG 331, PET ENG 240, PET ENG 241, CIV ENG 215, CIV ENG 229, or CIV ENG 315.

f To be selected from ENG MGT 308, MIN ENG 270, or PET ENG 357 or both ENG MGT 124 and ENG MGT 137.

g To be selected from advanced courses in geological, mining, petroleum or civil engineering, geology or other courses with approval of your advisor. Must contain design content and must be approved by your advisor.

h Students may take GEO ENG 350 or GEO ENG 352 for senior design credit.

i The Geophysics elective can be selected from GEO ENG 336, GEO ENG 361, or GEO ENG 382.

All GE students must take the Fundamentals of Engineering Examination prior to graduation. A passing grade is not required; however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Geological engineering students must earn the grade of “C” or better in all geological engineering courses to receive credit toward graduation. The total number of credit hours required for a degree in Geological Engineering is 128. The assumption is made that a student admitted to the Department has completed 34 hours toward graduation to fulfill the requirements of the Freshman Engineering program.

Geological Engineering Emphasis Areas

Electives are selected by the student with advisor approval. Some appropriate electives are listed for each emphasis area.

Environmental Protection and Hazardous Waste Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 335</td>
<td>Environmental Geological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 337</td>
<td>Geological Aspects Of Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 381</td>
<td>Intermediate Subsurface Hydrology And Contaminant Transport Mechs</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 331</td>
<td>Subsurface Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 315</td>
<td>Geostatistical Methods in Engineering and Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 376</td>
<td>Environmental Aspects Of Mining</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 333</td>
<td>Risk Assessment In Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 215</td>
<td>Fundamentals of Geotechnical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Groundwater Hydrology and Contaminant Transport

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 381</td>
<td>Intermediate Subsurface Hydrology And Contaminant Transport Mechs</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 333</td>
<td>Risk Assessment In Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 374</td>
<td>Geological Engineering Field Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 331</td>
<td>Subsurface Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 315</td>
<td>Geostatistical Methods in Engineering and Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 341</td>
<td>Engineering Geology And Geotechnics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 215</td>
<td>Fundamentals of Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 232</td>
<td>Well Logging I</td>
<td>3</td>
</tr>
</tbody>
</table>

Engineering Geology and Geotechnics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 371</td>
<td>Rock Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 215</td>
<td>Fundamentals of Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 331</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 229</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 308</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 346</td>
<td>Applications Of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 341</td>
<td>Engineering Geology And Geotechnics</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 315</td>
<td>Geostatistical Methods in Engineering and Geology</td>
<td>3</td>
</tr>
</tbody>
</table>

Petroleum, Energy and Natural Resources

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET ENG 241</td>
<td>Petroleum Reservoir Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 331</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 346</td>
<td>Applications Of Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 381</td>
<td>Intermediate Subsurface Hydrology And Contaminant Transport Mechs</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 341</td>
<td>Applied Petroleum Geology</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 232</td>
<td>Well Logging I</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 240</td>
<td>Properties Of Hydrocarbon Fluids</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 121</td>
<td>Introduction to Petroleum Engineering</td>
<td>1</td>
</tr>
<tr>
<td>PET ENG 341</td>
<td>Well Test Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Quarry Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 331</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 375</td>
<td>Aggregates And Quarrying</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 216</td>
<td>Construction Materials, Properties And Testing</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 371</td>
<td>Rock Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 376</td>
<td>Environmental Aspects Of Mining</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 221</td>
<td>Mining Exploration</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 307</td>
<td>Principles Of Explosives Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 308</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 345</td>
<td>Strata Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Neil L Anderson, Professor
PHD University of Calgary

Shadab Anwar, Assistant Professor
PHD Florida International University

Kwame Awuah-Offei, Associate Professor
PHD University of Missouri-Rolla

James L Bunch, Lecturer
MASTER Missouri University of Science

John W Cable, Lecturer
MASTER University of Missouri-Rolla
Jeffrey D Cawfield, Professor\(^1,2\)
PHD University of California-Berkeley

A Curt Elmore, Professor\(^1\)
PHD University of Arizona

Ralph E Flori Jr, Associate Professor
PHD University Of Missouri-Rolla

Leslie Sour Gertsch, Associate Professor
PHD Colorado School of Mines

James E Kaufmann, Lecturer
MASTER University Of Missouri-Rolla

Norbert H Maerz, Associate Professor\(^1,2\)
PHD University of Waterloo

Henry J Pernicka, Associate Professor
PHD Purdue University

J David Rogers, Associate Professor\(^1,2\)
PHD University of California-Berkeley

James E Vandike, Lecturer
MASTER South Dakota School of Mines & Technology

Emitt Cleveland Witt, Lecturer
MASTER University of Pittsburgh

Geology and Geophysics

Emphasis areas at the Bachelor of Science level in geochemistry, geology, geophysics, groundwater and environmental geochemistry, and petroleum geology.

The Geology and Geophysics program is offered under the Department of Geological Sciences and Engineering.

Geology, geochemistry and geophysics study the history, composition, and structure of Earth and other planetary bodies. The expertise and activities in the Geology and Geophysics program make the Missouri University of Science and Technology one of the leading U.S. research universities. Faculty and students are investigating areas such as the study of nuclear waste disposal, ground water pollution, palynostratigraphy (micro fossils), geophysical characterization of geological hazards (e.g., earthquakes, collapsed caverns) reflection and theoretical seismology, computational geophysics, 3D seismic applications to petroleum exploration, evolution of petroleum reservoirs, genesis of ore deposits, the role of magmatism and tectonics, and industrial processing of minerals. We provide the only program in Missouri in geophysics and geochemistry with an emphasis upon exploration and environmental applications.

Students are drawn to geology and geophysics by a desire to explore a topic that is for many a personal passion. As a student in the Geology and Geophysics program, you may become involved in a wide range of studies. We have students investigating their world and beyond in areas as diverse as planetary geology, fossils and evolution, volcanology, structure and dynamics of Earth’s deep interior, development of cave systems, exploration for oil and gas, adsorption of pollutants by soils, ore mineralization, creation of mountain systems, the beauty of minerals, to name but a few. Many courses involve work outdoors within the state of Missouri as well as in national parks such as the Grand Canyon. You may even find yourself snorkeling over a coral reef in the Caribbean Sea, working in the rifted valleys in Africa or examining geologic evolution of the Egyptian Nile.

In the first two years of study, students develop a strong foundation in geology through the core curriculum. This foundation is strengthened by course work in chemistry, physics, mathematics and computer science, and the humanities and social sciences. Students begin to take more specialized courses pertaining to their particular area of interest in their junior and senior years. The numerous elective courses offered by the Geology and Geophysics program, as well as courses outside the department, provide our majors with the flexibility to custom design an emphasis area of their choice, focusing in on aspects of Earth Science that are of most interest to them. In this way, our majors develop a broad understanding of the fundamentals of our diverse discipline while preserving this important opportunity to develop their own passion within geology and geophysics.

The Earth Sciences have been an integral part of Missouri S&T since its founding in 1870. Our student organizations in geology and geophysics are among the oldest in the nation and include the Dake Society, American Association of Petroleum Geologists, Society of Exploration Geophysicists, and the Sigma Gamma Epsilon (Eta Chapter) honor society. These organizations provide numerous opportunities for social and scientific interaction among students, professionals, and faculty.

The Geology and Geophysics program is located in McNutt Hall and it is especially well endowed with modern, state-of-the-art equipment for teaching and research in most areas of the Earth Sciences. The availability of such equipment provides our students with an excellent laboratory and field educational experience. In addition, cooperative studies with the Missouri Geological Survey and the U.S. Geological Survey provide students with opportunities for part time employment and on-the-job experience while they pursue their degree.

Geological Scientists enjoy their work. As a professional geologist or geophysicist you may explore for oil, gas, and coal to provide for our nation’s energy needs. You may search for minerals critical to industry. You may become involved in minimizing environmental hazards. In all cases, you will have the opportunity to work outdoors, in the lab, and with cutting edge technology.

Mission Statement

1. Provide the highest quality education to students leading to the B.S., M.S., and Ph.D. degrees in geology and geophysics. Prepare students for professional careers in five emphasis areas: geology, geochemistry, geophysics, groundwater and environmental geochemistry, and petroleum geology. Provide service courses for students in related programs (including geological engineering, mining engineering, petroleum engineering, metallurgical engineering, ceramic engineering, civil engineering, physics, biology and chemistry) as well as many of the programs in the humanities and liberal arts.

2. The program has both the opportunity and the mission to engage in basic and applied research that contributes to the solution of problems related to mankind and the environment. To meet this goal, the program collaborates on projects that transcend the traditional boundaries between scientific and engineering disciplines. Faculty and students commonly conduct research with geologists in the Rolla offices of the United States Geological Survey and the Missouri Geological Survey, with scientists and engineers from various disciplines at Missouri S&T and other
campuses of the University of Missouri system, as well as with other Earth Scientists in universities within the United States and abroad (e.g. Ireland, Republic of South Africa).

3. Provide graduates to the mining, petroleum, groundwater, and environmental industries; to the Missouri Geological Survey, the U.S. Geological Survey and other educational research institutions.

4. Provide professional service in the fields of geology, geophysics, geochemistry, groundwater and environmental geology. Such service includes the identification of minerals, rocks, and fossils that are sent to the department, the assessment of geologic hazards, contributing to the development and operation of professional organizations, and when called upon, assisting local and state agencies with the evaluation of geological problems.

5. Provide a strong foundation in fundamental principles of geology and geophysics for undergraduate students who desire to pursue opportunities for advanced research in the top graduate schools across the United States. Our graduates have continued their education in prestigious programs, including Arizona State, California-Berkeley, Colorado, Colorado School of Mines, Delaware, MIT, Michigan, Michigan State, Oklahoma, Stanford, Texas, Virginia Tech, Washington, University of Missouri-Columbia and the Missouri University of Science and Technology.

Minor Curriculum in Geology

The minor will consist of 18 hours of Geology related course work and must include GEOLOGY 125 and one of GEOLOGY 51 or GEO ENG 50 or GEOLOGY 52. Six additional hours of course work must come from any combination of 100, 200, 300 geology courses. The remaining 6 hours of course work can be from any combination of geology related courses approved by the Geology and Geophysics program. Approved Geology related course work:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 110</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 111</td>
<td>Principles of Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 235</td>
<td>Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 251</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENV ENG 263</td>
<td>Chemical Fundamentals Of Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENV ENG 361</td>
<td>Remediation Of Contaminated Groundwater And Soil</td>
<td>3</td>
</tr>
<tr>
<td>ENV ENG 364</td>
<td>Environmental Systems Modeling</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 275</td>
<td>Geomorphology And Terrain Analysis</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 315</td>
<td>Geostatistical Methods In Engineering and Geology</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 221</td>
<td>Mining Exploration</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 232</td>
<td>Statics And Mechanics Of Rock Materials</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 312</td>
<td>Ore Reserve Analysis And Geostatistics</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 331</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 232</td>
<td>Well Logging I</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 333</td>
<td>Reservoir Characterization</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 366</td>
<td>Mechanical Earth Modeling</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Science

Geology and Geophysics

A minimum of 129 credit hours is required for a Bachelor of Science degree in Geology and Geophysics and an average of at least two grade points per credit hour must be obtained.

The Geology and Geophysics curriculum requires nine semester hours in humanities, exclusive of a foreign language, and must include ENGLISH 60. A minimum of six semester hours is required in social sciences and must include either ECON 121 or ECON 122 and either HISTORY 112, HISTORY 175, HISTORY 176 or POL SCI 90. Six semester hours of course work are available to the student to choose course work that best fits their individual needs for completion of the degree. Specific requirements for the bachelor degree program are outlined in the sample program below.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4</td>
<td>3</td>
<td>MATH 8</td>
<td>5</td>
</tr>
<tr>
<td>MATH 6</td>
<td>2</td>
<td>CHEM 1</td>
<td>4</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>CHEM 2</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
<td>GEOLOGY 52</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 51</td>
<td>3</td>
<td>GEOLOGY 54</td>
<td>1</td>
</tr>
<tr>
<td>GEOLOGY 53</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Free Elective</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>First Semester</th>
<th>Second Semester</th>
<th>Summer Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 21</td>
<td>5</td>
<td>ENGLISH 60</td>
<td>3</td>
<td>GEOLOGY 373</td>
</tr>
<tr>
<td>GEOPHYS 270</td>
<td>3</td>
<td>ECON 121 or 122</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOLOGY 113</td>
<td>4</td>
<td>GEOLOGY 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOLOGY 338</td>
<td>3</td>
<td>GEOLOGY 275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOLOGY 338, 5</td>
<td>3</td>
<td>GEOLOGY 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOLOGY 338</td>
<td>3</td>
<td>GEOLOGY 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN ENG 221</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN ENG 232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN ENG 312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN ENG 331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET ENG 232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET ENG 333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET ENG 366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 23</td>
<td>4</td>
<td>PHYSICS 24</td>
<td>4</td>
<td>GEOLOGY 374</td>
</tr>
<tr>
<td>STAT 213, or 2</td>
<td>3</td>
<td>GEOLOGY 223 & GEOLOGY 224</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOLOGY 338</td>
<td>4</td>
<td>Elective (Geo & Geop)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HISTORY 112, 3</td>
<td>3</td>
<td>GEOLOGY 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 175, or 176, or POL SCI 90</td>
<td>3</td>
<td>GEOLOGY 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 176, or POL SCI 90</td>
<td>3</td>
<td>GEOLOGY 34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geochemistry Emphasis Area

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY 234</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 275</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 294</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 376</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>12</td>
</tr>
</tbody>
</table>

In addition, to complete degree requirements with an emphasis area in Groundwater and Environmental Geology students must complete 4 courses (12 hours minimum) to be selected from an approved list and with guidance from student’s advisor.

General Geology Emphasis Area

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY 227</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 275</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 234</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 294</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 340</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

In addition to complete degree requirements with an emphasis area in General Geology students must complete 4 courses (12 hrs. minimum) to be selected from an approved list and with guidance from student’s advisor.

Geophysics Emphasis Area

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 22</td>
<td>4</td>
</tr>
<tr>
<td>GEOPHYS 286</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 320</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 377</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>13</td>
</tr>
</tbody>
</table>

Select 12 hours from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 204</td>
<td>3</td>
</tr>
<tr>
<td>MATH 208</td>
<td>3</td>
</tr>
<tr>
<td>MATH 325</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 336</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 340</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 382</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 385</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>13</td>
</tr>
</tbody>
</table>

Groundwater and Environmental Geochemistry Emphasis Area

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY 275</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 375</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 376</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 335</td>
<td>3</td>
</tr>
<tr>
<td>or GEO ENG 331 Subsurface Hydrology</td>
<td></td>
</tr>
</tbody>
</table>

Core Curriculum

Taken by all students in Geology & Geophysics.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY 51 Physical And Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 53 Physical and Environmental Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>GEOLOGY 52 Evolution Of The Earth</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 54 Evolution of the Earth Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>GEOLOGY 113 Mineralogy And Crystallography</td>
<td>4</td>
</tr>
<tr>
<td>GEOLOGY 130 Igneous And Metamorphic Petrology</td>
<td>4</td>
</tr>
<tr>
<td>GEOLOGY 220 Structural Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOLOGY 223 Stratigraphy And Sedimentation</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 224 Stratigraphy Lab</td>
<td>1</td>
</tr>
<tr>
<td>GEOPHYS 270 Introduction to Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 275 Introduction To Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 310 Seminar</td>
<td>1</td>
</tr>
<tr>
<td>GEOLOGY 344 Remote Sensing Technology</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 373 Field Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 374 Advanced Field Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 381 Global Tectonics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>43</td>
</tr>
</tbody>
</table>
In addition, to complete degree requirements with an emphasis area in Groundwater and Environmental Geology students must complete 4 courses (6 hrs. minimum) to be selected from an approval list and with guidance from student’s advisor.

Petroleum Geology Emphasis Area

The following courses are required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY 227</td>
<td>Systematic Paleontology</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 275</td>
<td>Introduction To Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 324</td>
<td>Advanced Stratigraphy And Basin Evolution</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 338</td>
<td>Computer Mapping In Geology</td>
<td>2</td>
</tr>
<tr>
<td>GEOLOGY 340</td>
<td>Petroleum Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY 385</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 232</td>
<td>Well Logging I</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 20

In addition, to complete degree requirements with an emphasis area in Petroleum Geology students must complete two courses (6 hours minimum) to be selected from an approval list and with guidance from student’s advisor.

Global Studies

Global Studies Minor

Global Studies is a multi-disciplinary undergraduate minor program designed to aid in the preparation of Missouri S&T students to be successful in an increasingly global workforce. Students who complete the Global Studies minor will have an increased awareness of the society, culture, technical issues, and/or language of at least one country other than the United States prior to the completion of their Missouri S&T undergraduate experience. Any Missouri S&T student enrolled in an undergraduate degree program is eligible for the Global Studies minor program, which consists of 12 credit hours from an approved list of classes and at least 2 weeks (14 days) of experience in a foreign country acquired during an approved Missouri S&T class or research project, Missouri S&T extracurricular activity, and/or Missouri S&T study abroad activity.

Courses must be selected from the list of approved courses maintained by the Global Studies Advisory Committee. At least one three hour course must focus on the society, culture, and/or language of a foreign country. Approved courses that meet this criterion are from the Arts, Languages, Humanities, or Social Sciences. The other nine hours comes from approved courses that include at least 25 percent international studies content. “International studies content” is defined as course content addressing countries or regions outside of the United States. “International studies content” does not include content that is universal rather that which addresses specific countries or regions outside of the United States. To satisfy the multi-disciplinary aspect of the minor, no more than six hours may be taken from a single Missouri S&T degree program.

The minor requires personal experience in a foreign country. Students will participate in one or more approved Missouri S&T-sponsored trips to a foreign country for no less than 14 days total. Examples of approved trips include, but are not limited to, those that may be a part of Missouri S&T classes and/or an OURE project-related trip, an extracurricular activity including Missouri S&T’s Engineers Without Borders field trips, and/or Missouri S&T sanctioned study abroad. The list of approved activities is maintained by the Global Studies Advisory Committee.

The curricula criteria, including course lists and the list of approved activities for foreign country experience, are maintained by the Global Studies Advisory Committee and are available on the Quick Links section of the Missouri S&T Undergraduate Studies website at http://ugs.mst.edu.

History

History is a response to the eternal desire of human beings to know more about themselves. For this reason, history students experience a variety of courses, which emphasize the importance of people, their individual choices, their values and their ways of seeing themselves and their world.
History majors study man’s accumulated heritage from the fossil past to the nuclear present.

This varied course of study includes fundamental survey classes, specific chronological or topical investigations, and special topic seminars. At Missouri S&T individuals who hold Ph.D. degrees and are publishing scholars teach virtually all of your history and political science courses. The hallmark of the program is individual attention. In upper-level courses, efforts are made to keep class sizes small enough to enable discussion, which in turn provides for a greater breadth of knowledge and depth of understanding, and for personal student-professor associations.

As a history major you learn to analyze information, communicate effectively, and engage in research. Such skills are useful for careers in government service, business, industry, and social service institutions, as well as being the fundamental requisites for graduate and professional studies beyond the undergraduate degree.

If you plan to become a secondary school history teacher, you can fulfill the general requirements for the Bachelor of Arts degree, the requirements for the history major, and the requirements for Missouri certification in the teaching of history. See Education for further information. Contact the Missouri S&T history department for advising.

A minor in history is an option for non-majors who wish to complement their major field of study. This five-course option allows you to gain a broader perspective on human events and to develop your abilities in historical analysis.

In short, when you study history you not only learn important information and skills but you also are challenged to think, to communicate, and to cope with complexity.

History Minor Curriculum

The History/Political Science Department offers a minor in history. To qualify, all students must take 15 hours of course work in history to include:

- HISTORY 111 Early Western Civilization
 - 3 credit hours
- or HISTORY 112 Modern Western Civilization
 - 3 credit hours
- HISTORY 175 American History To 1877
 - 3 credit hours
- or HISTORY 176 American History Since 1877
 - 3 credit hours
- An additional 9 hours of HISTORY 200 or 300 level courses.
 - 9 credit hours

Science, Technology and Humanity Minor

The Science, Technology and Humanity (STH) minor is designed for students who want to explore the relationship between history, political science, and science and technology. The minor is particularly useful for technologically oriented students, because it provides insight into humanities and social science disciplines. It also shows how these disciplines interact with science and technology, thereby broadening their horizon of thought and action and preparing them for an increasingly technologically oriented future. To minor in STH the student must complete one of the following history survey courses: HISTORY 111 or HISTORY 112 or HISTORY 175 or HISTORY 176; and POL SCI 90.

The student then must take either HISTORY 270 or HISTORY 275. After completing the required six hours, the student will select nine additional hours from the list below.

15 credit hours total.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 111</td>
<td>Early Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112</td>
<td>Modern Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 175</td>
<td>American History To 1877</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 176</td>
<td>American History Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>American Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must take one of the following:

- HISTORY 270 History of Technology
 - 3 credit hours
- HISTORY 275 History Of Science
 - 3 credit hours

Student must take three of the following as approved by minor advisor:

- BIO SCI 150 Biotechnology in Film
 - 3 credit hours
- BIO SCI 251 Ecology
 - 3 credit hours
- ECON 355 Energy Economics
 - 3 credit hours
- ECON 375 Labor Economics
 - 3 credit hours
- ENG MGT/PSYCH 311 Human Factors
 - 3 credit hours
- ENGLISH 225 Science Fiction And Fantasy Literature
 - 3 credit hours
- ENV ENG 360 Environmental Law And Regulations
 - 3 credit hours
- GEO ENG 75 Geological Engineering in Popular Media
 - 3 credit hours
- HISTORY 270 History of Technology
 - 3 credit hours
- HISTORY 271 Twentieth Century Technology And Society
 - 3 credit hours
- HISTORY 275 History Of Science
 - 3 credit hours
- HISTORY 280 The American Military Experience
 - 3 credit hours
- HISTORY 361 American Environmental History
 - 3 credit hours
- HISTORY 375 Architecture, Technology and Society; 1750 to Present
 - 3 credit hours
- IS&T 351 Technological Innovation Management and Leadership
 - 3 credit hours
- IS&T 385 Human Computer Interaction
 - 3 credit hours
- PHILOS 223 Bioethics
 - 3 credit hours
- PHILOS 225 Engineering Ethics
 - 3 credit hours
- PHILOS 320 Minds And Machines
 - 3 credit hours
- PHILOS 345 Philosophy Of Science
 - 3 credit hours
- PHILOS 350 Environmental Ethics
 - 3 credit hours
- POL SCI 315 Principles Of Public Policy
 - 3 credit hours
- PSYCH 307 Industrial Psychology
 - 3 credit hours
- PSYCH 311 Human Factors
 - 3 credit hours
- PSYCH 314 Human-Computer Interaction
 - 3 credit hours
- TCH COM 361 History of Technical Communication
 - 3 credit hours

Bachelor of Arts History

(In addition to general requirements for Bachelor of Arts Degree.)

- HISTORY 10 Introduction to History
 - 1 credit hour
- HISTORY 175 American History To 1877
 - 3 credit hours
- HISTORY 176 American History Since 1877
 - 3 credit hours
- HISTORY 299 Historiography
 - 3 credit hours
- 2 American History Electives
 - 6 credit hours
- 2 European History Electives
 - 6 credit hours
Secondary Education Emphasis Area

You may earn a B.A. Degree in History from Missouri S&T and certification to teach in the schools of Missouri. This program may be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Rolla campus.

Students interested in the Certification Program should consult with the advisor for History/Education majors in the Department of History and Political Science for requirements particular to those interested in this degree. Students should process a change of major form to designate History with an emphasis area of Secondary Education.

History students must complete 124 credit hours, including the requirements of the Teacher Education Program listed in this catalog. A minimum grade of “C” is required by the department in all history and political science courses counted towards this degree. Students must take the following courses:

Communication Skills: 9 hours
- ENGLISH 20 Exposition And Argumentation 3
- ENGLISH 60 Writing And Research 3
- SP&M S 85 Principles Of Speech 3

Humanities: 12 hours with at least one course from the first three areas
- Art or Music or Theater Appreciation
- Philosophy
- Literature
- Foreign Language
- ETYM 306 Introduction To Etymology 3

Social Sciences: 15 hours
- POL SCI 90 American Government 3
- POL SCI 237 Contemporary Political Thought 3
- or POL SCI 290 American Political Parties
- or POL SCI 315 Principles Of Public Policy
- or POL SCI 316 The American Presidency
- ECON 121 Principles Of Microeconomics 3
- or ECON 122 Principles Of Macroeconomics
- PSYCH 50 General Psychology 3
- HISTORY 110 World Regional Geography 3

Natural Sciences: 7 hours = 2 courses and 1 lab
- One course in Physics or Chemistry or Geology and one course in Biology
- One laboratory in any of the above science courses

Mathematics: 3 hours
- MATH 2 College Algebra (or higher) 3-5
- or MATH 3 Fundamentals Of Algebra
- or MATH 4 College Algebra

Clinical Experience: 16 hours
- EDUC 104 Teacher Field Experience 2
- EDUC 164 Aiding Elementary, Middle And Secondary Schools 2
- EDUC 299 Student Teaching 12

Professional Requirements: 26 hours
- EDUC 40 Perspectives In Education 2
- EDUC 174 School Organization & Adm For Elementary & Secondary Teachers 2
- EDUC 216 Teaching Reading In Content Area 3
- EDUC 251 Historical Foundation Of American Education 3
- EDUC 280 Teaching Methods And Skills In The Content Areas 6
- EDUC 298 Student Teaching Seminar 1
- PSYCH 155 Educational Psychology 3
- PSYCH 208 Psychological & Educational Development Of The Adolescent 3
- PSYCH 354 Psychology Of The Exceptional Child 3

History Requirements: 37 hours
- HISTORY 10 Introduction to History 1
- HISTORY 111 Early Western Civilization 3
- HISTORY 112 Modern Western Civilization 3
- HISTORY 175 American History To 1877 3
- HISTORY 176 American History Since 1877 3
- HISTORY 299 Historiography 3
- HISTORY 310 Seminar 3
- or HISTORY 397 Senior Thesis
- American History Electives 6
- European History Electives 6
- History Electives 6

Diana L Ahmad, Associate Professor
PHD University of Missouri-Columbia

Michael W. Bruening, Associate Professor
PHD University of Arizona

Petra DeWitt, Assistant Teaching Professor
PHD University of Missouri-Columbia

Larry Dale Gragg, Curators Teaching Professor
PHD University of Missouri-Columbia

Lucinda Joy Herrick, Lecturer
MA Portland State University (OR)

Patrick J Huber, Professor
PHD Univ of North Carolina

John C McManus, Professor
PHD University of Tennessee

Shannon Lee Fogg Menand, Associate Professor
PHD University of Iowa
Information Science and Technology

Information Science and Technology offers a bachelors degree focused on today’s cutting-edge information technology. Students in Information Science and Technology study the latest technology in areas including networking, database management systems, telecommunications, enterprise resource planning, human-computer interaction, E-commerce, and integrated business systems. Professionals in this field administer, maintain, and support computer systems and networks.

Today’s business environments have a critical need for professionals who have an understanding of information technologies based on a broad knowledge of management practices, economics, psychology, and the humanities. These individuals are needed to implement technology to support business processes, managerial decision-making, and organizational communication.

As an information science and technology major, you will take courses that are rigorous and oriented toward building the foundation necessary for lifetime learning. Studying at Missouri’s technological university, you will benefit from the world-class computer environment and your association with excellent students from around the country and the world. Students in the program are strongly encouraged to do summer internships or co-ops with companies before they graduate. There are many rich opportunities and students benefit greatly in terms of their education and the edge they have seeking full-time employment once they graduate.

Minors

You must see the department advisor and complete a minor application before beginning your minor. Requirements change over time. You will be held to the requirements in force at the time you apply for the minor. Postponing your application for the minor may result in you having to take additional courses to complete the minor. At least six (6) hours of the minor course work must be taken in residence at Missouri S&T.

Minor in Digital Supply Chain Management

The Minor in Digital Supply Chain Management requires 15 hours of course work as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 360</td>
<td>Business Operations</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 253</td>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>ERP 347</td>
<td>Supply Chain Management Systems in an ERP</td>
<td>3</td>
</tr>
<tr>
<td>ERP 342</td>
<td>Customer Relationship Management in ERP</td>
<td>3</td>
</tr>
<tr>
<td>or MECH ENG/ AERO ENG 360</td>
<td>Probabilistic Engineering Design</td>
<td></td>
</tr>
</tbody>
</table>

Two of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP 345</td>
<td>Use of Business Intelligence</td>
<td></td>
</tr>
<tr>
<td>ERP 346</td>
<td>Enterprise Resource Planning Systems Design</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 308</td>
<td>Rapid Product Design And Optimization</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 356</td>
<td>Design For Manufacture</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 357/ENG MGT 354</td>
<td>Integrated Product And Process Design</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 363</td>
<td>Principles And Practice Of Computer Aided Design</td>
<td></td>
</tr>
</tbody>
</table>

* Non Business & Information Technology students must select ERP 346 as one of the two electives.

Minor in Enterprise Resource Planning (ERP)

A minor in ERP requires the following 15 hours of course work:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 120</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ERP 246</td>
<td>Introduction to Enterprise Resource Planning</td>
<td>3</td>
</tr>
<tr>
<td>ERP 346</td>
<td>Enterprise Resource Planning Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>And 6 hours of electives from any other ERP-designated courses at the 300-level</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Minor in Information Science and Technology

A minor in Information Science and Technology requires 15 hours of courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 50</td>
<td>Introduction to Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 51</td>
<td>Implementing Information Systems: User Perspective</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 151</td>
<td>Implementing Information Systems: Data Perspective</td>
<td>3</td>
</tr>
<tr>
<td>ERP 246</td>
<td>Introduction to Enterprise Resource Planning</td>
<td>3</td>
</tr>
<tr>
<td>Any IS&T or ERP course at the 200 or 300 level.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Minor in Mobile Business and Technology

A minor in Mobile Business and Technology requires 15 hours of courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 241</td>
<td>Electronic and Mobile Commerce</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 335</td>
<td>Fundamentals of Mobile Technology for Business</td>
<td>3</td>
</tr>
<tr>
<td>ERP 341</td>
<td>Enterprise Portal and Mobile Application Development</td>
<td>3</td>
</tr>
<tr>
<td>6 hours of electives chosen from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS&T 233</td>
<td>Introduction To Telecommunications Networks</td>
<td></td>
</tr>
<tr>
<td>IS&T 352</td>
<td>Advanced Web Development</td>
<td></td>
</tr>
<tr>
<td>IS&T 386</td>
<td>Human-Computer Interaction Prototyping</td>
<td></td>
</tr>
<tr>
<td>ERP 342</td>
<td>Customer Relationship Management in ERP</td>
<td></td>
</tr>
<tr>
<td>ERP 347</td>
<td>Supply Chain Management Systems in an ERP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 233</td>
<td>Introduction To Telecommunications Networks</td>
<td></td>
</tr>
<tr>
<td>IS&T 352</td>
<td>Advanced Web Development</td>
<td></td>
</tr>
<tr>
<td>IS&T 386</td>
<td>Human-Computer Interaction Prototyping</td>
<td></td>
</tr>
<tr>
<td>ERP 342</td>
<td>Customer Relationship Management in ERP</td>
<td></td>
</tr>
<tr>
<td>ERP 347</td>
<td>Supply Chain Management Systems in an ERP</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science
Information Science and Technology

In Information Science and Technology, the Bachelor of Science degree consists of 120 credit hours. First, all undergraduate students in Information Science and Technology are required to complete a prescribed General Education Requirements Core that corresponds to the recommendations of the Missouri State Coordinating Board for Higher Education and consists of 54 credit hours in the areas of Natural Systems, Human Institutions, Quantitative Skills, and Communication Skills. In addition, all undergraduate students are required to complete a 27 credit hour core consisting of courses in Information Technology, Management, and Entrepreneurship. A minimum grade of "C" is required in these courses. Finally, the degree includes 12 credit hours of free electives.

The remaining 27 credit hours of the required 120 credit hours for the Information Science and Technology degree are divided into a prescribed 18 credit hour degree core and 9 credit hours of specific degree electives. A minimum grade of "C" is required in these courses. The Information Science and Technology Degree requires courses in Database Management, Systems Analysis, Web and Digital Media Development, Computing Internals, Networks and Communications, and E-Commerce. The electives for this degree consist of advanced coursework in the areas introduced by the required courses.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 10^1</td>
<td>1</td>
<td>PSYCH 50</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>MATH 12</td>
<td>4</td>
</tr>
<tr>
<td>MATH 4^5</td>
<td>3</td>
<td>IS&T 51</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective^2</td>
<td>3</td>
<td>BUS 110</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 50</td>
<td>3</td>
<td>BUS 120</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory w/Science Elective</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 122</td>
<td>3</td>
<td>Fine Art, Social Science, or Humanities Elective^3</td>
<td>3</td>
</tr>
<tr>
<td>SP&M S 85</td>
<td>3</td>
<td>IS&T 231</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 151</td>
<td>3</td>
<td>Science Elective^2</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 65 or TCH COM 65</td>
<td>3</td>
<td>STAT 211</td>
<td>3</td>
</tr>
<tr>
<td>ERP 246</td>
<td>3</td>
<td>ECON 121</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 286</td>
<td>3</td>
<td>IS&T Elective</td>
<td>3</td>
</tr>
<tr>
<td>FINANCE 250</td>
<td>3</td>
<td>IS&T 243</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 223</td>
<td>3</td>
<td>MKT 311</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 233</td>
<td>3</td>
<td>IS&T 241</td>
<td>3</td>
</tr>
<tr>
<td>IS&T Elective</td>
<td>3</td>
<td>ENGLISH 260 or TCH COM 260</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>6</td>
<td>BUS 396</td>
<td>3</td>
</tr>
<tr>
<td>Fine Art, Social Science, or Humanities Elective^3</td>
<td>3</td>
<td>POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td>Speech or Tech Com Elective</td>
<td>3</td>
<td>IS&T Elective or Emphasis Area^4</td>
<td>3</td>
</tr>
<tr>
<td>History Elective</td>
<td>3</td>
<td>Free Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits: 120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A grade of “C” or better is required in the following courses for graduation; BUS 10, BUS 396, IS&T 50, IS&T 51, IS&T 151, ERP 246, BUS 110, BUS 120, MKT 311, FINANCE 250, ECON 121, ECON 122, IS&T 286, IS&T 223, IS&T 231, IS&T 23, IS&T 241, and IS&T 243.

1 Writing Intensive Course
2 Any course in the following areas: Biology, Chemistry, Geology, Geological Engineering, Physics.
3 Any course in the following areas not used for other degree requirements: Art, Economics, English, Foreign Language, History, Literature, Music, Philosophy, Political Science, Psychology, Sociology, Theater.
4 A grade of “C” or better is required in IS&T Electives and Emphasis Area courses for graduation. Students choosing the Human-Computer Interaction Emphasis Area must take IS&T 385, IS&T 386, and IS&T 387. Students choosing the Enterprise Resource Planning Emphasis Area must take 9 hours of ERP-designated courses at the 300-level. Students who choose no Emphasis Area must take three courses from: IS&T 300-level, COMP SCI 317, COMP SCI 319.
5 MATH 2 may be substituted for MATH 4.

Emphasis Areas

Two Emphasis Areas may be taken to specialize if the student wishes to do so. The first, Human-Computer Interaction, consists of three courses:

IS&T 385	Human Computer Interaction	3
IS&T 386	Human-Computer Interaction Prototyping	3
IS&T 387	Human-Computer Interaction Evaluation	3

The second Emphasis Area, Enterprise Resource Planning, consists of any 9 hours of ERP-designated courses at the 300-level.

Carla Pauline Bates, Adjunct Instructor
MASTER Missouri S&T

Matthew C Becker, Adjunct Instructor
MASTER University of Missouri - Rolla

Darryl Lee Brinkmann, Adjunct Instructor
MA Sangamon State University

Yu Hsien Chiu, Assistant Teaching Professor
MASTER University of Wisconsin-Milwaukee

Craig C Claybaugh, Assistant Professor
PHD University of Wisconsin-Milwaukee

Scott Dalton, Adjunct Instructor
MASTER University of Missouri - Rolla
Arlan Dekock, Professor Emeritus
PHD University of South Dakota

Cassandra Carlene Elrod, Assistant Professor
PHD University of Missouri-Rolla

Li-Li Eng, Assistant Professor
PHD University of Michigan Ann Arbor

Barry B Flachsbart, Professor
PHD Stanford University

Ian Franco, Adjunct Instructor
MASTER Missouri Science & Technology

Nobuyuki Fukawa, Assistant Professor
PHD Louisiana State University

Richard H Hall, Professor
PHD Texas Christian University

Ralph C Hanke, Assistant Professor
PHD Pennsylvania State University

Michael Gene Hilgers, Professor
PHD Brown University

Shantha Jayalal, Adjunct Instructor
PHD University of Keele

Bih-Ru Lea, Associate Professor
PHD Clemson University

Ying Chou Lin, Assistant Professor
PHD Old Dominion University

Nicholas Scott Lockwood, Assistant Professor
PHD Indiana University Bloomington

Chris J Merz, Adjunct Assistant Professor
PHD University of California-Irvine

Fui Hoon Nah, Professor
PHD University of British Columbia

Eun Soo Park, Associate Professor
PHD Northwestern University

Hong Sheng, Associate Professor
PHD University of Nebraska-Lincoln

Keng Leng Siau, Professor
PHD University of British Columbia

James K Tharp, Adjunct Instructor
MBA Webster University

Hesiri Dhammika Weerasinghe, Assistant Instructor
PHD Oakland University

Thareendhra Keerthi Wijayasiriwardhane, Adjunct Instructor
PHD La Trobe University, Australia

Saman Yapa, Adjunct Instructor
PHD Sheffield Hallam University

Wen-Bin Yu, Associate Professor
PHD University of Louisville

Interdisciplinary Engineering

Latin

Latin Courses
101 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

Marketing

Nobuyuki Fukawa, Assistant Professor
PHD Louisiana State University

Sarah Margaret Stanley, Assistant Professor
PHD Saint Louis University

Materials, Science, and Engineering

Mohsen Asle Zaeem, Assistant Professor
PHD Washington State University

Richard K Brow, Curators Professor
PHD Pennsylvania State University

Fatih Dogan, Professor
PHD Technical University of Berlin

William G Fahrenholtz, Curators Professor
PHD University Of New Mexico Main

Gregory E Hilmas, Curators Professor
PHD Univ. of Michigan - Ann Arbor

Wayne Huebner, Professor
PHD University Of Missouri-Rolla

F Scott Miller, Teaching Professor
PHD University of Missouri-Rolla

Michael Scott Moats, Associate Professor
PHD University of Arizona

Joseph W Newkirk, Associate Professor
PHD University Of Virginia Main Ca

Matthew J Okeefe, Professor
PHD University Of Illinois Urbana

Mohamed N Rahaman, Professor
PHD University of Sheffield (UK)

Von L Richards, Professor
PHD University of Michigan-Ann Arbor

Jeffrey D Smith, Associate Professor
PHD University of Missouri - Rolla
Bioinformatics Minor

Students majoring in Mathematics are eligible to pursue a minor in bioinformatics. See the description of the bioinformatics minor.

Mathematical Sciences

Mathematics

Emphasis areas at the Bachelor of Science level include actuarial science, algebra/discrete mathematics, applied analysis, computational mathematics, secondary education, and statistics. Emphasis areas at the doctor of philosophy level of mathematics include analysis, differential and functional equations, and statistics.

Mathematics is a universal language. It is one which scientists use to express ideas and relationships concisely. It is a tool, which they use to investigate problems.

As a mathematician, you will set up and analyze models of physical situations in order to deduce new information and to predict results.

Most students pursue their study of mathematics through a differential equations course and then elect courses in specialized areas such as algebra, analysis, geometry, topology, and statistics. Supporting study in technical electives is required from other departments. Such study includes analytical mechanics, communication theory, control theory, and others.

Your classes, for the most part, will be held in the Rolla Building. You will be provided data processing and computational services to solve complex problems through the computer facilities. (See computer science description.)

You will find that mathematics contributes to the growth in knowledge in most areas. Your program at Missouri S&T will emphasize breadth in mathematics and depth in an associated area of application.

Applied Math Minor

For details on this minor, please contact the Mathematics & Statistics Department.

Math Minor Curriculum

The minor will consist of at least 12 hours of mathematics/statistics courses at the 200 or higher level, 9 hours of which must be completed in residence at Missouri S&T and 3 hours of which must be at the 300 or higher level, and passing all of them with at least a grade of "C". Further, MATH 204 and MATH 229 cannot both be counted, MATH 229 and MATH 208 cannot both be counted, and at most one of STAT 211, STAT 213, STAT 215 and STAT 217 may be counted. Finally, the specific choice of courses is subject to the approval of the minor advisor.

* COMP SCI 228 Introduction To Numerical Methods may be substituted for one of these courses.

Bioinformatics Minor

Students majoring in Mathematics are eligible to pursue a minor in bioinformatics. See the description of the bioinformatics minor.

Bachelor of Science

Applied Mathematics

A minimum of 132 credit hours is required for a Bachelor of Science degree in Applied Mathematics. A minimum grade of "C" is required by the department in each course counted toward the Math/Stat requirement for the B.S. in Applied Mathematics. Moreover, the department requires that an average of at least two grade points per credit hour must be obtained for all courses taken within the department. These requirements for the B.S. degree are in addition to credit received for algebra, trigonometry, and basic ROTC.

The Applied Mathematics curriculum requires fifteen semester hours of technical electives in addition to basic courses in chemistry or biology, physics, computer science, and economics. Two semesters of a foreign language, ENGLISH 60 or ENGLISH 160, and either HISTORY 175, HISTORY 176, HISTORY 112, or POL SCI 90 are also required. Specific requirements for the bachelor's degree are outlined in the sample program below.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1</td>
<td>1</td>
<td>MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>MATH 81</td>
<td>5</td>
<td>COMP SCI 53</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4</td>
<td>1</td>
<td>English 20</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>Foreign Language Requirement</td>
<td>4</td>
</tr>
<tr>
<td>Campus History Requirement</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic ROTC (if elected)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>MATH 204</td>
<td>3</td>
</tr>
<tr>
<td>MATH 208</td>
<td>3</td>
<td>MATH 209</td>
<td>3</td>
</tr>
<tr>
<td>Statistics Requirement</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>4</td>
<td>PHYSICS 25</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td>1</td>
<td>PHYSICS 26</td>
<td>1</td>
</tr>
<tr>
<td>ENGLISH 60</td>
<td>3</td>
<td>COMP SCI Requirement</td>
<td>7,8</td>
</tr>
<tr>
<td>Basic ROTC (if elected)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 309</td>
<td>3</td>
<td>MATH 311</td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>Electives-Math or Stat</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives-Math or Stat</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives-Technical</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives-Technical</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Degree Programs

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 361,1,11</td>
<td>1</td>
<td>MATH 381,1,11</td>
<td>1</td>
</tr>
<tr>
<td>MATH 371,1,11</td>
<td>1</td>
<td>Electives-Math or Stat 1,7,9</td>
<td>3</td>
</tr>
<tr>
<td>Electives-Math or Stat 1,7,9</td>
<td>3</td>
<td>Electives-Technical 10</td>
<td>3</td>
</tr>
<tr>
<td>Electives-Technical 10</td>
<td>6</td>
<td>Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits: 132

1 A minimum grade of “C” is required by the department in each course counted toward the Math/Stat requirement for the B.S. in Applied Mathematics. Moreover, the department requires that an average of at least two grade points per credit hour must be obtained for all courses taken within the department.

2 May be met by HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90.

3 A modern language approved by the advisor (six hours credit is acceptable from transfer students.) Requirement may be met by examination or, with approval of the department, by three years of a foreign language in high school.

4 Basic ROTC may be elected in the freshman and sophomore years, but is not creditable toward a degree. Up to six credit hours of advanced ROTC may be credited as free electives towards a degree.

5 May be met by CHEM 1 and CHEM 2 or by BIO SCI 110 and BIO SCI 112.

6 May be met by STAT 215, STAT 217, or STAT 343.

7 No course may be used to satisfy more than one degree requirement.

8 May be met by COMP SCI 153, COMP SCI 128 or COMP SCI 228.

9 The student must choose two from the following five groups and then complete six hours in each of the chosen groups
 1. MATH 305, MATH 306, MATH 307, MATH 308
 2. MATH 305, MATH 315, MATH 330, MATH 351, MATH 385
 3. MATH 302, MATH 303, MATH 322, MATH 325, MATH 351, MATH 383
 4. STAT 314, STAT 343, STAT 344, STAT 346, STAT 353, STAT 355, STAT 356
 5. COMP SCI 228, COMP SCI 328, COMP SCI 329, STAT 314, STAT 346, STAT 355, STAT 356, MATH 303, MATH 337.

10 Courses in chemistry, physics, mechanics, geology, computer science, economics or engineering approved by advisor.

11 The three courses MATH 361, MATH 371, and MATH 381 constitute the Capstone experience for mathematics majors.

Emphasis Areas at the Bachelor of Science Level

Actuarial Science Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 343</td>
<td>Probability And Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 344</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121</td>
<td>Principles Of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 122</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 222</td>
<td>Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 337</td>
<td>Financial Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

And six hours from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 314</td>
<td>Applied Time Series Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 346</td>
<td>Regression Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 353</td>
<td>Statistical Data Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 355</td>
<td>Statistical Models in Actuarial Science</td>
<td></td>
</tr>
<tr>
<td>STAT 356</td>
<td>Statistical Models for Life Contingencies</td>
<td></td>
</tr>
</tbody>
</table>

In addition, the student must pass the first Actuarial Science Exam.

Algebra/Discrete Mathematics Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 305</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 306</td>
<td>Modern Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 405</td>
<td>Finite Fields And Applications</td>
<td></td>
</tr>
<tr>
<td>MATH 307</td>
<td>Combinatorics And Graph Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 343</td>
<td>Probability And Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 344</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 228</td>
<td>Introduction To Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP SCI 325</td>
<td>Analysis Of Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

Computational Mathematics Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 353</td>
<td>Statistical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 346</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 228</td>
<td>Introduction To Numerical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 302</td>
<td>Intermediate Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 303</td>
<td>Methods of Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 325</td>
<td>Partial Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 328</td>
<td>Object-Oriented Numerical Modeling I</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 329</td>
<td>Object-Oriented Numerical Modeling II</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 307</td>
<td>Vibrations I</td>
<td></td>
</tr>
</tbody>
</table>

Applied Analysis Emphasis Area

Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 228</td>
<td>Introduction To Numerical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

and two of groups 3, 4, and 5 under Mathematics of Statistics electives must be satisfied.
and choose Technical Electives and Free Electives to satisfy one of the following two options:

Engineering Option (A)

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 50</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 110</td>
<td>Mechanics Of Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE 150</td>
<td>Engineering Mechanics-Dynamics</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 160</td>
<td>Dynamics</td>
<td></td>
</tr>
</tbody>
</table>

Select three of the following:

Courses, which have any of the listed courses as prerequisites, may also be used to fulfill this requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO ENG 213</td>
<td>Aerospace Mechanics I</td>
<td></td>
</tr>
<tr>
<td>AERO ENG 313</td>
<td>Intermediate Dynamics Of Mechanical And Aerospace Systems</td>
<td></td>
</tr>
<tr>
<td>AERO ENG 314</td>
<td>Spaceflight Mechanics</td>
<td></td>
</tr>
<tr>
<td>CHEM ENG 120</td>
<td>Chemical Engineering Material & Energy Balances</td>
<td></td>
</tr>
<tr>
<td>CHEM ENG 141</td>
<td>Chemical Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 281</td>
<td>Electrical Circuits</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 213</td>
<td>Machine Dynamics</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 219</td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>or MECH ENG Thermal Analysis 227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH ENG 331</td>
<td>Intermediate Thermofluid Mechanics</td>
<td>*</td>
</tr>
<tr>
<td>NUC ENG 203</td>
<td>Interactions Of Radiation With Matter</td>
<td></td>
</tr>
<tr>
<td>NUC ENG 303</td>
<td>Reactor Physics I</td>
<td></td>
</tr>
<tr>
<td>PET ENG 320</td>
<td>Fundamentals Of Petroleum Reservoir Simulation</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 230</td>
<td>Engineering Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>or NUC ENG 221</td>
<td>Reactor Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>or MECH ENG 231</td>
<td>Thermofluid Mechanics I</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 323</td>
<td>Computer Methods of Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 333</td>
<td>Intermediate Hydraulic Engineering</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 368</td>
<td>Introduction To Neural Networks & Applications</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 307</td>
<td>Vibrations I</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 311</td>
<td>Introduction To Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 334</td>
<td>Stability Of Engineering Structures</td>
<td>*</td>
</tr>
<tr>
<td>MECH ENG 354</td>
<td>Variational Formulations Of Mechanics Problems</td>
<td></td>
</tr>
</tbody>
</table>

GEO ENG 315 Geostatistical Methods in Engineering and Geology

GEOPHYS 286 Introduction To Geophysical Data Analysis

GEOPHYS 321 Potential Field Theory

Courses with an asterisk (*) are co-listed in more than one department.

Physics Option (B)

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 207</td>
<td>Modern Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 307</td>
<td>Modern Physics II</td>
<td>3</td>
</tr>
</tbody>
</table>

And take at least nine additional hours of physics courses at the 200 level or above.

Note that the requirements for a minor in physics will be satisfied with this option.

Secondary Education Emphasis Area

You may earn a B.S. Degree in Applied Mathematics from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with this emphasis area program. This program can be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Missouri S&T Campus.

Students interested in this emphasis area should consult with the advisor for Mathematics Education majors in the Mathematics and Statistics Department.

In order to successfully complete this emphasis area, students must have at least a 22 ACT, maintain a cumulative GPA of at least 2.5, and attain at least a 2.5 GPA in all mathematics courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must meet both these GPA requirements to be accepted into the program. Students must also meet all requirements listed under the Teacher Education Program in the catalog. Students who do not meet all the teacher certification requirements will not be eligible for the Secondary Education Emphasis Area, even if they have completed all course work.

A degree in this emphasis area requires 132 credit hours. The required courses and a sample four-year program are provided below. (A minimum grade of "C" is required by the department in all mathematics and statistics courses counted toward this degree. No course may be used to satisfy more than one degree requirement.)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1</td>
<td>1 MATH 21</td>
<td>5</td>
</tr>
<tr>
<td>MATH 8</td>
<td>5 BIO SCI 110</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3 BIO SCI 112 (Science Lab Requirement)</td>
<td>2</td>
</tr>
<tr>
<td>HISTORY 175 or 176</td>
<td>3 PSYCH 50</td>
<td>3</td>
</tr>
</tbody>
</table>

GEO ENG 315 Geostatistical Methods in Engineering and Geology

GEOPHYS 286 Introduction To Geophysical Data Analysis

GEOPHYS 321 Potential Field Theory
Degree Programs

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 22</td>
<td>4 MATH 204</td>
</tr>
<tr>
<td>MATH 208</td>
<td>3 MATH 209</td>
</tr>
<tr>
<td>PHYSICS 21</td>
<td>4 ENGLISH 60</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td>1 PHYSICS 25</td>
</tr>
<tr>
<td>PSYCH 208</td>
<td>3 PHYSICS 26</td>
</tr>
<tr>
<td>EDUC 104</td>
<td>2 SP&M S 85</td>
</tr>
</tbody>
</table>

15 15

Junior Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
<th>Summer Semester Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 309</td>
<td>3 MATH 311</td>
<td>3 EDUC 216</td>
</tr>
<tr>
<td>STAT 215, or 217, or 343</td>
<td>3 MATH 330</td>
<td></td>
</tr>
<tr>
<td>EDUC 164</td>
<td>2 PSYCH 354</td>
<td></td>
</tr>
<tr>
<td>EDUC 174</td>
<td>2 EDUC 280</td>
<td></td>
</tr>
<tr>
<td>PSYCH 155</td>
<td>3 Fine Art Elective</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121 or 122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17 17 17

Senior Year

<table>
<thead>
<tr>
<th>First Semester Credits</th>
<th>Second Semester Credits</th>
<th>Summer Semester Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 361</td>
<td>1 MATH 381</td>
<td>1</td>
</tr>
<tr>
<td>MATH 371</td>
<td>1 EDUC 298 & EDUC 299</td>
<td>13</td>
</tr>
<tr>
<td>Electives-Math or Stat</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

17 18 17

Total Credits: 132

1 May be met by BIO SCI 112 or CHEM 2, but if CHEM 2 is used, one extra hour must be attained in any elective area to fulfill the 132 total hour requirement.

2 Any three-hour course from the areas of foreign language, music, theater, philosophy or art.

3 The three courses MATH 361, MATH 371, and MATH 381 constitute the Capstone experience for mathematics majors.

4 Any two three-hour courses from the following list with the approval of the Mathematics Education advisor. MATH 302, MATH 303, MATH 305, MATH 306, MATH 307, MATH 308, MATH 315, MATH 322, MATH 325, MATH 330, MATH 351, MATH 383, MATH 385; STAT 343, STAT 344, STAT 346, STAT 353, COMP SCI 228, COMP SCI 328, COMP SCI 329; ECON 321.

Statistics Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 343</td>
<td>Probability And Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 344</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 346</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 353</td>
<td>Statistical Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 231</td>
<td>General Genetics</td>
</tr>
<tr>
<td>COMP SCI 228</td>
<td>Introduction To Numerical Methods</td>
</tr>
<tr>
<td>ENG MGT 385</td>
<td>Statistical Process Control</td>
</tr>
</tbody>
</table>

And complete either A or B:

(A) Complete the following 2 courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 315</td>
<td>Introduction To Real Analysis</td>
</tr>
<tr>
<td>MATH 351</td>
<td>Introduction To Complex Variables</td>
</tr>
</tbody>
</table>

(B) Complete 6 hours from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 303</td>
<td>Methods of Applied Mathematics</td>
</tr>
<tr>
<td>MATH 307</td>
<td>Combinatorics And Graph Theory</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Linear Algebra II</td>
</tr>
</tbody>
</table>

Total Credits: 24-27

Note: It is not required that students complete an emphasis area to obtain the Bachelor of Science degree in Applied Mathematics. The emphasis area requirements often specify most, if not all, of the electives in Mathematics, Statistics and Computer Science as well as many technical or free electives.

Akim Mouhamadou Adekpedjou, Associate Professor
PHD University of South Carolina Columbia

Elvan Akin, Associate Professor
PHD University of Nebraska Lincoln

Martin Bohner, Professor
PHD University of Ulm, Germany

Wlodzimierz Jan Charatonik, Professor
PHD Warsaw University

Stephen L Clark, Professor
PHD Univ. of Tennessee-Knoxville

Roman Dwilewicz, Professor
PHD University of Warsaw, Poland

Stephanie L Fitch, Associate Teaching Professor
MA University of Texas-Austin

David E Grow, Associate Professor
PHD University of Nebraska Lincoln

Xiaoming He, Assistant Professor
PHD Virginia Polytechnic Institute

Eugene M Insall Jr. Associate Professor
PHD University Of Houston

Kimberly S. Kinder, Assistant Teaching Professor
MS Central Missouri State University

Vy Khoi Le, Professor
PHD University Of Utah
interested in a particular area of mechanical engineering, there are computer-aided engineering (CAE), and computer-aided design (CAD). thermodynamics, heat transfer, energy conversion, fluid mechanics, design, machine dynamics, electricity, electronics, control theory, environmental systems, instrumentation, manufacturing processes, materials science, mechanical design and analysis, and thermal science.

The Mechanical Engineering Program is offered in the Department of Mechanical and Aerospace Engineering. Mechanical Engineering has broad applications and is one of the most basic of all branches of engineering.

As a mechanical engineer you will be concerned with the conversion and transfer of energy from one form to another; with the design, construction, and operation of all types of machines; and with the selection and design of instrumentation and systems for the control of all types of physical and environmental systems.

You may design products and manufacturing processes, supervise production methods and operations, design and supervise fabrication and testing of individual machines and complete plants, or be involved in applied or basic research.

In your first few semesters as a mechanical engineering student, you will develop a sound background in the fundamental sciences of mathematics, physics, and chemistry, and you will take a broad selection of liberal arts courses. You will also learn to work with computers. Onto this foundation you will add the basic required courses of engineering sciences and technology including stress analysis, machine design, machine dynamics, electricity, electronics, control theory, thermodynamics, heat transfer, energy conversion, fluid mechanics, computer-aided engineering (CAE), and computer-aided design (CAD).

To provide some degree of specialization for those students who are interested in a particular area of mechanical engineering, there are six hours of technical electives that you can select to concentrate in an emphasis area (such as robotics, manufacturing automation, fluid mechanics, heat transfer, dynamics and controls, solid mechanics, vibrations, and design). If you are interested in getting some background in a closely allied field such as aerospace, petroleum, or nuclear engineering, you can, with the aid of your advisor, select some of your desired technical electives in those fields.

Mission Statement

We will provide a rigorous, productive, and relevant academic learning environment for students, faculty, and staff in the Mechanical and Aerospace Engineering Department by continually focusing on our core missions of teaching, research, and service.

We will ensure that graduating students are well-educated and sufficiently prepared in the fundamentals of mechanical and aerospace engineering practice and science, such that they have the ability to solve open-ended problems in these disciplines and the capabilities required in order to become competent, productive, and well-rounded professionals.

We will emphasize scholarship, graduate education, and the development of new knowledge and skills in the traditional areas associated with mechanical and aerospace engineering. Additionally, we will develop cross-cutting multi-disciplinary efforts such that we are widely recognized by local, national, and international research and business communities as respected leaders in research, innovation, and discovery.

We will render meritorious service to our profession through active participation and engagement in service activities in our professional communities at all levels (local, national, and international), as well as in fulfilling campus and departmental governance, outreach, and service activities.

Program Educational Objectives

The Mechanical Engineering program seeks to prepare its graduates for the following early career and professional accomplishments in their employment by industry, government agencies, academia, or private practice:

- Demonstrated engineering competence, successfully contributing within their career fields with increasing levels of responsibility and influence
- Continuous growth in knowledge and capability, within the Mechanical Engineering field as well as across interdisciplinary boundaries

It is the goal of the program that graduates will be personally satisfied with how their education from Missouri S&T prepared them for their career.

Student Outcomes

1. Students graduating from this program should have:
 A. an ability to apply knowledge of mathematics, science, and engineering
 B. an ability to design and conduct experiments, as well as to analyze and interpret data
 C. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
 D. an ability to function on multidisciplinary teams
E. an ability to identify, formulate, and solve engineering problems
F. an understanding of professional and ethical responsibility
G. an ability to communicate effectively
H. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
I. a recognition of the need for, and an ability to engage in lifelong learning
J. a knowledge of contemporary issues
K. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
L. an ability to work professionally in both thermal and mechanical systems areas

Bachelor of Science
Mechanical Engineering

Entering freshmen desiring to study Mechanical Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Mechanical Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Mechanical Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. An average of at least two grade points per credit hour must also be attained in all courses taken in Mechanical Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one history course, one economics course, one humanities course, and ENGLISH 20. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. The humanities course must be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Depth requirement. Three credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. This course must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 or 80 will be considered to satisfy this requirement. Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level. All courses taken to satisfy the depth requirement must be taken after graduating from high school.

3. The remaining two courses are to be chosen from the list of approved humanities/social sciences courses and may include one communications course in addition to ENGLISH 20.

4. Any specific departmental requirements in the general studies area must be satisfied.

5. Special topics and special problems and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Mechanical Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:
Free electives. Each student is required to take six hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of Engineering and Science must be at least three credit hours.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>FR ENG 10</td>
<td>1</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1 a</td>
<td>4</td>
<td>MATH 15 b</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23 a</td>
<td>4</td>
</tr>
<tr>
<td>MATH 12 b</td>
<td>4</td>
<td>ECON 121 or 122</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>Elective-Hum or Soc Sc f</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112, 5</td>
<td>3</td>
<td>POL SCI 90</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>Programming Elective b, c</td>
<td>3</td>
<td>MECH ENG 161</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 50 a</td>
<td>3</td>
<td>MECH ENG 219 b</td>
<td>3</td>
</tr>
<tr>
<td>MATH 22 b</td>
<td>4</td>
<td>MECH ENG 160 a</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 24 b</td>
<td>4</td>
<td>MATH 204 b</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 153</td>
<td>3</td>
<td>MET ENG 121 b</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 213</td>
<td>3</td>
<td>MECH ENG 211 a</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 221</td>
<td>3</td>
<td>MECH ENG 208</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 281</td>
<td>3</td>
<td>MECH ENG 225</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 110 b</td>
<td>3</td>
<td>MECH ENG 231</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 120</td>
<td>1</td>
<td>MECH ENG 240</td>
<td>2</td>
</tr>
<tr>
<td>Elective-Advanced Math/Stat or Cmp</td>
<td>3</td>
<td>Elective-Communications d</td>
<td>3</td>
</tr>
<tr>
<td>BE 85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td>Second Semester</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 242</td>
<td>2</td>
<td>ENG MGT 124</td>
<td>1</td>
</tr>
<tr>
<td>MECH ENG 279</td>
<td>3</td>
<td>ENG MGT 137</td>
<td>2</td>
</tr>
</tbody>
</table>
Note: Students must satisfy the common engineering freshman year course requirements, and be admitted into the department, in addition to the sophomore, junior and senior year requirements listed above with a minimum of 128 hours.

- A grade of “C” or better is required in CHEM 1, MATH 14, MATH 15, MATH 22, MATH 204, PHYSICS 23, PHYSICS 24, programming elective, MET ENG 121, CIV ENG 50, CIV ENG 110, MECH ENG 219, MECH ENG 160, and MECH ENG 211, both as prerequisite for follow-up courses in the curriculum and for graduation.
- MATH 8 and MATH 21 may be substituted for MATH 14 and MATH 15, respectively.
- The programming elective consists of a lecture and lab combination, and may be selected from COMP SCI 73 COMP SCI 77, COMP SCI 74 COMP SCI 78, or COMP SCI 53 COMP SCI 54. Note that COMP SCI 53 COMP SCI 54 requires one more credit hour than the other options.
- This course must be selected from the following: ENGLISH 60, ENGLISH 160 or SP&M S 85, or the complete four course sequence in Advanced ROTC (MIL ARMY 105, MIL ARMY 106, MIL ARMY 207 and MIL ARMY 208 or AERO ENG 350, AERO ENG 351, AERO ENG 380 and AERO ENG 381.)
- This course must be selected from the following: COMP SCI 228, MATH 203, MATH 208, STAT 213, STAT 215 or any 300-level math or computer science course approved by the student’s advisor.
- All electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.
- Electives must be approved by the student’s advisor. Six hours of technical electives, which may not include AERO ENG 202/MECH ENG 202/MECH ENG 300 or MECH ENG 390, must be in the Department of Mechanical and Aerospace Engineering. At least three of these technical elective hours in the Department must be at the 300 level. Honors students have special requirements for technical electives.
- All Mechanical Engineering students must take the Fundamentals of Engineering Examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree, however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.
- Each student is required to take six hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of Engineering and Science must be at least three credit hours.

Energy Conversion Emphasis Area for Mechanical Engineering

Students desiring to obtain a Bachelor of Science degree in Mechanical Engineering with an Emphasis Area in Energy Conversion must satisfy all the requirements of the Bachelor of Science degree in Mechanical Engineering, with the additional stipulation that four courses must be taken as follows:

- Two courses from the following list:
 - MECH ENG AERO ENG Combustion Processes 327
 - MECH ENG Internal Combustion Engines 333
 - MECH ENG Solar Energy Technology 366
 - MECH ENG Heat Pump And Refrigeration Systems 367
 - MECH ENG Environmental Controls 371
 - MECH ENG Mechanical Systems For Environmental Control 375
 - AERO ENG Introduction To Hypersonic Flow 369
 - AERO ENG Aerospace Propulsion Systems 335

- One course from the following list:
 - MECH ENG AERO ENG Advanced Thermodynamics 319
 - MECH ENG AERO ENG Intermediate Heat Transfer 325
 - MECH ENG AERO ENG Intermediate Thermofluid Mechanics 331
 - MECH ENG AERO ENG Computational Fluid Dynamics 339

- One additional course from either list “a” or list “b”, or from the following list:
 - ECON 355 Energy Economics
 - ELEC ENG Photovoltaic Systems Engineering 352
 - ENV ENG Introduction To Air Pollution 367
 - NUC ENG Two-phase Flow in Energy Systems - I 317

Note: By using the free electives and technical electives to satisfy the above requirements, this emphasis area requires the same total number of credit hours as the BSME degree. A change of major form should be submitted to designate the Energy Conversion Emphasis Area

Manufacturing Processes Emphasis Area for Mechanical Engineering

Students desiring to obtain a Bachelor of Science in Mechanical Engineering with an Emphasis Area in Manufacturing Processes must satisfy all requirements of the Bachelor of Science in Mechanical Engineering.
Engineering with the additional stipulation that four courses must be taken as follows:

a. The following course:
 MECH ENG 253

b. One course from the following Manufacturing/Automation courses:
 MECH ENG 353 Computer Numerical Control Of Manufacturing Processes
 MECH ENG 355 Manufacturing Equipment Automation
 MECH ENG 349 Robotic Manipulators And Mechanisms
 MECH ENG 306 Material Processing By High-Pressure Water Jet

c. One course from the following Design courses:
 MECH ENG 363 Principles And Practice Of Computer Aided Design
 MECH ENG 356 Design For Manufacture
 MECH ENG 302 Synthesis Of Mechanisms

d. One course from the following list:
 MECH ENG 308 Rapid Product Design And Optimization
 MECH ENG 358 Integrated Product Development

e. The Math/Stat elective must be one of the following:
 STAT 213 Applied Engineering Statistics
 STAT 215 Engineering Statistics

A suggested sequence for the Junior and Senior years is given below. Note that by using the free electives and technical electives to satisfy the above requirements, this emphasis area requires the same total number of credit hours as the BSME degree. A change of major form should be submitted to designate the Manufacturing Processes Emphasis Area.

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH ENG 213</td>
<td>3</td>
<td>MECH ENG 211a</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 281</td>
<td>3</td>
<td>MECH ENG 231</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 221</td>
<td>3</td>
<td>MECH ENG 225</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 110b</td>
<td>3</td>
<td>MECH ENG 240</td>
<td>2</td>
</tr>
<tr>
<td>CIV ENG 120</td>
<td>1</td>
<td>MECH ENG 253</td>
<td>3</td>
</tr>
<tr>
<td>STAT 213 or 215</td>
<td>3</td>
<td>Elective-Communicationsd</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH ENG 342</td>
<td>2</td>
<td>ENG MGT 124</td>
<td>1</td>
</tr>
<tr>
<td>MECH ENG 279</td>
<td>3</td>
<td>ENG MGT 137</td>
<td>2</td>
</tr>
<tr>
<td>MECH ENG 208</td>
<td>3</td>
<td>MECH ENG 261</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Technical Electivef</td>
<td>3</td>
<td>MECH ENG 280</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing Technical Electivef</td>
<td>3</td>
<td>Manufacturing Technical Electivef</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Literature

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives-Hum or Soc Sci</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 63

a. A grade of “C” or better is required in CHEM 1, MATH 14, MATH 15, MATH 22, MATH 204, PHYSICS 23, PHYSICS 24, programming elective, MET ENG 121, CIV ENG 50, CIV ENG 110, MECH ENG 219, MECH ENG 160 and MECH ENG 211, both as prerequisite for follow-up courses in the curriculum and for graduation.

b. MATH 8 and MATH 21 may be substituted for MATH 14 and MATH 15, respectively.

c. The programming elective consists of a lecture and lab combination, and may be selected from COMP SCI 73/COMP SCI 77, COMP SCI 74/COMP SCI 78, or COMP SCI 53/COMP SCI 54. Note that COMP SCI 53/COMP SCI 54 requires one more credit hour than the other options.

d. This course must be selected from the following: ENGLISH 60, ENGLISH 160 or SP&M S 85, or the complete four course sequence in Advanced ROTC (MIL ARMY 105, MIL ARMY 106, MIL ARMY 107 and MIL ARMY 108 or AERO ENG 350, AERO ENG 351, AERO ENG 380 and AERO ENG 381.)

e. To include at least one course in literature. All electives must be approved by the student’s advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.

f. The nine hours of Manufacturing technical elective must be selected as follows:
 One course from the following Manufacturing/Automation courses: MECH ENG 353, MECH ENG 355, MECH ENG 349, MECH ENG 306. One of the following Design courses: MECH ENG 363, MECH ENG 356, MECH ENG 302. Once course from the following list: MECH ENG 308, MECH ENG 358.

g. All Mechanical Engineering students must take the Fundamentals of Engineering Examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree, however, it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Mechanical Design and Analysis Emphasis Area

Students desiring to obtain a Bachelor of Science in Mechanical Engineering with an Emphasis Area in Mechanical Design and Analysis must satisfy all requirements of the Bachelor of Science in Mechanical Engineering, with the additional stipulation that four courses must be taken as follows:

a. One design course from the following list:
 MECH ENG 209 Machine Design II
 MECH ENG 302 Synthesis Of Mechanisms
 MECH ENG 304 Compliant Mechanism Design
MECH ENG 308 Rapid Product Design And Optimization
MECH ENG 315 Concurrent Engineering
MECH ENG 356 Design For Manufacture
MECH ENG 357 Integrated Product And Process Design
MECH ENG 360 Probabilistic Engineering Design
MECH ENG 363 Principles And Practice Of Computer Aided Design
IDE 220 Engineering Design Methodology

b. One analysis course from the following list:

MECH ENG 307 Vibrations I
MECH ENG 311 Introduction To Continuum Mechanics
MECH ENG 312 Introduction to Finite Element Analysis
MECH ENG 313 Intermediate Dynamics Of Mechanical And Aerospace Systems
MECH ENG 322 Introduction To Solid Mechanics
MECH ENG 338 Fatigue Analysis
MECH ENG 349 Robotic Manipulators And Mechanisms
MECH ENG 378 Mechatronics

Note that by using the free electives and technical electives to satisfy the above requirements, this emphasis area requires the same total number of credit hours as the BSME degree A change of major form should be submitted to designate the Mechanical Design and Analysis Emphasis Area.

Darryl Alofs, Emeritus Professor
PHD University of Michigan at Ann Arbor

Bassem F Armaly, Curators Professor Emeritus
PHD University of California-Berkeley

Xavier Avula, Emeritus Professor
PHD Iowa State University

Clark Barker, Emeritus Professor
PHD University of Illinois

Charles Benjamin Basye, Emeritus Professor
PHD Iowa State University

Victor Birman, Professor
PHD Technion, Haifa, Israel

Douglas A Bristow, Assistant Professor
PHD University Of Illinois Urbana-Champaign

Douglas Carroll, Professor
PHD University of Missouri-Rolla

K Chandrashekara, Curators Professor
PHD Virginia Polytechnic Institute

Ta-Shen Chen, Curators Professor Emeritus
PHD University of Minnesota

Kirk Le Christensen, Assistant Teaching Professor
PHD University of Missouri-Rolla

Donald Cronin, Emeritus Professor
PHD California Institute of Technology

Alfred Linden Crosbie, Curators Professor
PHD Purdue University

L R Dharani, Curators Professor
PHD Clemson University

James A Drallmeier, Curator’s Teaching Professor
PHD University of Illinois Urbana-Champaign

Xiaoping Du, Associate Professor
PHD University of Illinois at Chicago

Lian Duan, Assistant Professor
PHD Princeton University

Charles Edwards, Emeritus Professor
PHD University of Arkansas

Walter Eversman, Curators Professor
PHD Stanford University

Virgil Flanigan, Emeritus Professor
PHD University of Missouri-Rolla

Jie Gao, Assistant Professor
PHD Columbia University

Kelly O Homan, Associate Professor
PHD University Of Illinois Urbana-Champaign

Ronald Howell, Emeritus Professor
PHD University of Illinois

Ryan S Hutcheson, Assistant Teaching Professor
PHD Texas A&M University-College Station

Edward C Kinzel, Assistant Professor
PHD Purdue University

Leslie Koval, Emeritus Professor
PHD Cornell University

Umit O Koylu, Professor
PHD University of Michigan

K Krishnamurthy, Professor
PHD Washington State University

Nishant Kumar, Assistant Teaching Professor
PHD New Mexico State University
Metallurgical Engineering

Metallurgical engineering is one of two B.S. degrees offered by the Materials Science & Engineering Department. Metallurgical engineering is a broad discipline that studies metals production and recycling, the manufacturing of components from metals and alloys, the processing and treatment of metals to achieve improved properties, and the design of metallic materials for specific applications. Missouri S&T has one of the largest and most comprehensive metallurgical engineering departments in the United States. It is the only such department in Missouri or in any of the surrounding states.

The field of metallurgical engineering starts with the production and recycling of metals such as aluminum, steel, copper, magnesium and titanium. Once these metals are made, metallurgical engineers design forming and processing techniques to transform these metals into useful shapes with the properties required for their application. For example, light-weight magnesium is cast to make cell phones, zinc-coated steel is stamped to make corrosion resistant auto bodies, aluminum is formed to make the strong but lightweight wings of jet aircraft, tungsten powder is consolidated and drawn into filaments for incandescent light bulbs, and steel I-beams are hot-rolled for the construction of skyscrapers. Metallurgical engineers control the properties of metallic materials by altering the microscopic structure with alloying additions and special treatments. This approach leads to products such as corrosion-resistant stainless steels, ultra-lightweight alloys for aircraft, wear-resistant alloys for engines, and shape-memory alloys for space structures. In addition, investigating material failures and monitoring service life are tasks that are performed by metallurgists.

Although all metallurgical engineering students take the same basic required courses in metallurgical engineering, students can select several technical electives to emphasize their particular area of interest. Students are also encouraged to undertake summer and cooperative training employment to supplement both their academic studies and incomes. The department has also introduced a materials minor program for students from other engineering disciplines with an interest in materials.

The department is housed in McNutt Hall and has outstanding facilities for both classroom and laboratory learning. There are several optical and electron microscopes, a well equipped metals casting and joining laboratory, and comprehensive metal testing facilities. The department continuously upgrades its facilities for classroom and laboratory learning. The department has also enhanced its computer applications laboratory with the addition of new software and computers, and improved network access. Additional information is available at http://mse.mst.edu/.

Mission Statement

The mission of the department is to provide a quality, comprehensive undergraduate and graduate education in the traditional areas of metallurgical engineering. The major program goal is to produce a Bachelor of Science graduate with a sound fundamental knowledge and extensive hands-on technical, communication, and leadership skills, capable of contributing in any technical area associated with metallurgy. The department is also committed to a strong graduate program, which ensures significant research activity, an active and involved faculty, and a robust, healthy environment for education. The provision of service course work for students in other engineering disciplines is also an important goal, as is interaction with professional societies and industry to promote continuing education, research, and technical information transfer. The utilization of the departmental resources to assist the state agencies and industry of Missouri and the Mid-west is an integral part of the departmental mission.

The program educational objectives of the metallurgical engineering program:
• Our graduates will be leaders in the science, technology, and management of metallurgical engineering;
• Our graduates will serve their profession and society;
• Our graduates will continually enhance their professional skills and educational background;

The specific outcomes of the metallurgical engineering program are:

• Ability to apply mathematical, science and engineering principles to metallurgical systems;
• An ability to utilize experimental, statistical and computational methods to solve metallurgical problems;
• Ability to design a system, component, or process to meet desired needs;
• Ability to function on diverse teams;
• Ability to identify, formulate, and solve engineering problems;
• Understanding of professional and ethical responsibility;
• Ability to communicate effectively;
• The broad education necessary to understand the impact of engineering solutions in a global and societal context;
• Recognition of the need for, and an ability to engage in life-long learning;
• Knowledge and understanding of contemporary issues;
• Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice;
• Integrated understanding of scientific and engineering principles of metals structure;
• Integrated understanding of scientific and engineering principles of metals properties;
• Integrated understanding of scientific and engineering principles of metals processing;
• Integrated understanding of scientific and engineering principles of metals performance;
• Ability to apply and integrate knowledge of structure, properties, processing and performance to metals selection and process design;

Bachelor of Science Metallurgical Engineering

Entering freshmen desiring to study Metallurgical Engineering will be admitted to the Freshman Engineering Program. They will be permitted to state their specific requirements for study in Metallurgical Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Metallurgical Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student's major department, and an average of at least two grade points per credit hour must be maintained in Metallurgical Engineering.

The Metallurgical Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Each student's program of study must contain a minimum of 16 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122.
2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved lists. Each of these courses must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 to 80 can be considered to be one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level.)
3. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages or on approved HSS list.
4. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student's department chairman.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ENG 10</td>
<td>3</td>
<td>1</td>
<td>MET ENG 125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 1</td>
<td>4</td>
<td>MATH 15</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 14</td>
<td>4</td>
<td>History Elective (Government)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH 20</td>
<td>3</td>
<td>IDE 20</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hum/Soc Sci Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 24</td>
<td>4</td>
<td>CER ENG 259</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 22</td>
<td>4</td>
<td>CIV ENG 110</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MET ENG 121</td>
<td>3</td>
<td>MET ENG 217</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 50</td>
<td>3</td>
<td>MET ENG 218</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ECON 121 or 122</td>
<td>3</td>
<td>MET ENG 221</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>MET ENG 222</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Credits</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET ENG 204</td>
<td>3</td>
<td>ENG MGT 124</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MATH 203</td>
<td>3</td>
<td>ENG MGT 137</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MET ENG 215</td>
<td>3</td>
<td>MET ENG 202</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MET ENG 216</td>
<td>1</td>
<td>MET ENG 203</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MET ENG 307</td>
<td>3</td>
<td>CER ENG 291</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Communication Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Elective</td>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Degree Programs

Military Science

Army ROTC

The Department of Military Science is responsible for the Army Reserve Officers’ Training Corps Program. ROTC is a program of leadership and basic military skills training which prepares students to serve as officers in the Total Army—the Active Army, the Army Reserve, and the Army National Guard—after graduation. Army ROTC can help you succeed during college and after graduation. You can gain the confidence and self-discipline needed to meet the academic challenge of Missouri S&T through Military Science courses and can acquire the leadership skills, which will impress employers when you enter the work force.

The Army ROTC program is flexible, and allows students to participate in the first two years of the program without obligation. Alternate entry programs for students with prior military service, transfer students, and students serving in the Army Reserve or National Guard are available. The Advanced Course, Junior and Senior years), focuses on preparing cadets for officership, and requires a commitment to the ROTC program. Students who wish to take Military Science courses, but who do not wish to participate in Army ROTC, may do so with the approval of the Department Chairman.

Military Science classes are taught on the Missouri S&T campus and are supplemented by one weekend field training exercise at Fort Leonard Wood, MO. each semester for contracted ROTC cadets. The ROTC program concentrates on the whole person and includes physical training, leadership development, marksmanship, individual tactical skills, and essential knowledge of today’s Army and its role in our society.

The minor in Military Science gives formal academic recognition for the leadership and management training received by those completing the entire Army ROTC program.

The Military Science program at Missouri S&T is described in detail in the Appendix/Army ROTC (Military Science) of this catalog. For more information on the Military Science Program, scholarships, qualification information on the Military Science Program, scholarships, qualification requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

F Scott Miller, Teaching Professor
PHD University of Missouri-Rolla

Michael Scott Moats, Associate Professor
PHD University of Arizona

Joseph W Newkirk, Associate Professor
PHD University Of Virginia Main Ca

Matthew J Okeefe, Professor
PHD University Of Illinois Urbana

Von L Richards, Professor
PHD University of Michigan-Ann Arbor

David C Van Aken, Curators Teaching Professor
PHD University Of Illinois Urbana

Jeremy Lee Watts, Research Assistant Professor
PHD Missouri S&T

Caizhi Zhou, Assistant Professor
PHD Iowa State University

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET ENG 261</td>
<td>3</td>
<td>MET ENG 262</td>
<td>2</td>
</tr>
<tr>
<td>Statistics Course 1</td>
<td>3</td>
<td>Hum/Soc Sci Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>MET ENG 355</td>
<td>3</td>
<td>Core Elective II 5</td>
<td>3</td>
</tr>
<tr>
<td>Core Elective II 1</td>
<td>3</td>
<td>Technical Elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 3</td>
<td>3</td>
<td>Free Elective 7</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective 7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits:</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

1 Eighteen hours of required H/SS electives of which three hours must be history (HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90), three hours of economics (ECON 121 or ECON 122) and three hours communications (ENGLISH 60, ENGLISH 160, or SP&M S 85)

2 CHEM 3 can be substituted for MET ENG 125

3 All metallurgical engineering students must either take MATH 204 and one statistics course (STAT 213 or STAT 215) or an introductory statistics course (STAT 213 or STAT 215) plus an advanced statistics elective (ENG MGT 385, STAT 320, STAT 346, or STAT 353)

4 CER ENG 251 or CER ENG 364 or CER ENG 392, CHEM ENG 346, CHEM 221 or CHEM 237 or CHEM 241, ELEC ENG 151 & ELEC ENG 152 or ELEC ENG 281, GEOLOGY 113, MATH 204 (if two stat courses taken 1) or MATH 303 or MATH 325, MECH ENG 312 or MECH ENG 230 or MECH ENG 329 or MECH ENG 336 or MECH ENG 338 or MECH ENG 382, MIN ENG 241, PHYSICS 107 or PHYSICS 207

5 Met Core Electives (9 hours) Core Elective I - Introduction to Particulate Materials (MET ENG 367) or Corrosion And Its Prevention (MET ENG 381) Core Elective II - Steelmaking (MET ENG 358) or Steels And Their Treatment (MET ENG 331) Core Elective III - Materials selection course (Material Selection, Fabrication, And Failure (MET ENG 329) or MS&E 325)

6 Technical Electives (Met Eng or Approved listing)

7 Free Electives (5 hours)-algebra, trigonometry, basic ROTC, and courses considered remedial excluded

Note: All Metallurgical Engineering students must take the Fundamentals of Engineering Examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree; however, it is the first step toward becoming a registered professional engineer. This requirement, together with the department’s Senior Assessment, is part of the Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.

Mohsen Asle Zaeem, Assistant Professor
PHD Washington State University

Gregory E Hilmas, Curators Professor
PHD Univ. of Michigan - Ann Arbor

Wayne Huebner, Professor
PHD University Of Missouri-Rolla
Military Science Minor Curriculum

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL ARMY 105</td>
<td>Adaptive Tactical Leadership</td>
<td>3</td>
</tr>
<tr>
<td>MIL ARMY 106</td>
<td>Leadership in Changing Environments</td>
<td>3</td>
</tr>
<tr>
<td>MIL ARMY 207</td>
<td>Developing Adaptive Leaders</td>
<td>3</td>
</tr>
<tr>
<td>MIL ARMY 208</td>
<td>Leadership in a Complex World</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective courses:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>HISTORY 280</td>
<td>The American Military Experience</td>
</tr>
<tr>
<td></td>
<td>HISTORY 329</td>
<td>Contemporary Europe</td>
</tr>
<tr>
<td></td>
<td>HISTORY 348</td>
<td>Recent United States History</td>
</tr>
<tr>
<td>Human Behavior</td>
<td>PSYCH 50</td>
<td>General Psychology</td>
</tr>
<tr>
<td></td>
<td>PHILOS 15</td>
<td>Introduction To Logic</td>
</tr>
<tr>
<td></td>
<td>PHILOS 25</td>
<td>SOCIOMETRY</td>
</tr>
</tbody>
</table>

John C Clark, Assistant Professor
Bachelor US Military Academy

Travis B Coffman, Assistant Professor
Bachelor Western Illinois University

Shawn M Moriarity, Lecturer

Chad D Pense, Assistant Professor
MED University of Central Oklahoma

Theodore R Read, Professor
MASTER Webster

Mining Engineering

Emphasis areas at the bachelor level in explosives engineering, mining health and safety, quarry engineering, coal, mining and the environment, and sustainable development.

The Mining and Explosives Engineering programs are offered under the Department of Mining and Nuclear Engineering. The overall objectives of the Mining Engineering program are to provide a broad engineering education with strong expertise in Mining Engineering, a cultural foundation for the mining industry and a strong basis for future growth and development. These objectives are achieved at the B.S. level by providing education in basic sciences, engineering sciences and design, core Mining Engineering, humanities and social sciences.

ABET Educational Objectives:

The objectives establish broad career and professional attributes that the Mining Engineering program prepares students to achieve in industry.

The PEOs include:

1. Graduates will become frontline supervisors and middle level managers within three to five years in industry.
2. Graduates will have a vital interest and a passion to remain and promote industry growth.
3. Graduates will be capable of solving industrial problems toward growth and competitiveness of their respective companies.
4. Graduates will become functional and effective leaders or members of industrial teams for carrying out the mission of their respective companies.
5. Graduates will communicate effectively the technical, social and economic aspects of the job requirements to subordinates, peers and superiors.
6. Graduates will carry out their functional responsibilities with supreme understanding of safety and health, environment and ethics.
7. Graduates will cultivate and maintain an interest in life-long learning through professional development and memberships in professional societies.
8. Graduates will continue to grow in the knowledge of relevant technologies, skills and tools for modern mining engineering practice.

ABET Student Outcomes

Consistent with the definition of ABET SOs, the Mining Engineering Program is designed and delivered to allow students opportunities to acquire the following skills, knowledge and behaviors by the time of graduation.

1. Become proficient in the basic sciences, including mathematics, statistics, physics and chemistry and their applications in solving mining engineering problems (ABET Outcome a).
2. Understand fundamental engineering principles in statics and dynamics, mechanics of rock structures, electrical circuits, thermodynamics, fluid mechanics and engineering design and their applications in solving mining engineering problems (ABET Outcome a).
3. Become knowledgeable in the humanities, social sciences and management for understanding the non-technical aspects of the mining engineering profession, including environmental, socio-economic, and the health and safety impacts exemplified by the knowledge of the regulatory regime (ABET Outcome h).
4. Become proficient in core mining engineering subjects required to carry out the professional duties of an entry level mining engineer upon graduation (ABET Outcome a).
5. Understand geological and mineral processing dimensions for comprehensive mine design, extraction and mineral beneficiation (ABET Outcome a).
6. Understand geomechanics, geometric and computer-aided mine design, and optimization of flow processes for designing mine layouts to maximize health and safety, economics and production efficiency, and to minimize environmental impacts (ABET Outcome c).
7. Have the ability to outline and conduct experiments, with relevant input data and information, analysis and interpretation to draw inferences for making decisions on maintenance, improvement, or modification of an operating system ABET Outcome b).
8. Function effectively on a team by understanding team dynamics, communication, social norms and conflict management (ABET Outcome d).
9. Have the ability to identify, formulate and solve closed and open-ended problems in science, engineering, humanities, social sciences, and management from verbal and/or written statements (ABET Outcome e).
10. Understand engineering code of ethics and its impact on professional engineering practice, especially in mine design, mine health and safety, and quality control (ABET Outcome c and f).
11. Develop creative abilities for effective oral and written communication of both technical and non-technical materials for presentations to peers, superiors and subordinates with proficiency (ABET Outcome g).
12. Know contemporary engineering issues through general education requirements, involvement in professional societies, participation in student activities, and reading of professional journals (ABET Outcome j).
13. Develop leadership skills in competitive environments, project teams and organizational units through student chapter organizations, mine rescue, mine design and mucking competitions, student-initiated and student-led field trips, fund raising and community involvement (Program Core Value).
14. Have the desire and motivation toward a life-long learning process via the online Master of Engineering program, preparation toward professional engineering certification, opportunities for conference attendance and research exposure (ABET Outcome i).
15. Acquire the knowledge of the Mining Engineering profession through cooperative and summer internships, field trips and practical working laboratories in the Missouri S&T Experimental Mine (Program Core Value).
16. Acquire the knowledge and familiarity of the complex relationships among technology, government, society, investors, and the environment and their impact on tomorrow’s mining industry through guest lectures, in-class presentations, general education subjects and community involvement (ABET Outcome k).
17. Understand global mining issues by participating in exchange programs, internships, and in-class presentations (Program Core Value).
18. Develop a sense of responsibility and appreciation for the continuous well-being of the Mining Engineering Program and Missouri S&T (Program Core Value).

General Program Information

The mining engineering courses provide students with the knowledge necessary to enter a variety of segments of the mining industry. Graduate mining engineers, who satisfactorily complete the program criteria, usually obtain employment in one or more of the following areas: mine engineering, operations management, extraction or processing, base metals, precious metals, industrial minerals, quarry industry, explosives industry, construction or demolition, mining equipment suppliers and mining/geotechnical consulting firms.

The Mining Engineering profession deals with location, extraction, and use of mineral resources and mineral policy. Lunar and ocean mining constitute new frontiers. The mining engineer is concerned with all phases of mineral recovery, including exploration, evaluation, development, extraction, mine evaluation, reclamation, processing, and marketing of minerals. In addition to engineering, science and liberal arts courses, appropriate courses are taken in explosives engineering, geology, mineral beneficiation, coal mine development and production, mining of metallic and aggregate minerals, mine systems design, mining economics and law, mine hygiene and safety, mine management, mine ventilation, rock mechanics, ground support, and reclamation.

The mining engineer relies upon geologic knowledge and highly sensitive instruments for the location and evaluation of mineral deposits. Problems involved in the development, exploitation and the beneficiation of minerals and marketing of valuable constituents must be determined in advance. Mining must be carried out efficiently, safely, and economically, with the welfare of the public as a primary consideration. Land must be restored to a useful condition after mining ceases and pollution controls must be designed to prevent harmful environmental effects.

Intensive research programs are conducted at Missouri S&T in surface and underground mining, heavy mining machinery, explosives engineering, mine health and safety, oil sands recovery, waterjet excavation, mineral economics, mine operations and design, mine atmospheric control and ventilation, minerals transportation, rock mechanics and applied geophysics. Appropriate research by faculty and graduate students ensures program relevance to industry.

An Experimental Mine and the Rock Mechanics and Explosives Research Center are located close to the campus and provide facilities for laboratory instruction and research. Trips to coal, metal, and industrial mineral operations supplement classroom activities. Summer employment and co-op training provide valuable practical mining and engineering expertise.

Program Mission and Core Values

The Mining Engineering Program at Missouri S&T provides superb education and training to undergraduate and graduate students for the mining and construction industries of Missouri, USA and those global mining companies with strategic interests in the USA. The programs provide students with total quality education and research capabilities to make a difference in our State and the technological world.

Core Values

Our vision of global leadership will be achieved through the following seven core values that form the basis of Missouri S&T’s tradition of excellence in Mining Engineering education and research.

Excellence: The efforts of faculty, staff, alumni, industry partners and related organizations create an environment that promotes excellence in education and research.

Ethics: We value truth, honesty, integrity and hard work as abiding principles for professional excellence.

Experience: Through its experimental mine facilities, internships, cooperative education and field trips, students receive hands-on experience, which is vital to the practice of the profession.

Exposure: S&T reaches out to global frontiers through its Board of industry executives, alumni, research and professional societies, and our global partners.

Excellence: The efforts of faculty, staff, alumni, industry partners and related organizations create an environment that promotes excellence in education and research.

Ethics: We value truth, honesty, integrity and hard work as abiding principles for professional excellence.

Experience: Through its experimental mine facilities, internships, cooperative education and field trips, students receive hands-on experience, which is vital to the practice of the profession.

Passion: S&T educates graduates with a passion for the mining industry’s growth and competitiveness.
Minor in Mining Engineering

A student who receives a Bachelor of Science degree in an accredited engineering program from Missouri S&T may receive the Minor in Mining Engineering by completing 15 credit hours from the courses listed below. Non-engineering students who have a strong background in mathematics and the physical sciences may also qualify for the Minor in Mining Engineering or Explosives Engineering with the approval of the Department and based on an individually designed program of study. Students will need to consult with the Chair of the Mining Engineering Program to determine pre-requisite requirements for each course. The program granting the Bachelor of Science degree shall determine whether or not courses taken for the Mining Engineering Minor or Explosives Engineering Minor may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the Minor in Mining Engineering:

- MIN ENG 221 Mining Exploration 3
- MIN ENG 324 Underground Mining Methods And Equipment 3
- MIN ENG 326 Surface Mining Methods And Equipment 3

Two other Mi Eng 200- or 300-level lecture courses (3 credit hours), or relevant courses from other disciplines, as approved, must be taken to match the student’s area of emphasis in Mining Engineering. The following areas of emphasis may be pursued:

- Explosives Engineering; Quarrying; Mineral Economics; Mining-Environmental; Mining-Equipment; Mining-Geo-technical; Mining-Health and Safety; Mining Operations Management; Mining-Tunneling; Sustainable Development; Surface Mining; Underground Mining.

The Minor in Mining Engineering is not accredited by the Accreditation Board of Engineering and Technology (ABET).

Minor in Mineral Process Engineering

The Minor in Mineral Process Engineering provides an in-depth study of the fundamental theories and applications of mineral and coal processing and aggregate materials sizing and classification. Any student who receives a Bachelor of Science degree in an accredited engineering program from Missouri S&T may also receive the Minor in Mineral Process Engineering by completing 15 credit hours in this specialty. The B.S. degree granting program shall determine whether or not courses taken for the Minor in Mineral Process Engineering may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the Minor in Mineral Process Engineering:

- MIN ENG 241 Principles Of Mineral Processing 3
- MIN ENG 344 Coal Preparation 3
- MIN ENG 303 Aggregate Materials Sizing and Characterization 3
- MIN ENG 352 Mineral Processing I (Fotation and Hydrometallurgy) 3
- MIN ENG 353 Mineral Processing II (Mechanics and Design) 3

Minor in Explosives Engineering

The Department of Mining & Nuclear Engineering, Mining Engineering Program, realizing the attractiveness of Explosives Engineering to students, the potential for jobs in the area (post 9-11), and the use of over 6 billion pounds of explosives in mining, tunneling, construction, and other areas, is offering a Minor in Explosives Engineering so that students interested in Explosives Engineering have a chance to attain in-depth knowledge of the sub-discipline.

A student who received a Bachelor of Science degree in an accredited engineering program from Missouri S&T may receive the Minor in Explosives Engineering by completing 15 credit hours from the courses listed below. Non-engineering students who have a strong background in mathematics and the physical sciences may also qualify for the Minor in Explosives Engineering, with the approval of the Department and based on an individually designed program of study. Students need to consult with the Chair of the Mining Engineering Program to determine pre-requisite requirements for each course. The program granting the Bachelor of Science degree shall determine whether or not courses taken for the Explosives Engineering Minor may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the Minor in Explosives Engineering:

- EXP ENG/MIN ENG 307 Principles Of Explosives Engineering 3
- EXP ENG/MIN ENG 350 Blasting Design And Technology 3

Three other explosives related courses as approved by program coordinator.

The Minor in Explosives Engineering is not accredited by the Accreditation Board of Engineering and Technology (ABET).

Undergraduate Certificate in Explosives Engineering

This certificate program is designed to provide formalized education in the area of Explosives Engineering.

Students will be exposed to the theoretical and practical approaches of Explosives Engineering. Students will be exposed to the analysis and design of explosive-related systems and both natural and built structure effects.

The Explosives Engineering Certificate Program is open to all persons holding a High School Diploma who have a minimum of 12-months of post-H.S. professional employment or college experience.

Once admitted to the program, the student must take four designated courses as given below. In order to receive an undergraduate Certificate, the student must have an average cumulative grade of 2.0 or better in the certificate courses.

Students admitted to the certificate program will have non-matriculated status; however, if they complete the four course sequence with a grade of B or better in each of the courses taken, they may apply to the B.S. Mining Engineering program if they so choose. The certificate credits taken by students admitted to the B.S. program may be eligible to count toward their bachelors degrees depending on the degree requirements. Prerequisite courses outside of those in this certificate program may be
waived at the discretion of the administrative co-coordinators for persons that are not regular Missouri S&T students.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a 2.0 GPA in the courses taken.

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 307</td>
<td>Principles Of Explosives Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 350</td>
<td>Blasting Design And Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

- MIN ENG 301 Special Topics
- MIN ENG 309
- MIN ENG 383 Tunneling & Underground Construction Techniques
- MIN ENG 390 Undergraduate Research (Explosives Engineering related)
- MIN ENG 300 Special Problems (1. Explosives Engineering related. 2. At discretion of coordinators)

Other courses approved by the Explosives Engineering faculty may be substituted for any of the above listed courses on a case-by-case basis.

Students with a GPA of 3.0 in the certificate program may take postgraduate explosives classes as electives.

Bachelor of Science Mining Engineering

Entering freshmen desiring to study Mining Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Mining Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Mining Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student’s major department, and an average of at least two grade points per credit hour must be maintained in Mining Engineering.

The Mining Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Each student’s program of study must contain a minimum of 16 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. Some disciplines require one humanities course to be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.

2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved lists. Each of these courses must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 to 80 can be considered to be one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level.)

3. Some departments list specific requirements; e.g., a psychology course, a literature course, and/or a second semester of economics. Selections should be made to ensure that these requirements are met.

4. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages. Students who select the foreign language option are urged to take more than one course.

5. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Mining Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CHEM 1</td>
<td>4</td>
<td>MATH 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 2</td>
<td>1</td>
<td>PHYSICS 23</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 4</td>
<td>1</td>
<td>IDE 20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 14</td>
<td>4</td>
<td>MIN ENG 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FR ENG 10</td>
<td>1</td>
<td>MIN ENG 151</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GEO ENG 50</td>
<td>3</td>
<td>GEOLOGY 125</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HISTORY 112</td>
<td>3</td>
<td>POL SCI 90</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>MIN ENG 110</td>
<td>2</td>
<td>ENGLISH 20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MIN ENG 215</td>
<td>3</td>
<td>PHYSICS 24</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 22</td>
<td>4</td>
<td>IDE 140 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOLOGY 220</td>
<td>4</td>
<td>MATH 204</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 121 or 122</td>
<td>3</td>
<td>MIN ENG 235</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MIN ENG 225</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>MIN ENG 221</td>
<td>3</td>
<td>MIN ENG 324</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGLISH 65</td>
<td>3</td>
<td>MIN ENG 326</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CIV ENG 230</td>
<td>3</td>
<td>MIN ENG 241</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 213</td>
<td>3</td>
<td>MIN ENG 331</td>
<td>3</td>
</tr>
</tbody>
</table>
Graduating Mining Engineers Examination
Mining engineering students must complete the Graduating Mining Engineers (GME) Examination prior to graduation as a senior assessment requirement. A passing grade on this examination is required to earn a B.S. degree in mining engineering. The GME Examination comprises the Surface Mining Engineering (SME) and Underground Mining Engineering (UME) Examinations. The SME Exam focuses on MIN ENG 215 Materials Handling In Mines, MIN ENG 225 Surface Mine Design, MIN ENG 241 Principles Of Mineral Processing, MIN ENG 307 Principles Of Explosives Engineering, MIN ENG 326 Surface Mining Methods And Equipment, and MIN ENG 332 Soils and Overburden Materials for Mining Engineering. The UME Exam focuses on MIN ENG 311 Mine Plant Management (or approved substitute course in lieu of Technical Elective.).

Mining engineering students are required to pass the GME Exam in order to graduate. The GME Exam will be graded with Pass or Fail designation. A mark below 50% will be assigned a failing grade and a mark of 85% or above will be a Pass with Distinction. Graduating seniors will have two opportunities to complete the GME requirement. However, students who fail these two attempts can register and complete the examination after completing the required 128 credits in Mining Engineering.

Mining Health and Safety Emphasis

<table>
<thead>
<tr>
<th>Junior and Senior Years</th>
<th>Mining Health and Safety Emphasis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 202</td>
<td>Mine Rescue (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 311</td>
<td>Human Factors (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Sustainable Development Emphasis

<table>
<thead>
<tr>
<th>Junior and Senior Years</th>
<th>Sustainable Development Emphasis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL SCI 315</td>
<td>Principles Of Public Policy (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 340</td>
<td>Environmental And Natural Resource Economics (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Quarrying Engineering Emphasis

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Quarrying Engineering Emphasis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 216</td>
<td>Construction Materials, Properties And Testing (in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 304</td>
<td>Advanced Aggregate and Quarrying (in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Explosives Engineering Emphasis

<table>
<thead>
<tr>
<th>Junior and Senior Years</th>
<th>Explosives Engineering Emphasis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 3-hour Explosives Engineering class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN ENG 383</td>
<td>Tunneling & Underground Construction Techniques</td>
<td></td>
</tr>
<tr>
<td>GEO ENG 371</td>
<td>Rock Engineering</td>
<td></td>
</tr>
<tr>
<td>MIN ENG/EXP</td>
<td>Blasting Design And Technology (in lieu of Technical Elective in Senior Year.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Coal Emphasis

<table>
<thead>
<tr>
<th>Junior and Senior Years</th>
<th>Coal Emphasis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 343</td>
<td>Coal Mine Development And Production (in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 311</td>
<td>Mine Plant Management (or approved substitute course in lieu of Technical Elective.)</td>
<td>2</td>
</tr>
</tbody>
</table>

1. The curriculum contains a total of 21 general education credit hours. The three HSS electives must be from the approved list with at least one course (3 or more hours) that builds on depth and at least one course (3 or more hours) that focuses on the economics of a large enterprise, such as the mining industry, e.g. ECON 340 or ECON 354. The latter also satisfies the depth requirement.

2. Explosives Engineering Emphasis: MIN ENG 350 Blasting Design And Technology and either MIN ENG 301 Special Topics, MIN ENG 390 Undergraduate Research (both in an explosives area), GEO ENG 371 Rock Engineering or MIN ENG 383 Tunneling & Underground Construction Techniques have to be taken as Technical Electives.

3. Quarrying Emphasis: CIV ENG 216 Construction Materials, Properties And Testing and MIN ENG 304 Advanced Aggregate and Quarrying have to be taken as Technical Electives.

4. Coal Emphasis: MIN ENG 343 Coal Mine Development And Production, MIN ENG 311 Mine Plant Management or an approved substitute course have to be taken as Technical Electives.

5. Mining and the Environment Emphasis: GEO ENG 235 , GEO ENG 333 Risk Assessment In Environmental Studies, or approved substitute courses have to be taken as Technical Electives.

6. Mining Health and Safety Emphasis: MIN ENG 202 Mine Rescue, ENG MGT 311 Human Factors, or other approved substitute courses have to be taken as Technical Electives.

7. Sustainable Development Emphasis: POL SCI 315 Principles Of Public Policy, ECON 340 Environmental And Natural Resource Economics, or other approved substitute courses have to be taken as Technical Electives.

8. Mining courses offered every semester.
Mining and the Environment Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO ENG 235</td>
<td>(or approved substitute course in lieu of Technical Elective.)</td>
<td></td>
</tr>
<tr>
<td>GEO ENG 333</td>
<td>Risk Assessment In Environmental Studies (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Lana Z Alagha, Assistant Professor
PHD University of Texas at Dallas
Mineral processing, tailings management, polymer science, nanotechnology, interfacial science, colloidal interactions in aqueous systems, and clays.

Nassib S Aouad, Assistant Professor
PHD Missouri Science and Technology
Mechanical design and automation, machine health and fatigue analysis, machinery and whole-body vibrations, advanced vibrations modeling and analysis, numerical modeling and simulation, virtual prototyping, and computational fluid dynamics.

Kwame Awuah-Offei, Associate Professor
PHD University of Missouri-Rolla
Life cycle sustainability assessment, community acceptance modeling, energy efficiency modeling, production optimization, CO2 hazard delineation and innovative post-mining land uses for underground mines.

Jason Baird, Associate Professor
PHD University of Missouri-Rolla
Blast and ballistic-resistant structures, advanced blasting and demolition, energetic materials, explosives safety and risk assessment and risk management, advanced polymeric and composite materials, explosive taggants, explosives-driven pulsed power, and plasma effects on explosion shock for pulsed power.

Richard L Bullock, Professor Emeritus
DE University of Missouri-Rolla
Underground mining methods, tunneling and construction, and mine feasibility studies.

Samuel Frimpong, Professor
PHD University of Alberta, Canada
Surface mining, formation excavation, heavy machinery imaging and integration, intelligent mining systems, stochastic processes and risks simulation, extra heavy oil extraction, and mine safety, and health and hazards engineering.

Grzegorz Galecki, Associate Professor
PHD Wroclaw Tech Univ - Poland
System integration, modeling of mining processes supported by waterjets, novel methods of comminution, particulate processing, coal conversion into fuels, borehole mining, and mineral processing.

Maochen Ge, Associate Professor
PHD Penn State University
Rock mechanics and ground control, underground mine design, acoustic emissions, micro-seismic phenomena in underground mines, theory and applications of geotomology, non-destructive structural testing, and numerical methods.

Gregory Gelles, Professor
PHD West Virginia University
Finance, risks and uncertainty, and mathematical analysis.

Argyle Douglas Stewart Gillies, Professor
PHD University of New South Wales, Australia
Underground mining methods, mine ventilation and atmospheric control, mine power and drainage, mining industry economics, coal mining, and mine safety and health.

Tad S Golosinski, Professor Emeritus
PHD University of Mining and Metallurgy, Poland
Surface mining methods and equipment, mine plant management, belt conveying, hoist and hoist system.

R Larry Grayson, Professor Emeritus
PHD West Virginia University
Advanced mine safety and health, materials accounting, mine optimization, modeling, coal mining, and energy systems.

Stephen Anthony Lang, Lecturer
ME University of Missouri-Rolla
Mine management, global mining, sustainable development, and financial literacy - OSC regulations.

Cheryl M Seeger, Lecturer
PHD University of Missouri-Rolla
Economic geology, mineralogy and petrology, and exploration geology.

David A Summers, Curators Professor Emeritus
PHD University of Leeds, United Kingdom
Water-jet science and engineering, rock excavation, strata control, biofuels engineering, hydraulic mining, and precision drilling.

Jerry C Tien, Associate Professor
PHD University of Missouri-Rolla
Underground mining methods, mine ventilation and atmospheric control, mine power and drainage, mining industry economics, coal mining, mine safety and health.

Paul Nicholas Worsey, Professor
PHD University of Newcastle-upon-Tyne, United Kingdom
Explosives engineering, drilling and blasting, rock excavation, demolition, and commercial pyrotechnics.

Multiculturalism & Diversity

Multiculturalism & Diversity Minor

The minor requires 15 hours in a minimum of 3 of 4 Humanities and Social Sciences (HSS) departments: the Departments of Arts, Languages & Philosophy; English & Technical Communication; History & Political Science; and Psychology. The academic home for this minor will be the HSS department in which the student takes the majority of their classes. Courses offered by these departments that can be included in the minor are listed below.

Arts, Languages & Philosophy:

One 3rd level basic study course in a foreign language (German, Spanish, French, or Russian) 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRENCH 360</td>
<td>French Culture And Civilization</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 340</td>
<td>Social Ethics</td>
<td>3</td>
</tr>
<tr>
<td>RUSSIAN 360</td>
<td>Russian Civilization</td>
<td>3</td>
</tr>
</tbody>
</table>
Missouri University of Science and Technology

SP&M S 235 Intercultural Communication 3

English and Technical Communication:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 102</td>
<td>World Literature I: From The Beginnings To The</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Renaissance</td>
<td></td>
</tr>
<tr>
<td>ENGLISH 215</td>
<td>Literature By Women</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 230</td>
<td>African American Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 378</td>
<td>The American Experience</td>
<td>3</td>
</tr>
</tbody>
</table>

History and Political Science:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 226</td>
<td>Modern East Asia</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 355</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL SCI 226</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 350</td>
<td>The Politics Of The Third World</td>
<td>3</td>
</tr>
</tbody>
</table>

Psychology:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 350</td>
<td>Psychology of Women</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 380</td>
<td>Cross-Cultural Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

* Specific 3rd Level Language Courses, as listed below.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRENCH 80</td>
<td>French Readings And Composition</td>
<td>4</td>
</tr>
<tr>
<td>FRENCH 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRENCH 110</td>
<td>Basic French Conversation</td>
<td>2</td>
</tr>
<tr>
<td>FRENCH 170</td>
<td>Masterpieces Of French Literature</td>
<td>3</td>
</tr>
<tr>
<td>FRENCH 180</td>
<td>Basic French Composition</td>
<td>3</td>
</tr>
<tr>
<td>FRENCH 311</td>
<td>Advanced French Conversation</td>
<td>2</td>
</tr>
<tr>
<td>FRENCH 370</td>
<td>Survey Of French Literature I(Early Period)</td>
<td>3</td>
</tr>
<tr>
<td>FRENCH 375</td>
<td>Survey Of French Literature II(Modern Period)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMAN 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 110</td>
<td>Basic German Conversation</td>
<td>2</td>
</tr>
<tr>
<td>GERMAN 170</td>
<td>Masterpieces Of German Literature</td>
<td>3</td>
</tr>
<tr>
<td>GERMAN 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN 385</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSSIAN 80</td>
<td>Readings In Science And Literature</td>
<td>4</td>
</tr>
<tr>
<td>RUSSIAN 110</td>
<td>Basic Russian Conversation</td>
<td>2</td>
</tr>
<tr>
<td>RUSSIAN 170</td>
<td>Masterpieces Of Russian Literature</td>
<td>3</td>
</tr>
<tr>
<td>RUSSIAN 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUSSIAN 311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUSSIAN 370</td>
<td>Survey Of Russian Literature I(Early Period)</td>
<td>3</td>
</tr>
<tr>
<td>RUSSIAN 375</td>
<td>Survey Of Russian Literature II(Modern Period)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPANISH 80</td>
<td>Readings And Composition</td>
<td>4</td>
</tr>
<tr>
<td>SPANISH 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPANISH 110</td>
<td>Basic Spanish Conversation</td>
<td>2</td>
</tr>
<tr>
<td>SPANISH 160</td>
<td>Hispanic Culture</td>
<td>3</td>
</tr>
<tr>
<td>SPANISH 170</td>
<td>Masterpieces Of Hispanic Literature</td>
<td>3</td>
</tr>
<tr>
<td>SPANISH 180</td>
<td>Intermediate Spanish Composition</td>
<td>3</td>
</tr>
<tr>
<td>SPANISH 311</td>
<td>Advanced Spanish Conversation</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPANISH 377</td>
<td>Spanish-American Novel And Short Story</td>
<td>3</td>
</tr>
<tr>
<td>SPANISH 378</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Music

At Missouri S&T, music offerings include bands, orchestras and choirs. Credit may be earned by participating in these groups.

You can take courses in various areas of music appreciation, music history and theory, special projects courses in music, and private applied music instruction.

Music Minor Curriculum

1. The following courses will be taken:
 A. Eight hours of theory.
 B. Six hours of music history and literature.
 C. Six hours of applied private instruction (two years), culminating in an approved recital or other appearance.

2. The successful music minor will demonstrate adequate keyboard proficiency or take keyboard until proficiency is attained.

3. The music minor will participate in one or more major ensembles per semester (band, jazz, orchestra, vocal, opera).

- Robert James Cesario, Assistant Professor
- DA University Of Northern CO
- David L. Cress, Lecturer
- MS Troy University Troy, AL
- Lorie Lynne Francis, Lecturer
- MMUS University of Colorado Boulder

Nuclear Engineering

The Nuclear Engineering program is offered under the department of Mining and Nuclear Engineering.

The Nuclear Engineering Program has a primary mission to provide an outstanding and comprehensive undergraduate and graduate education to tomorrow’s leaders in Nuclear Engineering. The department provides well-educated Nuclear Engineering professionals and leaders to Missouri and the nation, in the commercial nuclear industry, national laboratories, graduate schools, and the nation’s defense and federal agencies. The objectives of the Bachelor of Science program are to provide each student with fundamental knowledge of nuclear engineering and related technologies, analytical and problem solving ability, ability for technical communications, professional ethics, leadership and interpersonal skills, capability to conduct research, and the ability to recognize the value of life-long learning.

The program is committed to a strong engineering program administered by highly motivated and active nuclear engineering faculty; it is the only B.S. Nuclear Engineering degree program accredited in the state of Missouri. The Nuclear Engineering program at Missouri S&T, one of the earliest ABET accredited undergraduate programs in the nation, interacts with professional societies, and the nuclear industry to promote continuing education, research opportunities, and public dissemination of information about issues and advances in the field.

Nuclear engineers develop and promote the utilization of energy released from nuclear fission, fusion, and the decay of radioisotopes. Currently,
there are more than 100 nuclear power plants operating in the United States producing about 20 percent of our nation’s electricity. These plants use nuclear fission to produce energy and are cooled by ordinary (light) water, hence the name, Light Water Reactors. This technology reduces the emission of greenhouse gases like carbon dioxide significantly, thus contributing to a better environment. In addition, nuclear reactors are used for the propulsion of submarines and aircraft carriers.

In fusion power plants, under development, strong magnetic fields contain a plasma fuel of hydrogen isotopes, such as deuterium, at temperatures hotter than the sun. The deuterium extracted from one gallon of water could produce as much energy as burning several hundred gallons of gasoline.

Radioisotopes are used in industry and research, and in medicine for diagnostic and therapeutic purposes. The medical use of radioisotopes and X-rays saves hundreds of thousands of lives every year throughout the world. Radioisotopes are also used in small power generators for space flights.

If you choose Nuclear Engineering, you could work in the areas of nuclear reactor design, plant licensing, plant operation, fuel management and development, radioactive waste disposal, health physics, instrumentation and control, fusion research, space nuclear power, and applications of radioisotopes in industry, medicine, and research. As a nuclear engineer, you might be employed by utilities, reactor vendors, architect-engineering firms, consulting firms, industrial research centers, national laboratories, government agencies or universities.

The Nuclear Engineering curriculum consists of three components: general education, mathematics and basic sciences, and engineering topics. The students apply the principles of physics, chemistry and mathematics to the study of engineering topics which include statics, mechanics of materials, electronic circuits and machines, thermodynamics, and metallurgy. The knowledge gained in these areas is applied to the understanding of Nuclear Engineering topics including reactor fluid mechanics and heat transfer, reactor physics, nuclear radiation measurements, radioactive waste management, reactor laboratory and operation, nuclear materials, and nuclear systems design (a capstone design course).

Engineering design is an integral part of a significant number of required courses in the Nuclear Engineering program. Design topics include but are not limited to reactor cooling systems, radiation protection, structural components, waste disposal and transportation systems, nuclear reactor cores and the design of experiments for radiation detection and measurement. While obtaining experience in these areas the students are prepared for designing a complete nuclear system such as a nuclear plant for electric power generation, space propulsion, desalination, district heating or radioisotope production for industrial, medical or research applications.

In the Senior Nuclear Systems Design course (NUC ENG 323), students work in small groups on different components of a system. They interact and exchange ideas with the instructor and other groups on a weekly basis both collectively and individually in the form of reports and oral presentations. In this course, all of the knowledge acquired by the students including that in the humanities and social sciences, is brought to bear on the selection of the final design. In addition to the technical considerations, the issues addressed include economics, safety, reliability, ethics, and social impact. At the end of the semester the students write a comprehensive and cohesive final report for their final design and make an oral presentation of their work.

Laboratory facilities available to nuclear engineering students include a radiation measurements laboratory, a 200 kW swimming pool-type nuclear reactor, a materials analysis laboratory, a computer learning center, a radiochemistry lab, and a neutron generator. The students have access to state-of-the-art computing facilities including personal computers, and numerically intensive cluster computers. The department offices and laboratories are primarily housed in Fulton Hall. The nuclear reactor is housed in its own building.

Mission Statement

The primary mission of the Nuclear Engineering program is to provide well-educated Nuclear Engineering professionals and leaders to Missouri and the nation in the commercial nuclear industry, national laboratories, graduate schools, and the nation’s defense and federal agencies.

Program Educational Objectives

The Educational Objectives of the Nuclear Engineering undergraduate program are:

- Fundamental knowledge of Nuclear Engineering and related technologies. Our graduates will continue to demonstrate a sound fundamental knowledge of nuclear engineering and related technologies as members of their professional community.
- Analytical and problem solving ability. Our graduates will continue to use logical, creative, collaborative, analytical and problem solving abilities to address emerging multidisciplinary endeavors.
- Leadership and professional ethics. Our graduates will continue to demonstrate leadership with an understanding of, and a commitment to, professional ethics.
- Technical communication and interpersonal skills. Our graduates will continue to demonstrate technical communication and interpersonal skills, enabling them to excel in their profession.
- Capability to conduct research. Our graduates will continue to demonstrate the capability to conduct research enabling them to contribute to meeting the needs of their profession.
- Pursuit of life-long learning. Our graduates will continue to demonstrate a recognition of, and a desire for, the pursuit of life long learning that will foster their ability to adapt to change.

Program Outcomes

The following Program Outcomes (1 - 11) apply to the Nuclear Engineering program.

1. an ability to apply knowledge of mathematics, science, and engineering.
2. an ability to design and conduct experiments, as well as to analyze and interpret data.
3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. an ability to function on multidisciplinary teams.
5. an ability to identify, formulate, and solve engineering problems.
6. an understanding of professional and ethical responsibility.
7. an ability to communicate effectively.
8. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
9. a recognition of the need for, and an ability to engage in lifelong learning.
10. a knowledge of contemporary issues.
11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Nuclear Engineering Minor Curriculum

A Nuclear Engineering minor enhances the academic credentials of a student and broadens his/her employment choices. A minimum of 15 hours is required for a minor in Nuclear Engineering.

Before the courses listed below can be taken, the student should have completed Elementary Differential Equations (MATH 204) (or equivalent) and Introduction To Modern Physics (PHYSICS 107) (or NUC ENG 203 or equivalent). Required courses are:

- NUC ENG 205 Fundamentals Of Nuclear Engineering 3
- NUC ENG 223 Reactor Heat Transfer 3
- NUC ENG 312 Nuclear Radiation Measurements and Spectroscopy 3

The other 6 hours should be selected from nuclear engineering 300-level courses.

Bachelor of Science Nuclear Engineering

Entering freshmen desiring to study Nuclear Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, to state a Nuclear Engineering preference, which will be used as a consideration for available departmental scholarships.

For the Bachelor of Science degree in Nuclear Engineering a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain an average of at least two grade points overall and for all courses taken in Nuclear Engineering.

The Nuclear Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). Each student’s program of study must contain a minimum of 16 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. Some disciplines require one humanities course to be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater (see list of approved humanities and social science courses.

2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved list. One of these courses must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 to 80 can be considered to be one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level.)

3. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages. Students who select the foreign language option are urged to take more than one course.

4. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student’s department chair.

The Nuclear Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.
Petroleum Engineering

Anyone with an interest in energy and a strong desire to get paid for traveling the globe might consider the possibility of a career as a petroleum engineer. Petroleum engineers seek out oil and gas reservoirs beneath the earth’s surface. They develop the safest and most efficient methods of bringing those resources to the surface and to market.

Many petroleum engineers travel the world or live in foreign countries - wherever their explorations take them to find and recover valuable petroleum reserves. These travels can lead to the deserts, high seas, mountains, and arctic regions of the world in order to find untapped sources of energy for the world’s population. Petroleum engineers also tend to quickly assume leadership roles, handling large projects with high levels of responsibility.

Because of the increasing demand for energy, there has been an accompanying increase in the demand for petroleum engineers worldwide. In the United States, the oil industry workforce is aging, and numerous opportunities are expected as a result.

As a Petroleum Engineering student, you will study the technology of oil and gas drilling, production, reserves estimation, and the prediction of future production. You will also study various techniques for evaluating the characteristics of petroleum bearing formations and their fluid contents.

Petroleum Engineering is an independent degree program offered under the department of Geological Sciences and Engineering.

Mission Statement

To educate engineers for the worldwide petroleum industry, and to perform meaningful research that advances oil and gas recovery. Students graduating from the Petroleum Engineering program shall be well prepared to serve the industry and themselves, through their technical knowledge, ethical considerations, participation in professional societies and desire for life long learning. The Petroleum Engineering program emphasizes the importance of geomechanics in petroleum development, through building mechanical earth models.

Petroleum Engineering Educational Objectives

1. To produce a petroleum engineer who is capable of working as a drilling/completions, production, or reservoir engineer; or related fields of hydrogeology, petroleum transportation and storage, or oil and gas regulations.

2. To produce a petroleum engineer who understands the value of information in the exploitation of an oil or gas asset, and who can analyze and synthesize data to construct economic solutions to petroleum engineering problems.

3. To produce petroleum engineers who are recognized for their ability to integrate geology, geophysics, petrophysics and mechanical earth modeling to solve petroleum engineering problems within the framework of multidisciplinary teams.

Educational Outcomes

The Petroleum Engineering program educational outcomes are based on ABET’s outcomes 1 through 12 plus specific MEM related outcomes. The outcomes statements are as follows: Petroleum Engineering seeks to graduate students who have:
1. The ability to apply knowledge of mathematics, science, and engineering.
2. The ability to design and conduct experiments, as well as to analyze and interpret data.
3. The ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. The ability to function on multidisciplinary teams.
5. The ability to identify, formulate, and solve engineering problems.
6. The understanding of professional and ethical responsibility.
7. The ability to communicate effectively.
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
9. Recognition of the need for and an ability to engage in life-long learning.
10. Knowledge of contemporary issues.
11. The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12. The ability to use Mechanical Earth Modeling tools and techniques to solve problems associated with the production of oil and gas.

Minor Curriculum in Petroleum Engineering

The Petroleum Industry employs not only Petroleum but also Civil, Electrical, Chemical, Geological, Mechanical and other engineers. A Petroleum Engineering minor, therefore, enhances the academic credentials of a student and broadens their employment choices. A minor in Petroleum Engineering requires 15 hours of Missouri S&T credit to include the following:

- PET ENG 331 (Fall) 3
- PET ENG 240 Properties Of Hydrocarbon Fluids (Fall) 3
- PET ENG 241 Petroleum Reservoir Engineering (Fall) 3

Select one of the following:
- PET ENG 316 Well Performance and Production Systems (Fall) 3
- PET ENG 335 Secondary Recovery Of Petroleum (Spring) 3

One elective course * 3

Total Credits 12

* The elective course is to be selected from any other 200 or 300 level Petroleum Engineering courses offered except Seminars.

Bachelor of Science Petroleum Engineering

Entering freshmen desiring to study Petroleum Engineering will be admitted to the Freshman Engineering Program. They will, however, be permitted, if they wish, to state a Petroleum Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering Program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Petroleum Engineering a minimum of 129 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student's major department, and an average of at least two grade points per credit hour must be maintained in Petroleum Engineering.

The Petroleum Engineering curriculum contains a required number of hours in humanities and social sciences as specified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Each student's program of study must contain a minimum of 16 credit hours of course work from the humanities and the social sciences areas and should be chosen according to the following rules:

1. All students are required to take one American history course and one economics course. The history course is to be selected from HISTORY 112, HISTORY 175, HISTORY 176, or POL SCI 90. The economics course may be either ECON 121 or ECON 122. Some disciplines require one humanities course to be selected from the approved lists for art, English, foreign languages, music, philosophy, speech and media studies, or theater.
2. Of the remaining hours, six credit hours must be taken in humanities or social sciences at the 100 level or above and must be selected from the approved lists. Each of these courses must have as a prerequisite one of the humanities or social sciences courses already taken. Foreign language courses numbered 70 to 80 can be considered to be one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 300 level.)
3. Some departments list specific requirements; e.g., a psychology course, a literature course, and/or a second semester of economics. Selections should be made to ensure that these requirements are met.
4. Skill courses are not allowed to meet humanities and social sciences requirements except in foreign languages. Students who select the foreign language option are urged to take more than one course.
5. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student's department chairman.

The Petroleum Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

Students planning on majoring in petroleum engineering should take the following courses.
<table>
<thead>
<tr>
<th>Degree Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 112, or 175, or 176, or POL SCI 90</td>
</tr>
<tr>
<td>MATH 14</td>
</tr>
<tr>
<td>PHYSICS 24</td>
</tr>
<tr>
<td>GEOLOGY 220</td>
</tr>
<tr>
<td>PET ENG 240</td>
</tr>
<tr>
<td>CIV ENG 50</td>
</tr>
<tr>
<td>Sophomore Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>MATH 22</td>
</tr>
<tr>
<td>PHYSICS 24</td>
</tr>
<tr>
<td>GEOLOGY 220</td>
</tr>
<tr>
<td>PET ENG 240</td>
</tr>
<tr>
<td>CIV ENG 50</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>Junior Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>GEOLOGY 340</td>
</tr>
<tr>
<td>GEOPHYS 377</td>
</tr>
<tr>
<td>PET ENG 313</td>
</tr>
<tr>
<td>CIV ENG 230</td>
</tr>
<tr>
<td>ECON 121 or 122</td>
</tr>
<tr>
<td>PET ENG Reservoir Engineering Elective⁴</td>
</tr>
<tr>
<td>Senior Year</td>
</tr>
<tr>
<td>First Semester</td>
</tr>
<tr>
<td>MECH ENG 227</td>
</tr>
<tr>
<td>PET ENG 310³</td>
</tr>
<tr>
<td>PET ENG 341</td>
</tr>
<tr>
<td>PET ENG 366</td>
</tr>
<tr>
<td>PET ENG Elective⁵</td>
</tr>
<tr>
<td>Humanities/Social Sci Elective²</td>
</tr>
<tr>
<td>Total Credits: 129</td>
</tr>
</tbody>
</table>

1. All freshmen Petroleum Engineering students must enroll in CHEM 4.
2. Humanities/Social Science electives are to be selected from a list of approved courses as published by the department. Petroleum Engineering students are especially encouraged to study foreign languages.
3. All Petroleum Engineering students must take the Fundamentals of Engineering Examination prior to graduation. A passing grade on this examination is not required to earn a B.S. degree, however, it is the first step to becoming a registered professional engineer. This requirement is part of Missouri S&T assessment process as described in Assessment Requirements found elsewhere in this catalog. Students must sign a release form giving the University access to their Fundamentals of Engineering Examination score.
4. This is a reservoir engineering elective. Students should choose from PET ENG 329, PET ENG 360, PET ENG 335, PET ENG 308, or PET ENG 320.
5. Select Petroleum Engineering electives in accordance with interest area. Students interested in reservoir engineering select from topics in advanced reservoir engineering, simulation, natural gas engineering, and formation characterization. Students interested in drilling/completions and production select petroleum electives such as advanced drilling, well completions, stimulation. Other general interest petroleum electives may be selected as available.
6. Students may also select ENGLISH 60 or ENGLISH 160.

The total number of credit hours required for a degree in Petroleum Engineering is 129.

Petroleum Engineering students must earn the grade of “C” or better in all Petroleum Engineering courses to receive credit toward graduation.

Baojun Bai, Associate Professor
PHD New Mexico Institute of Mining

Shari Dunn Norman, Associate Professor
PHD Heriot-Watt University

Andreas Eckert, Assistant Professor
PHD University of Karlsruhe

A Curt Elmore, Professor¹
PHD University of Arizona

Ralph E Flori Jr, Associate Professor
PHD University Of Missouri-Rolla

Runar Nygaard, Assistant Professor
PHD University of Oslo-Norway

Mingzhen Wei, Assistant Professor
PHD New Mexico Tech

Philosophy

The Philosophy program is offered in the Department of Arts, Languages & Philosophy.

The study of Philosophy emphasizes the understanding of ideas, the capacity to identify assumptions, and the ability to gain insights into problems and puzzles. Central to philosophy is the application of rigorous thinking to the fundamental issues of reality, knowledge, and value.

Because rigorous thinking is not restricted to any one academic area, philosophical interests are wide ranging. All types of questions are considered: do we have freewill or are all our actions caused? Does God exist and have a determinable nature? How do we tell the difference between what’s morally right and wrong? What is thinking and can animals or machines think? How does our nature influence our behavior and creative activity? What is the interrelationship between technological development and human values? etc.

Philosophy touches on nearly all fields of endeavor and a philosophical education is very flexible. With the help of advisors, students can design their curriculum to match their own special interests. Philosophy is also an excellent pre-professional degree.

Ethics Minor

To qualify, all students must take 15 hours of course work from the following list of which at least 6 hours are from the 300 level:
Guidelines for a major in Philosophy are as follows:

Philosophy Bachelor of Arts

- Hours will need to be in philosophy.
- Areas of philosophy, political science and history. Nine or more of these
- To qualify, all students must take 15 hours of course work in the following

Philosophy Minor

1. A student with a minor in Philosophy must meet the following requirements:
 - Twelve hours in Philosophy course beyond PHILOS 5 (https://nextcatalog.mst.edu/undergraduate/degreeprogramsandcourses/philosophy) Introduction To Philosophy (PHILOS 5 (https://nextcatalog.mst.edu/undergraduate/degreeprogramsandcourses/philosophy) is a prerequisite to a minor in philosophy).
 - Six of the twelve hours must be completed in Philosophy courses numbered 300 or above.

2. A student should declare his or her intention to minor in Philosophy by his or her junior year.

3. A member of the Philosophy staff will act as the student’s minor advisor. The student and his or her minor advisor will plan a course of study to meet the specific interests and needs of the student.

Philosophy of Technology Minor

To qualify, all students must take 15 hours of course work in the following areas of philosophy, political science and history. Nine or more of these hours will need to be in philosophy.

Mandatory:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILOS 15</td>
<td>Introduction To Logic</td>
<td>3</td>
</tr>
</tbody>
</table>

At least two of the following, one of which must be a philosophy class:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILOS 345</td>
<td>Philosophy Of Science</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 320</td>
<td>Minds And Machines</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 375</td>
<td>Architecture, Technology and Society; 1750 to Present</td>
<td>3</td>
</tr>
</tbody>
</table>

POL SCI 325

Additional courses from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILOS 5</td>
<td>Introduction To Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 150</td>
<td>Biotechnology in Film</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 223</td>
<td>Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 270</td>
<td>History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 271</td>
<td>Twentieth Century Technology And Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Arts Philosophy

Guidelines for a major in Philosophy are as follows:

1. Completion of general Missouri S&T B.A. requirements.
2. PHILOS 5 Introduction To Philosophy, and PHILOS 15 Introduction To Logic.
3. A minimum of 24 hours in philosophy beyond courses PHILOS 5 and PHILOS 15, at least 12 of which must be at the 300 level. Courses to be taken should be determined in consultation with the student’s major advisor.

An individualized program of study will be designed in conference between student and advisor in order to best serve student interests and needs.

Note: Entering students will normally take ENGLISH 20 either semester of the first year.

Joel P Dittmer, Assistant Professor
PHD University of Missouri

Jonathan Andrew Finch, Lecturer
MASTER University of Miami

Darin Finke, Lecturer
PHD University of Missouri

Andrew Max Tohline, Lecturer
MA Ohio University

Physical Education and Recreation

To enhance your academic education, you can take part in physical education and recreation courses on campus. There are courses in golf, racquetball, swimming fitness, methods in elementary physical education, weight training, theory of coaching basketball and football, care and prevention of athletic injuries, elements of health education, and theory of sports officiating. The goal of the department is to provide recreational experiences and course work, which will contribute to your physical health and development, social adjustment, and emotional well being. The emphasis is on training you to gain the maximum benefit from leisure time both now and in the future.

The Multi-Purpose Building, Student Rec Center, and surrounding facilities provide an ideal place for you to participate in recreational activities. The building features an indoor swimming pool, indoor jogging track, basketball, volleyball, and badminton courts, weight rooms, aerobics/martial arts room, racquetball courts and a squash court. A golf course, and multi-use intramural fields highlight the outdoor facilities.

Physics

Physics is devoted to the discovery and exploration of the most basic physical laws governing our material universe. The working physicist attempts to express these laws in their most elegant mathematical form, so that they can be applied to predict the behavior of all forms of matter and energy, in physical systems that range from the subatomic level of quarks, gluons, nuclei, and atoms, all the way out to the astrophysical level of planets, stars, black holes, galaxies, and larger scale structures of the universe. The knowledge obtained in various experimental and theoretical investigations of physical phenomena forms the foundation for many modern technologies. For example there are lasers used in high-speed communications and micro-surgery, the plastic electronics used in modern computer displays, the magnetic behavior of the thin films used for computer hard drives, and the radiation detectors and
optical elements used in the Hubble space telescope. The fundamental knowledge gained by physicists helps to shape and improve the quality of modern life.

The Missouri S&T Physics department is dedicated to providing opportunities for undergraduates to participate in cutting-edge, nationally funded scientific research programs supervised by departmental faculty. Topics currently being investigated by Missouri S&T undergraduates include collisions between electrons, atoms, and ions; the magnetic properties of nanoscale thin films and other highly magnetic materials; transparent conducting oxides; photonic materials; quantum phase transitions; and atmospheric changes induced by manmade pollutants, such as those found in acid rain or in the exhaust generated by high altitude aircraft and space vehicle launches.

The department encourages its undergraduates to get involved in the many research projects available, and many students who participate in research go on to present their work at research competitions throughout the state and at national scientific meetings. Missouri S&T Physics students regularly win prizes for their research accomplishments in the annual Fuller competitions.

After receiving a solid foundation in the basic Physics governing the behavior of matter, energy, and radiation, the undergraduate Physics major is able to choose among many advanced level courses to satisfy their particular interests in various fields of modern physics. Courses available to upper level Physics majors include optics, astrophysics, subatomic physics, general relativity, solid state physics, laser physics, chaos, and computational physics. The curriculum also includes advanced laboratory courses where students design and participate in original research with other Physics majors. Many additional technical courses are available to Physics majors in applied areas of other disciplines, such as computer science, electrical engineering, and the biological sciences.

Your undergraduate program will cover a range of fundamental topics and will include substantial laboratory training. In addition, the program is designed with many electives that allow Physics majors to tailor their undergraduate education to their own particular interests. As a Physics major you will have the flexibility to develop a program that best suits your interest and needs. There are 50 credit hours in physics, 23 in mathematics, 9 in chemistry, and 3 in computer science. Also required are 24 credit hours in communication, humanities, and social sciences. The rest of the 128 required hours, 19 hours, are free electives that you select in consultation with your advisor.

Many Physics majors choose to use their electives to study other technical areas, such as mathematics, computer science, or electrical engineering. Some students get dual bachelor’s degrees, for example, with their second degree in computer science, chemistry, or mathematics. Because there is considerable overlap in degree requirements between Physics and other technical and scientific disciplines, a dual degree usually requires no more than one extra semester of undergraduate study. The best curriculum for each student seeking a dual degree is determined in planning sessions with his or her advisor.

An undergraduate degree in Physics provides opportunities for a wide range of careers. About two-thirds of our graduates go on to graduate school, many at some of the most prestigious first-tier schools in the country. In addition many of those who complete their Physics education with a bachelor’s degree have been very successful in finding exciting employment opportunities in today’s high-tech industries. Missouri S&T Physics graduates have gone on to lead and manage major research efforts at leading industrial companies, to be professors and chairmen at leading academic universities, and to work in areas ranging from law and medicine to ecophysics and astrophysics.

All interested or prospective students considering a career in Physics are invited to visit the campus and tour our research laboratories and classrooms to obtain a better picture of the exciting opportunities available.

Physics Minor Curriculum

The minor in Physics is a flexible program whose goal is to increase the breadth and competency of science and engineering students in modern or classical Physics. Science students pursuing the Physics minor will be interested in a deeper understanding of fundamental physical processes. Engineering students who intend to work in research or advanced development may use a Physics minor to acquire a thorough knowledge of atomic, condensed matter, and environmental physics.

The physics minor consists of PHYSICS 107 or PHYSICS 207 and 12 additional hours of physics courses at the 200 level or above. The program will be designed to conform to the individual’s interests and needs.

Bachelor of Science Physics

A minimum of 128 credit hours is required for a Bachelor of Science degree in Physics and an average of at least two grade points per credit hour must be obtained. These requirements for the B.S. degree are in addition to credit received for algebra, trigonometry, and basic ROTC.

The Physics curriculum requires twelve semester hours in humanities, exclusive of foreign language, and must include and ENGLISH 60 or ENGLISH 160. A minimum of nine semester hours is required in social sciences, including either HISTORY 175, HISTORY 176, HISTORY 112, or POL SCI 90 or POL SCI 176. Specific requirements for the bachelor degree are outlined in the sample program listed below.
Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 308</td>
<td>3</td>
<td>PHYSICS 221</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 322</td>
<td>3</td>
<td>PHYSICS 332</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 307</td>
<td>3</td>
<td>Math/Stat Elective²</td>
<td>3</td>
</tr>
<tr>
<td>Math/Stat Elective²</td>
<td>3</td>
<td>Electives¹</td>
<td>5</td>
</tr>
<tr>
<td>Electives¹</td>
<td>1</td>
<td>Electives¹</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits: 18</td>
<td></td>
<td>Total Credits: 14</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 321</td>
<td>3</td>
<td>PHYSICS 311</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 361</td>
<td>3</td>
<td>Elective-Humanities (300 level)</td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective³</td>
<td>3</td>
<td>Physics Elective³</td>
<td>3</td>
</tr>
<tr>
<td>Electives¹</td>
<td>6</td>
<td>Electives¹</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits: 15</td>
<td></td>
<td>Total Credits: 15</td>
<td></td>
</tr>
</tbody>
</table>

Note: The minimum credit hours required for a Bachelor of Science in Physics is 128 hours. No more than two of the required physics and mathematics courses with a grade of “D” may be used to meet graduation requirements. Upon petition to and approval by the physics faculty, three semester hours of advanced ROTC (Military Science or Aerospace Credit Studies) credit can be counted as elective credit to meet requirements for graduation.

¹ Electives, in addition to the Math/Stat electives² and Physics electives³, shall include six hours of social studies and nine hours of humanities, at least three of which must be literature and at least three of which must be at the 300 level (PHILOS 345 recommended). Nineteen hours of free electives may be used to develop an emphasis area. Eighteen hours of elective credit shall be in courses at the junior or senior level.

² Six hours of mathematics or statistics beyond MATH 204 are required. MATH 208, MATH 322, MATH 325, or MATH 351 are recommended.

³ In addition to the specific physics courses listed (PHYSICS 307, PHYSICS 308, PHYSICS 311, PHYSICS 321, PHYSICS 322, PHYSICS 332, and PHYSICS 361) two other physics 300 level courses are required. PHYSICS 305, PHYSICS 323, PHYSICS 357, PHYSICS 371, or PHYSICS 381 are recommended.

Students may develop an emphasis area in secondary education by satisfying the requirements for a Bachelor of Science in Physics and by completing the following additional requirements:

a. Take the education Professional Requirements courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 40</td>
<td>Perspectives In Education</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 174</td>
<td>School Organization & Adm For Elementary & Secondary Teachers</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 216</td>
<td>Teaching Reading In Content Area</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 251</td>
<td>Historical Foundation Of American Education</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 280</td>
<td>Teaching Methods And Skills In The Content Areas</td>
<td>6</td>
</tr>
<tr>
<td>EDUC 298</td>
<td>Student Teaching Seminar</td>
<td>1</td>
</tr>
<tr>
<td>PSYCH 155</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 208</td>
<td>Psychological & Educational Development Of The Adolescent</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 354</td>
<td>Psychology Of The Exceptional Child</td>
<td>3</td>
</tr>
</tbody>
</table>

Fifteen of these credit hours may be used to substitute for six hours of mathematics electives, six hours of physics electives, and three hours of computer science courses.

b. Take the education Clinical Experience courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 104</td>
<td>Teacher Field Experience</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 164</td>
<td>Aiding Elementary, Middle And Secondary Schools</td>
<td>2</td>
</tr>
<tr>
<td>EDUC 299</td>
<td>Student Teaching</td>
<td>12</td>
</tr>
</tbody>
</table>

c. Take these additional courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 85</td>
<td>Principles Of Speech</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>American Government</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 110</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 6</td>
<td>Environmental Physics I</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 275</td>
<td>History Of Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A 3 hour Art/Music/Theater elective</td>
<td>3</td>
</tr>
</tbody>
</table>

d. Complete the requirements for teacher certification listed in this catalog:

e. PHYSICS 23 and PHYSICS 24 may be substituted for:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 21</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 22</td>
<td>General Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 25</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 26</td>
<td>General Physics Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 14</td>
<td>General Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 8</td>
<td>Calculus With Analytic Geometry I</td>
<td>5</td>
</tr>
<tr>
<td>MATH 21</td>
<td>Calculus With Analytic Geometry II</td>
<td>5</td>
</tr>
</tbody>
</table>

Robert D Dubois, Professor
PHD University of Nebraska Lincoln

Donald Edward Hagen, Professor
PHD Purdue University Main Campus

Barbara N Hale, Professor
PHD Purdue University Main Campus

Yew San Hor, Assistant Professor
PHD Rutgers University

Ulrich Jentschura, Associate Professor
PHD Dresden University of Technology

David Edward Lay, Lecturer
MS University of Missouri - St. Louis

Don H Madison, Curators Professor
PHD Florida State University

Ioulia Y. Medvedeva, Associate Professor
PHD Russian Academy of Science
Political Science

Political Science explores the world of politics and the principles, techniques, and institutions through which we make collective decisions and resolve group conflicts. An understanding of politics is an especially useful skill for anyone entering a technical career, because so much of modern science and technology is embroiled in political controversy.

At Missouri S&T, courses are offered in American Politics, Comparative Politics, International Relations, and Political Theory. If you wish to pursue a specialized investigation of politics, a minor in Political Science is available.

Political Science Minor Curriculum
(Missouri S&T)

The Department of History and Political Science offers a minor degree in Political Science which must include 15 hours divided as follows: completion of POL SCI 90 American Government, plus an approved sequence of 12 hours of 200 and 300 level courses.

Science, Technology and Humanity Minor

The Science, Technology and Humanity (STH) minor is designed for students who want to explore the relationship between history, political science, and science and technology. The minor is particularly useful for technologically oriented students, because it provides insight into humanities and social science disciplines. It also shows how these disciplines interact with science and technology, thereby broadening their horizon of thought and action and preparing them for an increasingly technologically oriented future. To minor in STH the student must complete one of the following history survey courses: HISTORY 111 or HISTORY 112 or HISTORY 175 or HISTORY 176; and POL SCI 90. The student then must take either or . After completing the required six hours, the student will select nine additional hours from the list below.

15 credit hours total.

Students must take one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 111</td>
<td>Early Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 112</td>
<td>Modern Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 175</td>
<td>American History To 1877</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 176</td>
<td>American History Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>American Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must take one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 270</td>
<td>History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 275</td>
<td>History Of Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must take three of the following as approved by minor advisor:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 150</td>
<td>Biotechnology in Film</td>
<td>3</td>
</tr>
<tr>
<td>BIO SCI 251</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ECON 355</td>
<td>Energy Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 375</td>
<td>Labor Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT/PSYCH 311</td>
<td>Human Factors</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH 225</td>
<td>Science Fiction And Fantasy Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENV ENG 360</td>
<td>Environmental Law And Regulations</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 75</td>
<td>Geological Engineering in Popular Media</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 270</td>
<td>History of Technology</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 271</td>
<td>Twentieth Century Technology And Society</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 275</td>
<td>History Of Science</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 280</td>
<td>The American Military Experience</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 361</td>
<td>American Environmental History</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY 375</td>
<td>Architecture, Technology and Society; 1750 to Present</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 351</td>
<td>Technological Innovation Management and Leadership</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 385</td>
<td>Human Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 223</td>
<td>Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 225</td>
<td>Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 320</td>
<td>Minds And Machines</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 345</td>
<td>Philosophy Of Science</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 350</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 315</td>
<td>Principles Of Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 307</td>
<td>Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 314</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 361</td>
<td>History of Technical Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Tseggai Isaac, Associate Professor
PHD University of Missouri-Columbia

Michael E Meagher, Associate Professor
PHD Southern Illinois University Carbondale

John Dalton Wiggins, Lecturer
JD University Of Missouri-Columbia
Prehealth Professions

Missouri S&T has several programs of study, which prepare students for success in the professional schools of human medicine, veterinary medicine, dentistry, and related areas of health-care. Degree programs in Biological Sciences, Chemistry and Chemical and Biological Engineering offer all the coursework necessary for admission to health profession schools. Advising of students desiring a pre-health profession background is conducted by Missouri S&T Pre-Health Professions Advisory Committee in conjunction with the student’s department advisors. Interested students may inquire with Dr. Dave Westenberg, Biological Sciences Department, who chairs the Pre-Health Professions Advisory Committee. Students interested in health professions are strongly encouraged to obtain shadowing and volunteer experience in their desired profession as early as possible.

Premedicine Minor

It is recommended that students seeking the Pre-Medicine minor declare their intentions as soon as possible. Students completing the Pre-Medicine minor curriculum in addition to their BA/BS curriculum will have completed all requirements for admission to most Medical, Dental, Veterinary or other health profession programs. However, it is important to consult with a member of the Pre-Health Professions Advisory Committee to ensure you are completing the necessary coursework for your desired profession. The Pre-Medicine minor is not intended for a student majoring in Chemistry, Biological Sciences or Chemical and Biochemical Engineering which already offer a Pre-Medicine approved curriculum. Required courses for the Pre-Medicine minor are:

- BIO SCI 111 Principles of Biology 5
- & BIO SCI 112 and General Biology Lab
- or BIO SCI 110 General Biology
- & BIO SCI 112 and General Biology Lab
- BIO SCI 211 Cell Biology 4
- & BIO SCI 212 and Cell Biology Laboratory
- CHEM 1 General Chemistry 9
- & CHEM 2 and General Chemistry Laboratory
- & CHEM 3 and General Chemistry
- & CHEM 4 and Introduction To Laboratory Safety & Hazardous Materials
- CHEM 221 Organic Chemistry I 10
- & CHEM 226 and Organic Chemistry I Lab
- & CHEM 223 and Organic Chemistry II
- & CHEM 228 and Organic Chemistry II Lab
- PHYSICS 31 College Physics I 6-8
- & PHYSICS 35 and College Physics II
- or PHYSICS 21 General Physics I
- & PHYSICS 25 and General Physics II
- PHYSICS 22 General Physics Laboratory 2
- & PHYSICS 26 and General Physics Laboratory
- Mathematics two semesters to include:
 - MATH 8 Calculus With Analytic Geometry I
 - or MATH 14 Calculus For Engineers I
 - One of the following courses (taking all three courses is highly recommended):
 - BIO SCI 231 General Genetics
 - BIO SCI 242 Human Physiology
 - CHEM 361 General Biochemistry

Prelaw

The campus, has a variety of programs of study to prepare students for admittance to a professional school of law. Dr. Michael Meagher, Department of History/Political Science, 120 Humanities/Social Sciences Building, is Pre-law advisor.

Prelaw Minor

To qualify, students must complete a minimum of 18 hours of coursework in the following disciplines.

PHILOS 15	Introduction To Logic	3
Select two of the following:	6	
HISTORY 175	American History To 1877	
HISTORY 176	American History Since 1877	
POL SCI 90	American Government	
PHILOS 5	Introduction To Philosophy	
Select three of the following:	9	
Two of the three courses must come from the humanities and social sciences disciplines of History, English, Etymology, Philosophy, or Political Science.		
COMP SCI	Intellectual Property For Computer Scientists	
BUS 120	Financial Accounting	
BUS 230	Business Law	
ENGLISH 281	Theory Of Written Communication	
ENGLISH 302	Advanced Composition	
HISTORY 270	History Of Technology	
HISTORY 275	History Of Science	
PHILOS 235	Business Ethics	
PHILOS 340	Social Ethics	
PHILOS 345	Philosophy Of Science	
PHILOS 350	Environmental Ethics	
PHILOS 360	Foundations Of Political Conflict	
IS&T/PHILOS	Law and Ethics in E-Commerce	
BUS 120	Financial Accounting	
BUS 230	Business Law	
ENGLISH 281	Theory Of Written Communication	
ENGLISH 302	Advanced Composition	
HISTORY 270	History Of Technology	
HISTORY 275	History Of Science	
PHILOS 235	Business Ethics	
PHILOS 340	Social Ethics	
PHILOS 345	Philosophy Of Science	
PHILOS 350	Environmental Ethics	
PHILOS 360	Foundations Of Political Conflict	
IS&T/PHILOS	Law and Ethics in E-Commerce	
BUS 120	Financial Accounting	
BUS 230	Business Law	
ENGLISH 281	Theory Of Written Communication	
ENGLISH 302	Advanced Composition	
HISTORY 270	History Of Technology	
HISTORY 275	History Of Science	
PHILOS 235	Business Ethics	
PHILOS 340	Social Ethics	
PHILOS 345	Philosophy Of Science	
PHILOS 350	Environmental Ethics	
PHILOS 360	Foundations Of Political Conflict	
IS&T/PHILOS	Law and Ethics in E-Commerce	
BUS 120	Financial Accounting	
BUS 230	Business Law	
ENGLISH 281	Theory Of Written Communication	
ENGLISH 302	Advanced Composition	
HISTORY 270	History Of Technology	
HISTORY 275	History Of Science	
PHILOS 235	Business Ethics	
PHILOS 340	Social Ethics	
PHILOS 345	Philosophy Of Science	
PHILOS 350	Environmental Ethics	
PHILOS 360	Foundations Of Political Conflict	
IS&T/PHILOS	Law and Ethics in E-Commerce	

Psychology

Psychology is the scientific study of behavior and cognitive processes. Psychology is both a natural science, which stresses the cognitive and physiological causes of behavior, and a social science, which is directed at understanding how human behavior is affected by cultural and social
factors. As a Psychology major at Missouri S&T, you will be exposed to the many diverse areas of Psychology.

Perception, memory, thinking, personality, emotion, motivation, stress and adjustment, abnormal behavior, social relations, and group dynamics are among the basic areas of research in Psychology. The discipline also represents the application of these basic research areas to people, their work, and their environment. Clinical, counseling, educational, industrial/organizational, and human factors psychologists are among the professionals who apply basic research to the solution of human problems. Our department provides a broad education to Missouri S&T students in both the basic and applied areas of Psychology.

The statistics and research methods courses required of our majors prepare you to engage in undergraduate research as early as your sophomore year. By collaborating with a faculty member on a research project, you will gain valuable experience for subsequent graduate studies in psychology and related fields or for employment. Supervised internship experience in applied psychological settings, such as human service agencies, is also available for qualified students.

The department offers a choice of two degrees for majors. The Bachelor of Science degree provides a solid foundation in mathematics, biological sciences, physical sciences, and computer science. The Bachelor of Arts degree provides a broad liberal arts foundation, including courses in western civilization and foreign languages. Supporting courses in the humanities and social sciences are offered in both degrees and the psychology requirements are the same in both. In addition to the traditional B.A.-B.S. degrees in Psychology, the department also offers specialized B.A.-B.S. degrees in Psychology that prepare the student for teaching certification in Missouri.

The department also offers six minor programs: a general psychology minor, a minor in industrial/organizational psychology, a minor in the psychology of leadership, a minor in cognitive neuroscience, a minor in psychometrics, and a minor in multiculturalism and diversity. The general psychology minor allows students to select from a variety of courses tailored to their needs. The minor in industrial/organizational psychology requires specific courses of benefit to engineering and science majors. The minor in the psychology of leadership is geared for those individuals who would like to become leaders and managers. The cognitive neuroscience minor is designed to give students a broad understanding of neuroscience principles. The minor in psychometrics helps students better understand the application of statistical methods to the measurement of human characteristics and individual differences. The multicultural and diversity minor allows students to select courses across three of four departments, including Psychological Science, to increase their awareness of multiculturalism and diversity.

Psychology Minors

The department of Psychological Science offers six minors: a general minor, Industrial/Organizational, Psychology of Leadership, Cognitive Neuroscience, Psychometrics, and a minor in Multiculturalism and Diversity. Nine (9) hours of work in any of these Minors in Psychology must be completed in residence at Missouri S&T. A student may only receive one of the six minors.

Option (1)

General Psychology Minor requirements require 15 hours of courses in Psychology. At least nine of these hours must be at the 200-level or above.

Option (2)

Industrial/Organizational Psychology Minor requirements include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 307</td>
<td>Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 311</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Option (3)

Psychology of Leadership requirements include General Psychology and 4 of the following 5 courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 316</td>
<td>Psychology of Leadership in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 372</td>
<td>Group Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 378</td>
<td>Social Influence: Science and Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

Option (4)

Cognitive Neuroscience Minor requirements include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 240</td>
<td>Theories Of Learning</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 305</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 330</td>
<td>Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 340</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 345</td>
<td>Evolutionary Psychology</td>
<td></td>
</tr>
<tr>
<td>or PSYCH 362</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Option (5)

The Psychometric Minor requirements include the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 403</td>
<td>Psychometrics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 307</td>
<td>Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 364</td>
<td>Tests and Measurements</td>
<td>3</td>
</tr>
<tr>
<td>STAT 346</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 353</td>
<td>Statistical Data Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Option (6)

Multiculturalism and Diversity Minor

See website for minor requirements at: futurestudents.mst.edu/degrees/undergraduate/minors/multidiv.html

Bachelor of Arts Psychology

A minimum of 120 credit hours is required for a Bachelor of Arts degree in Psychology and an average of at least two grade points per credit hour must be obtained. The Psychology B.A. curriculum requires 23 hours of basic skills and concepts. That is, 6 hours of English Composition, 6 hours of Western Civilization, and 11-16 hours of foreign language. Twelve semester hours in humanities must be taken with at least one course taken in each of the three areas of literature (English and American), philosophy, and fine arts (art, music and theater), but not to
include studio and performance offerings. A minimum of twelve semester hours is required in social sciences in at least two of the following three areas: economics, political science, and history. And a minimum of 34 hours are required in psychology. Up to 12 credit hours of advanced ROTC may be credited toward the degree. Specific requirements for the Bachelor of Arts degree are outlined in the sample program listed below.

1. ENGLISH 20 and one additional three hour composition course (6 hours).
2. Western Civilization (HISTORY 111 and HISTORY 112) (6 hours).
3. Foreign languages for at least 3 semesters of basic study in French, German, Russian, Spanish or an approved substitute; or one year of basic study in a foreign language in either French, German, Russian, Spanish, or an approved substitute, and a humanities or social sciences course taught in a foreign country and employing the language of that country; or one year of basic study in each of two of the foreign languages of French, German, Russian or Spanish or an approved substitute (11-16 hours).
4. Sciences. At least one course taken in biological (biological sciences) and physical (chemistry, geology and geophysics, physics) sciences. At least one statistics course. A laboratory course is required (and a lab offered in engineering also may count at the discretion of the student’s major advisor) toward the total requirement (12 hours).
5. Humanities and fine arts. Courses used to satisfy this requirement must include one course in each of the three areas of literature (English or American), philosophy, and fine arts (art, music or theater), but not to include studio and performance offerings (12 hours).
6. Social Sciences. At least two of the following social science areas are to be included: economics, political science, or history (12 hours).
7. Psychology (34 hours):
 A. Introduction to Psychology (PSYCH 10), General Psychology (PSYCH 50), and Capstone course (PSYCH 302, PSYCH 310, PSYCH 350, PSYCH 375, PSYCH 377, PSYCH 380, or PSYCH 390, 3 hours credit).
 B. Three additional courses from each of the following two areas of psychology:
 i. Sensation & Perception, Cognitive, Learning, Neuroscience, Developmental, Abnormal, Social, or Personality
 ii. Educational, Adolescent, Human-Computer Interaction, Industrial, Human Factors, Clinical, Group Dynamics, or Organizational
 C. Electives from Psychology to complete the 34 hour major requirement.
8. Major-field requirements: A cumulative grade point average of 2.0 must be earned in all course work taken in the major field. Upper-class (200-300-level) courses completed with grades of “D” may not be included in the major field without the approval of the chair of the department. At least nine hours of upper-class work in the major field must be completed in residence at Missouri S&T.
9. Minor: A minor will be selected from any discipline other than the major with the approval of the student’s advisor. A total of at least 15 hours is required for the minor, but may include courses, which also satisfy other requirements. At least nine hours must be beyond the introductory level. A cumulative grade point average of 2.0 must be earned in all course work required in the minor field. At least six hours of work in the minor field must be completed in residence at Missouri S&T.
10. Basic ROTC may be elected in the freshman and sophomore years, but is not creditable toward a degree. Up to 12 credit hours of advanced ROTC may be credited toward a degree.
11. Elective Credits: In consultation with his/her advisor, each student will elect sufficient additional courses to complete a minimum of 120 credit hours.

Emphasis Areas

Note: The following areas identify courses from which a student may opt to develop an emphasis area. It is not required that students obtain an emphasis specialty within Psychology.

Human Resources/Personnel

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 307</td>
<td>Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 372</td>
<td>Group Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Human Services

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 208</td>
<td>Psychological & Educational Development Of The Adolescent</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 250</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 362</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 360</td>
<td>Personality Theory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 368</td>
<td>Clinical Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Cognitive Neuroscience

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 340</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 240</td>
<td>Theories Of Learning</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 362</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 305</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 330</td>
<td>Neuroscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Usability of Technology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 155</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 211</td>
<td>Web Design And Development</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 311</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 314</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
</tbody>
</table>

Psychology of Leadership

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 378</td>
<td>Social Influence: Science and Practice</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 316</td>
<td>Psychology of Leadership in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 350</td>
<td>Psychology of Women</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 372</td>
<td>Group Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Arts Psychology (Secondary Education Emphasis Area)

You may earn a B.A. degree in Psychology from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with the Secondary Education emphasis area program. This program can be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Rolla campus.
Students interested in this emphasis area should consult with the advisor for the Secondary Education Emphasis Area in the Department of Psychological Science.

In order to successfully complete this emphasis area, students must have at least 22 on the ACT, maintain a cumulative GPA of at least 2.5, and attain at least a 2.5 GPA in all Psychology courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must meet both of these GPA requirements to be accepted into the program. Students must also meet all requirements listed under the Teacher Education Program in this catalog. Students who do not meet all the teacher certification requirements will not be eligible for the Secondary Education Emphasis Area, even if they have completed all course work.

A degree with this emphasis area requires 128 credit hours. The required courses are provided below.

Communications Skills: 9 semester hours
- ENGLISH 20 Exposition And Argumentation 3
- ENGLISH 60 Writing And Research 3
- SP&M S 85 Principles Of Speech 3

Humanities: 12 semester hours
- One must be in Art, Music, or Theatre 3
- One must be in Philosophy 3
- One must be in Literature 3
- One additional humanities from the above course groups, Foreign Language, or Etymology 3

Social Sciences: 18 semester hours
- HISTORY 175 American History To 1877 3
- or HISTORY 176 American History Since 1877 3
- POL SCI 90 American Government 3
- POL SCI 237 Contemporary Political Thought 3
- or POL SCI 290 American Political Parties 3
- or POL SCI 315 Principles Of Public Policy 3
- or POL SCI 316 The American Presidency 3
- PSYCH 50 General Psychology 3
- ECON 121 Principles Of Microeconomics 3
- or ECON 122 Principles Of Macroeconomics 3

Geography 3

Natural Science/Mathematics: 13 semester hours
- Physics, Chemistry or Geology 3-4
- Mathematics 3
- BIO SCI 110 General Biology 3
- STAT 115 Statistics For The Social Sciences I 3

Professional Requirements: 26 semester hours
- EDUC 40 Perspectives In Education 2
- EDUC 174 School Organization & Adm For Elementary & Secondary Teachers 2
- EDUC 216 Teaching Reading In Content Area 3
- EDUC 251 Historical Foundation Of American Education 3
- EDUC 280 Teaching Methods And Skills In The Content Areas 3
- EDUC 298 Student Teaching Seminar 1
- PSYCH 155 Educational Psychology 3
- PSYCH 208 Psychological & Educational Development Of The Adolescent 3
- PSYCH 354 Psychology Of The Exceptional Child 3

Clinical Experience: 16 semester hours
- EDUC 104 Teacher Field Experience 2
- EDUC 164 Aiding Elementary, Middle And Secondary Schools 2
- EDUC 299 Student Teaching 12

Psychology Degree Requirements: 17 semester hours
- PSYCH 10 Introduction to Psychology 1
- PSYCH 140 Research Methods 4
- PSYCH 240 Theories Of Learning 3
- PSYCH 250 Developmental Psychology 3
- PSYCH 362 Abnormal Psychology 3
- or PSYCH 360 Personality Theory 3
- PSYCH 308 Social Psychology 3

Certification: 17 semester hours
- 9 hours of American History
 - HISTORY 341 Colonial America
 - HISTORY 342 Revolutionary America, 1754-1789
 - HISTORY 343 Age Of Jefferson And Jackson
 - HISTORY 344 Civil War And Reconstruction
 - HISTORY 347
 - HISTORY 348 Recent United States History
 - HISTORY 351
 - HISTORY 353 History Of The Old South
 - HISTORY 354 History Of The Modern South
 - HISTORY 355
 - HISTORY 357 History of the American West
 - HISTORY 358
 - HISTORY 360
 - HISTORY 370 History Of Baseball
 - HISTORY 380 20Th Century Americans In Combat
 - HISTORY 382 The United States in Vietnam
 - HISTORY 383 U.S. Diplomatic History to World War II
 - HISTORY 385
- 8 hours of World History
 - HISTORY 111 Early Western Civilization
 - HISTORY 112 Modern Western Civilization
 - HISTORY 220 Making Of Modern Britain
 - HISTORY 222 The Making Of Modern France
 - HISTORY 224 Making Of Modern Russia
 - HISTORY 225 European Diplomatic History 1814 - Present
 - HISTORY 226 Modern East Asia
 - HISTORY 321 Ancient Greece
 - HISTORY 323 Medieval History I
 - HISTORY 324 Medieval History II
 - HISTORY 325 History Of Renaissance Thought
 - HISTORY 327 Europe In The Age Of The French Revolution And Napoleon
 - HISTORY 328 Foundations Of Contemporary Europe 1815-1914
 - HISTORY 329 Contemporary Europe
Bachelor of Science Psychology

A minimum of 124 credit hours is required for a Bachelor of Science degree in Psychology and a cumulative grade point average of 2.0 must be obtained. These requirements for the B.S. degree are in addition to credit received for basic ROTC.

The Psychology Bachelor of Science curriculum requires six hours of English composition; 23 hours of math, science and computer science; and twelve semester hours in humanities. Specific requirements for the bachelor degree are outlined in the sample program listed below.

1. ENGLISH 20 and ENGLISH 60 (entering students will normally take ENGLISH 20 either semester of the first year.) (6 hours)
2. A total of 23 hours in biological, physical, (chemistry, geology and geophysics, and physics), and mathematical (mathematics/statistics and computer science or information science & technology) sciences, to include COMP SCI 53 and COMP SCI 54; or COMP SCI 73 and COMP SCI 77; or COMP SCI 74 and COMP SCI 78; or IS&T 51 and at least one course taken in the biological and one in the physical sciences. Of the biological and physical science offering, at least one must be a laboratory course. Engineering courses may, at the discretion of the student’s major advisor, also count toward this total requirement. (23 hours)
3. 12 hours in humanities and fine arts (literature, philosophy, art, music, or theater). Foreign language courses may count toward fulfilling this requirement. Courses used to satisfy this requirement must be taken in at least two humanities areas. (12 hours)
4. 12 hours in at least two social sciences fields outside the major area (economics or history or political science). A course in Modern Western Civilization (HISTORY 112), American History To 1877 (HISTORY 175) or American History Since 1877 (HISTORY 176), or American Government (POL SCI 90) must be taken to satisfy the requirement of the state of Missouri (the “Williams Law”), and this course may count toward fulfilling the social sciences requirement. (12 hours)
5. Minor: A minor will be selected from any discipline other than the major with the approval of the student’s advisor. A total of at least 15 hours is required for the minor, but may include courses, which also satisfy other requirements. At least nine hours must be beyond the introductory level.
6. Basic ROTC may be elected in the freshman and sophomore years, but is not creditable toward a degree. Six credit hours of advanced ROTC may be credited toward a degree.
7. Elective Credits: In consultation with his/her advisor, each student will elect sufficient additional courses to complete a minimum of 124 credit hours which may include MATH 2 or MATH 4 and MATH 6.
8. Psychology Requirements:
 A. Introduction to Psychology (PSYCH 10), General Psychology (PSYCH 50), Research Methods (PSYCH 140) and Capstone course (PSYCH 302, PSYCH 310, PSYCH 350, PSYCH 375, PSYCH 377, PSYCH 380, or PSYCH 390, 3 hours credit).
 B. Three additional courses from each of the following two areas of Psychology:
 i. Sensation & Perception, Cognitive, Learning, Neuroscience, Developmental, Abnormal, Social, or Personality
 ii. Educational, Adolescent, Human-Computer Interaction, Industrial, Human Factors, Clinical, Group Dynamics, or Organizational
C. Electives from Psychology to complete a requirement of 34 hours.
D. A cumulative grade point average of 2.0 must be earned in all course work taken in the major field. Upper class (200- and 300-level) courses completed with grades of “D” may not be included in the major field without the approval of the advisor and the chair of the department concerned.

Emphasis Areas

Note: The following areas identify courses from which a student may opt to develop an emphasis area. It is not required that students obtain an emphasis specialty within Psychology.

Human Resources/Personnel

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 307</td>
<td>Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 372</td>
<td>Group Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Human Services

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 208</td>
<td>Psychological & Educational Development Of The Adolescent</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 250</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 362</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 360</td>
<td>Personality Theory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 368</td>
<td>Clinical Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Cognitive Neuroscience

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 340</td>
<td>Sensation and Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 240</td>
<td>Theories Of Learning</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 362</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 305</td>
<td>Cognitive Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 330</td>
<td>Neuroscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Usability of Technology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 155</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 211</td>
<td>Web Design And Development</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 311</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 314</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
</tbody>
</table>

Psychology of Leadership

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 308</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 378</td>
<td>Social Influence: Science and Practice</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 316</td>
<td>Psychology of Leadership in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 350</td>
<td>Psychology of Women</td>
<td>3</td>
</tr>
<tr>
<td>or PSYCH 372</td>
<td>Group Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 374</td>
<td>Organizational Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Bachelor of Science Psychology (Secondary Education Emphasis Area)

You may earn a B.S. Degree in Psychology from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with the Secondary Education emphasis area program. This program can be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Rolla campus.
Students interested in this emphasis area should consult with the advisor for the Secondary Education Emphasis Area in the Department of Psychological Science.

In order to successfully complete this emphasis area, students must have at least 22 on the ACT, maintain a cumulative GPA of at least 2.5, and attain at least a 2.5 GPA in all Psychology courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must attain at least a 2.5 GPA in all Psychology courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must meet both of these GPA requirements to be accepted into the program. Students interested in this emphasis area should consult with the advisor for the Secondary Education Emphasis Area in the Department of Psychological Science.

A degree in this emphasis area requires 136 credit hours. The required courses are provided below.

Communications Skills: 9 semester hours

- ENGLISH 20 Exposition And Argumentation 3
- ENGLISH 60 Writing And Research 3
- SP&M S 85 Principles Of Speech 3

Humanities: 12 semester hours

- One must be in Art, Music, or Theatre 3
- One must be in Philosophy 3
- One must be in Literature 3
- One additional humanities from the above course groups, Foreign Language, or Etymology 3-4

Social Sciences: 18 semester hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 175</td>
<td>American History To 1877</td>
<td>3</td>
</tr>
<tr>
<td>or HISTORY 176</td>
<td>American History Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 90</td>
<td>American Government</td>
<td>3</td>
</tr>
<tr>
<td>POL SCI 237</td>
<td>Contemporary Political Thought</td>
<td>3</td>
</tr>
<tr>
<td>or POL SCI 290</td>
<td>American Political Parties</td>
<td>3</td>
</tr>
<tr>
<td>or POL SCI 315</td>
<td>Principles Of Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>or POL SCI 316</td>
<td>The American Presidency</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ECON 121</td>
<td>Principles Of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 122</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
</tbody>
</table>

Natural Sciences/Mathematics: 21 semester hours

- Physics, Chemistry or Geology 3-4
- Mathematics 3
- BIO SCI 110 General Biology 3
- STAT 115 Statistics For The Social Sciences I 3
- COMP SCI 53 Introduction To Programming 3-4
- & COMP SCI 54 and Introduction To Programming Laboratory 3-4
- or COMP SCI 73 Basic Scientific Programming 3-4
- & COMP SCI 77 and Computer Programming Laboratory 3-4
- or COMP SCI 74 Introduction To Programming Methodology 3-4
- & COMP SCI 78 and Programming Methodology Laboratory 3-4

5-6 additional hours of Math &/or Science courses 5-6

Professional Requirements: 26 semester hours

- EDUC 40 Perspectives In Education 2
- EDUC 174 School Organization & Adm For Elementary & Secondary Teachers 2
- EDUC 216 Teaching Reading In Content Area 3
- EDU 251 Historical Foundation Of American Education 3
- EDU 280 Teaching Methods And Skills In The Content Areas 6
- EDU 298 Student Teaching Seminar 1
- PSYCH 155 Educational Psychology 3
- PSYCH 208 Psychological & Educational Development Of The Adolescent 3
- PSYCH 354 Psychology Of The Exceptional Child 3

Clinical Experience: 16 semester hours

- EDUC 104 Teacher Field Experience 2
- EDUC 164 Aiding Elementary, Middle And Secondary Schools 2
- EDUC 299 Student Teaching 12

Psychology Degree Requirements: 17 semester hours

- PSYCH 10 Introduction to Psychology 1
- PSYCH 140 Research Methods 4
- PSYCH 240 Theories Of Learning 3
- PSYCH 250 Developmental Psychology 3
- PSYCH 362 Abnormal Psychology 3
- or PSYCH 360 Personality Theory 3
- PSYCH 308 Social Psychology 3

Certification: 17 semester hours

- 9 hours of American History
 - HISTORY 341 Colonial America 3
 - HISTORY 342 Revolutionary America, 1754-1789 3
 - HISTORY 343 Age Of Jefferson And Jackson 3
 - HISTORY 344 Civil War And Reconstruction 3
 - HISTORY 347 3
 - HISTORY 348 Recent United States History 3
 - HISTORY 351 3
 - HISTORY 353 History Of The Old South 3
 - HISTORY 354 History Of The Modern South 3
 - HISTORY 355 3
 - HISTORY 357 History of the American West 3
 - HISTORY 358 3
 - HISTORY 360 3
 - HISTORY 370 History Of Baseball 3
 - HISTORY 380 20Th Century Americans In Combat 3
 - HISTORY 382 The United States in Vietnam 3
 - HISTORY 383 U.S. Diplomatic History to World War II 3
 - HISTORY 385 3

- 8 hours of World History
 - HISTORY 111 Early Western Civilization 3
 - HISTORY 112 Modern Western Civilization 3
 - HISTORY 220 Making Of Modern Britain 3
 - HISTORY 222 The Making Of Modern France 3
 - HISTORY 224 Making Of Modern Russia 3
 - HISTORY 225 European Diplomatic History 1814 - Present 3
 - HISTORY 226 Modern East Asia 3
 - HISTORY 321 Ancient Greece 3
 - HISTORY 323 Medieval History I 3
 - HISTORY 324 Medieval History II 3
 - HISTORY 325 History Of Renaissance Thought 3

Degree Programs

- Teaching Reading In Content Area
- Secondary Teachers
- Perspectives In Education
- and Programming Methodology Laboratory
- Introduction To Programming Methodology Laboratory
- 5-6 additional hours of Math &/or Science courses
- Student Teaching Seminar
- Educational Psychology
- Psychological & Educational Development Of The Adolescent
- Psychology Of The Exceptional Child
- Social Psychology
- Introduction to Psychology
- Research Methods
- Theories Of Learning
- Developmental Psychology
- Abnormal Psychology
- Personality Theory
- U.S. Diplomatic History to World War II
- Early Western Civilization
- Modern Western Civilization
- Making Of Modern Britain
- The Making Of Modern France
Speech and Media Studies

Speech and Media Studies are the academic disciplines that seek to understand the processes by which human beings agree to cooperate in their endeavors. These processes are as old as human nature itself and are rooted in the original human condition of orality, but they continue to be modified as new media wax and old media wane. Understanding these processes is the basis for most of the coursework offered by this program, however, each course also seeks to develop the student’s proficiency in the particular styles of communication engendered by media as they evolve.

The Speech & Media Studies program offers two minors to Missouri S&T undergraduates: Communication Studies and Leadership Communication. Orality-based courses, including interpersonal, business, professional, intercultural, and mass communication, as well as courses in the social dynamics of leadership in groups and organizations may be incorporated into either minor to best meet students’ individual needs.

Courses in Speech and Media Studies serve students well in many aspects of their lives including not only school and vocation, but also family, society, and civic responsibility.

Minor Curriculum in Communication

The Speech and Media Studies program of the department of Arts, Languages & Philosophy offers two minor degrees in communication: Communication Studies and Leadership Communication. Each minor requires fifteen hours of study.

I. Communication Studies

Core Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 181</td>
<td>Communication Theory</td>
</tr>
</tbody>
</table>

Elective requirements, select four of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 85</td>
<td>Principles Of Speech</td>
</tr>
<tr>
<td>SP&M S 100</td>
<td>Special Problems</td>
</tr>
<tr>
<td>SP&M S 101</td>
<td>Special Topics</td>
</tr>
<tr>
<td>SP&M S 200</td>
<td>Special Problems</td>
</tr>
<tr>
<td>SP&M S 201</td>
<td>Special Topics</td>
</tr>
<tr>
<td>SP&M S 235</td>
<td>Intercultural Communication</td>
</tr>
<tr>
<td>SP&M S 250</td>
<td>Interpersonal Communication</td>
</tr>
<tr>
<td>SP&M S 255</td>
<td>Discussion And Conference Methods</td>
</tr>
<tr>
<td>SP&M S 275</td>
<td>Foundations of Media Communication</td>
</tr>
<tr>
<td>SP&M S 283</td>
<td>Business And Professional Communication</td>
</tr>
</tbody>
</table>

Advisor or approved substitute for one of the above.

II. Leadership Communication

Core Requirement:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 181</td>
<td>Communication Theory</td>
</tr>
</tbody>
</table>

Additional Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&M S 235</td>
<td>Intercultural Communication</td>
</tr>
<tr>
<td>SP&M S 250</td>
<td>Interpersonal Communication</td>
</tr>
<tr>
<td>SP&M S 255</td>
<td>Discussion And Conference Methods</td>
</tr>
<tr>
<td>SP&M S 265</td>
<td>Leadership Communication</td>
</tr>
<tr>
<td>SP&M S 270</td>
<td>Leadership Practices</td>
</tr>
</tbody>
</table>

Advisor or approved substitute for one of the above.

Russian

Irina Ivliyeva, Associate Professor
PHD Russian Academy of Sciences

Spanish

Jorge Porcel, Assistant Professor
PHD University of Pittsburgh

Lucy H Sutcliffe, Lecturer
BA University of California, Santa Barbara

Speech and Media Studies

W Lance Haynes, Professor
PHD University of Minnesota

Marsha Lee Kaiser, Lecturer
MA University of Nebraska-Kearney
Sustainability

Sustainability Minor

Sustainability is the minimal use of natural resources and the process of replacing used resources to meet the current needs of society without compromising the needs of future generations. Sustainability touches upon many fields of study, from social sciences to natural sciences to engineering to business. The concept has applications in the management of natural resources, such as energy and agriculture, and also in the development of business and engineering solutions. Given the interdisciplinary nature of the topic, Missouri S&T created a special Sustainability Minor program for students interested in this field of study.

Any undergraduate student at Missouri S&T can pursue a Sustainability Minor. The requirements for the minor include 15 hours of approved classes. One class, ENV ENG 365 / CIV ENG 365 Sustainability, Population, Energy, Water, and Materials (3 hours), is required of all students. Students also take at least 2 approved classes from each of two general categories: social science classes and science/technical classes. Classes that meet the minor requirements in each category span many departments on campus, given the interdisciplinary nature of sustainability. At least 9 credit hours counting toward the minor must be from outside the student’s home degree program.

The curricula criteria for the minor, including lists of approved courses in the two general categories, are maintained by the Sustainability Program Board and can be found on the Sustainability Minor homepage (http://care.mst.edu/environmentalengineering/undergraduate/sustainabilityminor/). Interested students can contact a Sustainability Program Board Representative (listed on the website) to apply for the minor and to receive help with deciding which classes to take to meet the requirements.

Technical Communication

The Technical Communication program is offered in the Department of English and Technical Communication.

The Technical Communication degree offers you an entry into a growing profession that communicates information about the purpose and operation of human tools. Technical communicators work at the interface of technical experts and product users. Consequently, technical communicators provide an essential service to national and global societies by facilitating technology transfer.

You should bring to the program a love of writing and a curiosity about technology. The interdisciplinary nature of the Missouri S&T degree enables you to acquire the qualifications you need to be competitive and flexible in an ever-changing technological environment. When you graduate, you will have a solid technical background in computer-enhanced information systems, an understanding of how organizations function, and strong communication skills. Areas employing technical communicators include computer manufacturing and software development, consumer electronics, banking and financial institutions, telecommunications, chemical and pharmaceuticals, hospitals and research labs, and academic institutions and libraries.

You will study both the theory and practice of communication in written, oral and visual forms. Specifically, you will study and practice the production of a variety of technical documents in print, electronic, and digital forms. You will have experience with the process of project
management in a user community and become adept in audience analysis, needs assessment, document design, and team building.

In Missouri S&T’s unique environment, you will have opportunities to work alongside engineers and scientists in undergraduate research and design projects. Also, you are strongly encouraged to do summer internships or co-ops with companies before you graduate. At Missouri S&T, you will work with first-class faculty, associate with excellent students from around the country and the world and benefit from the world-class computer environment. Your theoretical and practical education will prepare you for full-time employment and lifelong learning.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.

Bachelor of Science Technical Communication

The Technical Communication degree requires 33 credit hours of core courses: ENGLISH 281, TCH COM 240, TCH COM 260, TCH COM 302, TCH COM 340, TCH COM 385, and five additional courses from the following list: ENGLISH 160, ENGLISH 305, TCH COM 301, TCH COM 310, TCH COM 331, TCH COM 333, TCH COM 361, TCH COM 380. It also requires 42 hours of general education courses, 36 hours of technical communication courses.

Technical Communication Minor Curriculum

To complete this minor students must take TCH COM 65, TCH COM 240, and TCH COM 260 plus six additional hours elected from the 300-level technical communication courses.
Theatre Minor Curriculum

A minor in Theatre requires a minimum of 16 hours comprised of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEATRE 90</td>
<td>Theatre via Video</td>
<td>3</td>
</tr>
<tr>
<td>THEATRE 141</td>
<td>Acting I</td>
<td>3</td>
</tr>
<tr>
<td>THEATRE 42</td>
<td>Stage Productions, Performers</td>
<td>1</td>
</tr>
<tr>
<td>or THEATRE 220</td>
<td>Theatre Ensemble</td>
<td></td>
</tr>
<tr>
<td>THEATRE 43</td>
<td>Stage Productions, Technicians</td>
<td>1</td>
</tr>
<tr>
<td>THEATRE 143</td>
<td>Stagecraft</td>
<td>3</td>
</tr>
</tbody>
</table>

In addition to the courses listed above, the student is required to choose a concentration and complete enough hours from one of the following concentration areas to meet the minimum 16 hours.

Acting/Directing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEATRE 241</td>
<td>Acting II</td>
<td>3</td>
</tr>
<tr>
<td>THEATRE 341</td>
<td>Directing</td>
<td>3</td>
</tr>
<tr>
<td>THEATRE 243</td>
<td>Entertainment Design</td>
<td>3</td>
</tr>
<tr>
<td>or MUSIC 11</td>
<td>Individual Music Instruction I</td>
<td></td>
</tr>
</tbody>
</table>

Technical Theatre

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEATRE 243</td>
<td>Entertainment Design</td>
<td>3</td>
</tr>
<tr>
<td>THEATRE 241</td>
<td>Acting II</td>
<td>3</td>
</tr>
<tr>
<td>or THEATRE 341</td>
<td>Directing</td>
<td></td>
</tr>
</tbody>
</table>

Jeanne Elaine Stanley, Assistant Professor
MFA Lindenwood University
Aerospace Engineering (AERO ENG)

AERO ENG 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

AERO ENG 160 Dynamics (LEC 3.0)
The principles of mechanics are used to model engineering systems. Kinematics of particle motion, kinematics of plane- and three-dimensional motions of rigid bodies. Kinetics of particles and of rigid bodies. Energy and momentum methods. Prerequisite: Grade of "C" or better in each of Civ Eng 50, Math 22. (Co-listed with Mech Eng 160).

AERO ENG 161 Aerodynamics II (LEC 3.0)
Nature and theory of lift, drag, performance, and stability and control of aerospace vehicles. Prerequisite: A grade of "C" or better in both Physics 23 and Math 15.

AERO ENG 180 Introduction To Aerospace Design (LEC 1.0 and LAB 1.0)
Introduction to methodology of aerospace vehicle design and principles of layout to meet a given specification, mission objective, component sizing, design iteration and building & performance testing of models. Prerequisite: A grade of "C" or better in Aero Eng 161.

AERO ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

AERO ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

AERO ENG 202 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry with credit arranged through departmental co-op adviser. Grade received depends on quality of reports submitted and work supervisor’s evaluation.

AERO ENG 210 Seminar In Aerospace Engineering (RSD 1.0)
Discussion of current topics.

AERO ENG 213 Aerospace Mechanics I (LEC 3.0)
Introduction to celestial mechanics and an analytical study of space flight. Emphasis is placed on satellite orbits and general theory of gyrodynamics. Prerequisites: A grade of "C" or better in Aero Eng 160 (or Mech Eng 160), Math 14 (or 8), 15 (or 21), 22, and Physics 23.

AERO ENG 231 Aerodynamics I (LEC 3.0)
A study of the fundamental concepts of fluid mechanics as applied to aerodynamic applications with both differential and control volume analysis. Theory and application of viscous and inviscid incompressible flow including boundary layer theory and two dimensional airfoil theory. Prerequisites: A grade of "C" or better in each of Aero Eng 161, Math 14, 15, 22, Physics 23, and Mech Eng 219.

AERO ENG 233 Introduction To Aerothermochemistry (LEC 3.0)
Principles of thermochemistry in reacting flow including an introduction to fundamentals of quantum mechanics, statistical mechanics and statistical thermodynamics. Applications in flow through nozzles and shock waves, combustion, aerodynamic heating, ablation and propulsion. Prerequisites: Aero Eng 231, Aero Eng 271.

AERO ENG 235 Aircraft And Space Vehicle Propulsion (LEC 3.0)
Analysis of aircraft and missile propulsion systems; fundamentals of jet propulsion including air breathing and rocket engines. Introduction to advanced propulsion systems for space flights such as nuclear, thermonuclear, and plasma jets. Prerequisite: Mech Eng 231, or Aero Eng 271.

AERO ENG 251 Aerospace Structures I (LEC 3.0)
An introduction to various loads on aerospace vehicles. Basic theory and analysis of typical aerospace and related vehicle structures subjected to steady loading. An overview of various failure theories including yielding, buckling, fracture and fatigue. Design of thin walled structures. Introduction to advanced composite materials. Prerequisites: "C" or better in Math 14 (or 8), 15 (or 21), 22, Physics 23 and Civ Eng 110.

AERO ENG 253 Aerospace Structures II (LEC 3.0)

AERO ENG 261 Flight Dynamics And Control (LEC 3.0)

AERO ENG 271 Aerodynamics II (LEC 3.0)
Three dimensional incompressible wing theory. Compressible one dimensional flow with normal and oblique shock waves, heat addition, and friction. Compressible transonic, and supersonic linearized flow theory. Supersonic wings and wing/fuselage configurations. Prerequisite: "C" or better in Aero Eng 231 and Mech Eng 219.

AERO ENG 280 Aerospace Systems Design I (LEC 2.0)
Consideration of the creative design process with emphasis on aeronautical-aerospace systems. Short design problems to illustrate the process. Selection of design projects for Aero Eng 281. Information gathering for the design projects which will be completed in Aerospace Systems Design II. Fall semester. Prerequisites: Aero Eng 251, 261, 271.

AERO ENG 281 Aerospace Systems Design II (LAB 3.0)
Preliminary design of aerospace systems. Project to integrate the knowledge of different aerospace engineering areas through synthesis and analysis. The creative design will include a consideration of such factors as performance reliability, cost, human factors, energy and ecology. Spring semester. Prerequisite: Aero Eng 280.
AERO ENG 282 Experimental Methods In Aerospace Engineering I (LAB 2.0)

AERO ENG 283 Experimental Methods In Aerospace Engineering II (LAB 2.0)
Laboratory investigations related to aerospace engineering. Investigations include high-speed aerodynamics, flow visualization measurements in turbulent flow, aircraft vibration and flutter, propeller acoustics, flight simulation, propulsion systems, flame measurements, and control experiments. Statistical error analysis. Prerequisites: Aero Eng 251, 261, 271, & 282.

AERO ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

AERO ENG 301 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

AERO ENG 307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 211 and 213, or Aero Eng 213 and Math 204. (Co-listed with Mech Eng 307).

AERO ENG 309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 211 & 213, or Aero Eng 213 & Math 204. (Co-listed with Mech Eng 309).

AERO ENG 311 Introduction To Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 110. (Co-listed with Mech Eng 382).

AERO ENG 313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mech Eng 213 or Aero Eng 213. (Co-listed with Mech Eng 313).

AERO ENG 314 Spacelift Mechanics (LEC 3.0)
Further topics in orbital mechanics. Time equations, Lambert’s problem, patched-conic method, orbital maneuvers, orbit determination, orbit design, re-entry problem. Prerequisite: Aero Eng 213.

AERO ENG 315 Concurrent Engineering I (LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 213 or Aero Eng 231, and Civ Eng 110. (Co-listed with Mech Eng 315).

AERO ENG 316 Concurrent Engineering II (LAB 3.0)
Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Aero Eng 315 or Mech Eng 315. (Co-listed with Mech Eng 316).

AERO ENG 319 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 219. (Co-listed with Mech Eng 319).

AERO ENG 320 Advanced Mechanics Of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 110, Math 204. (Co-listed with Mech Eng 320).

AERO ENG 322 Introduction To Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Eng Mech 311. (Co-listed with Mech Eng 322).

AERO ENG 325 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 225. (Co-listed with Mech Eng 325).

AERO ENG 327 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 221. (Co-listed with Mech Eng 327).

AERO ENG 329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Mech Eng 329, Elec Eng 329 and Civ Eng 318).
AERO ENG 330 Applied Computational Methods (LEC 3.0)
Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 53 or 73 or 78; Math 204. (Co-listed with Mech Eng 330).

AERO ENG 331 Intermediate Thermofluid Mechanics (LEC 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 231 or Aero Eng 231. (Co-listed with Mech Eng 331).

AERO ENG 334 Stability Of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Mech Eng 334).

AERO ENG 335 Aerospace Propulsion Systems (LEC 3.0)
Study of atmospheric and space propulsion systems with emphasis on topics of particular current interest. Mission analysis in space as it affects the propulsion system. Power generation in space including direct and indirect energy conversion schemes. Prerequisite: Aero Eng 235.

AERO ENG 336 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concept of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 110. (Co-listed with Mech Eng 336).

AERO ENG 337 Computational Fluid Dynamics (LEC 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 53 or 73 or 74; one course in fluid mechanics. (Co-listed with Mech Eng 339).

AERO ENG 342 Experimental Stress Analysis II (LAB 1.0 and LEC 2.0)
Acquaints the student with some techniques of experimental stress analysis. Topics include principal stresses, strain to stress conversion, transmission and reflection photoelastic methods, Moire fringe methods, and analogies. Prerequisites: Civ Eng 110, Eng Mech 321. (Co-listed with Mech Eng 342, Eng Mech 342).

AERO ENG 344 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints components and structures, design to prevent fatigue. Prerequisite: Civ Eng 110. (Co-listed with Mech Eng 338).

AERO ENG 349 Robotic Manipulators & Mechanisms (LEC 2.0 and LAB 1.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Comp Sci 73, Aero Eng 213. (Co-listed with Mech Eng 349).

AERO ENG 350 Integrated Product Development (LEC 2.0 and LAB 1.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, cost, and product support. Using a 3-D solid modeling program, students will design, analyze, and send the data base to the automated machine shop where the parts will be manufactured. The parts will then be assembled, tested and analyzed for their performance. Prerequisites: Aero Eng 251 or Mech Eng 208 for Design; Mech Eng 213 for Assembly; Accompanied or preceded by Mech Eng 353 for Manufacturing; Eng Mgt 375 or 385 for Cost/Product Support.

AERO ENG 352 Introduction to Finite Element Analysis (LEC 3.0)
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisite: Mech Eng 208 or Aero Eng 253 or consent of instructor for majors that do not require either of these courses. (Co-listed with Mech Eng 312).

AERO ENG 353 Aerodynamic (LEC 3.0)
Study of phenomena involving interactions among inertial, aerodynamic, and elastic forces and the influence of these interactions on aircraft and space vehicle design. Some aerelastic phenomena are: divergence, control effectiveness, control reversal, flutter, buffeting, dynamic response to rapidly applied loads, aerelastic effects on load distribution, and static and dynamic stability. Prerequisites: Aero Eng 251 and 271.

AERO ENG 360 Probabilistic Engineering Design (LEC 3.0)
The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Mech Eng 360).

AERO ENG 361 Flight Dynamics-Stability And Control (LEC 3.0)
Review of static stability, dynamic equations of motion, linearized solutions, classical control design and analysis techniques, introduction to modern control. Prerequisite: Aero Eng 261.

AERO ENG 369 Introduction To Hypersonic Flow (LEC 3.0)
AERO ENG 370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Mech Eng 370, Nuc Eng 370, Physics 370).

AERO ENG 371 V/STOL Aerodynamics (LEC 3.0)

AERO ENG 377 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Chem Eng 347, Physics 377, Met Eng 377, Cer Eng 377).

AERO ENG 378 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Elec Eng 378 and Comp Eng 378).

AERO ENG 380 Spacecraft Design I (LEC 3.0)
Fundamentals of spacecraft design. Systems engineering, subsystem analysis and design. Gantt charts, organizational charts. Oral presentations and technical documentation. Term project to involve design and development of actual flight hardware, continuing into Spacecraft Design II. Prerequisites: Aero Eng 251, 261, and 271 for Aero Eng majors; consent of instructor for non-Aero Eng majors.

AERO ENG 381 Mechanical And Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 279 or Aero Eng 361. (Co-listed with Mech Eng 381).

AERO ENG 382 Spacecraft Design II (LAB 3.0)
As a continuation of Aero Eng 380, detailed spacecraft design is performed, leading to procurement of components. As schedules permit, spacecraft fabrication and test commence. Development of labs to facilitate spacecraft test, operation, and data analysis continues. Prerequisites: Aero Eng 380 for Aero Eng majors; consent of instructor for non-Aero Eng majors.

AERO ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

ARCH ENG 3 Engineering Communications (LAB 1.0 and LEC 1.0)
Introduction to programming concepts and software tools (computer aided design drafting, computer mathematics, word processing, spreadsheets, and presentation software) with application to written and oral communication in professional civil and architectural engineering practice. Prerequisite: Sophomore standing. (Co-listed with Civ Eng 3).

ARCH ENG 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ARCH ENG 103 Architectural Materials And Methods Of Construction (LEC 2.0 and LAB 1.0)
A study of the origin and properties of construction materials, methods of construction, and installation. Materials include mineral based, wood, steel, concrete, masonry, asphalt, and gypsum as components of architectural engineering. Prerequisites: Chem 1, Chem 2 and Sophomore standing.

ARCH ENG 200 Special Problems (IND 1.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ARCH ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ARCH ENG 202 Cooperative Engineering Training (IND 1.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisor's evaluation.

ARCH ENG 203 Architectural Design I (LEC 1.0 and LAB 2.0)
Introduction to the interaction between architecture and the engineering disciplines. Theories of building and site design, technology as an integral component of design, plan and spatial organization, structural clarity, formal composition, and environmental context are considered as principle form determinants. Prerequisite: Sophomore standing.

ARCH ENG 204 Architectural Design II (LAB 2.0 and LEC 1.0)
A continuation of Architectural Engineering Design I with an increased focus on problems and models associated with detail development, principles of acoustic design and building construction as a form determinant. Prerequisite: Arch Eng 203.

ARCH ENG 205 Building Electrical and Lighting Systems (LEC 3.0)
Design and specifications for interior and exterior building electrical and illumination systems, including electrical and lighting loads, branch circuits, grounding and switching. Work includes study of applicable NFPA 70 (NEC) and related building codes. Prerequisites: Elec Eng 281 and Arch Eng 204.

ARCH ENG 210 Senior Seminar: Engineering In A Global Society (RSD 1.0)
Discussion of contemporary issues: public safety, health, and welfare; the principles of sustainable development; lifelong learning; impact of engineering solutions in a global and societal and political context; relationships with owners, contractors, and the public; public service; the Code of Ethics; and the Missouri licensing Statutes and Board Rules. Prerequisite: Senior standing. (Co-listed with Civ Eng and Env Eng 210).
ARCH ENG 217 Structural Analysis I (LEC 2.0 and LAB 1.0)
Loads on Structures. Analysis of statically determinate and indeterminate beams, frames and trusses. Influence lines and moving loads. Computation of deflections. Development and use of theorems of displacement methods including slope-deflection and moment distribution to analyze statically indeterminate structures. Computer solutions. Prerequisites: Civ Eng 50, Civ Eng 110 each with a grade of "C" or better. (Co-listed with Civ Eng 217).

ARCH ENG 221 Structural Analysis In Metals (LEC 2.0 and LAB 1.0)
The analysis and design of structural elements and connections for buildings, bridges and specialized structures utilizing structural metals. Both elastic and plastic designs are considered. Prerequisite: Arch Eng 217 with grade of "C" or better. (Co-listed with Civ Eng 221).

ARCH ENG 223 Reinforced Concrete Design (LEC 2.0 and LAB 1.0)
The analysis and design of reinforced concrete beams, slabs, columns, retaining walls and footings by the elastic and ultimate strength methods including and introduction to the design of prestressed concrete. Introduction to use of computers as a design aid tool. Prerequisite: Arch Eng 217 with grade of "C" or better. (Co-listed with Civ Eng 223).

ARCH ENG 247 Ethical, Legal And Professional Engineering Practice (LEC 2.0)
Discussions of law concerning contracts, torts, agencies, real property, partnerships and corporations. The purposes and implications of the engineering registration law, the effect of legal, ethical and marketing considerations of the practice of Architectural Engineering. Prerequisite: Junior standing. (Co-listed with Civ Eng 247).

ARCH ENG 248 Fundamentals Of Contracts And Construction Engineering (LEC 3.0)
A study of the concepts and techniques used in large construction projects for the preparation of engineer service contracts, the development of a project manual, detailed and conceptual cost estimating, and construction scheduling analysis. Prerequisite: Senior Standing. (Co-listed with Civ Eng 248).

ARCH ENG 298 Senior Design Project (LEC 3.0)
Open-ended building design project involving one or more areas of engineering. Planning design projects, philosophy of design, and the application of engineering principles to design problems. Prerequisite: Arch Eng 248 or Civ Eng 248. (Co-listed with Civ Eng 298 and Env Eng 298).

ARCH ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ARCH ENG 301 Special Topics (LAB 1.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ARCH ENG 319 Applied Mechanics In Structural Engineering (LEC 3.0)
A study of basic relationships involved in the mechanics of structures. Topic include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge building floors and shell roofs. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Civ Eng 319).

ARCH ENG 320 Structural Analysis II (LEC 3.0)
Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 217 or Arch Eng 217. (Co-listed with Civ Eng 320).

ARCH ENG 322 Analysis And Design Of Wood Structures (LEC 3.0)
A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Arch Eng 217 with a grade of "C" or better. (Co-listed with Civ Eng 322).

ARCH ENG 323 Computer Methods of Structural Analysis (LEC 3.0)
Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Civ Eng 323).

ARCH ENG 326 Advanced Steel Structures Design (LEC 3.0)
The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool aid in the design will be emphasized. Prerequisite: Arch Eng 221 with a grade of "C" or better. (Co-listed with Civ Eng 326).

ARCH ENG 327 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Arch Eng 223 with a grade of "C" or better. (Co-listed with Civ Eng 327).

ARCH ENG 328 Prestressed Concrete Design (LEC 3.0)
Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Arch Eng 223 with a grade of "C" or better. (Co-listed with Civ Eng 328).

ARCH ENG 329 Foundation Engineering II (LEC 3.0)
Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisite: Arch Eng 229 with a grade of "C" or better. (Co-listed with Civ Eng 329).

ARCH ENG 342 Construction Planning and Scheduling Strategies (LEC 3.0)
The goal of this course is to assist participants in gaining an understanding of schedule control techniques and the application of tools such as Primavera Software. Content areas to be addressed include: development of baseline schedules, progress monitoring and updating, recovery schedules, resource application and leveling. Prerequisite: Civ Eng or Arch Eng 248. (Co-listed with Civ Eng 342).
ARCH ENG 345 Construction Methods (LEC 3.0)
Introduction to construction planning selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Arch Eng 248 with a grade of "C" or better. (Co-listed with Civ Eng 345).

ARCH ENG 346 Management Of Construction Costs (LEC 3.0)
Management of construction projects from inception to completion: estimates, role of network preplanning, project monitoring and control. Prerequisite: Arch Eng 248 with a grade of "C" or better. (Co-listed with Civ Eng 346).

ARCH ENG 348 Green Engineering: Analysis of Constructed Facilities (LEC 3.0)
Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 248 or Arch Eng 248; and Junior Standing. (Co-listed with Civ Eng 348).

ARCH ENG 349 Engineering And Construction Contract Specifications (LEC 3.0)
Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Arch Eng 248 with a grade of "C" or better. (Co-listed with Civ Eng 349).

ARCH ENG 365 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 365 and Civ Eng 365).

ARCH ENG 366 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 261 or Mech Eng 371 or Graduate Status. (Co-listed with Civ Eng 366 and Env Eng 366).

ARCH ENG 371 Environmental Controls (LEC 3.0)
Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 221 and accompanied or preceded by Mech Eng 225; or Mech Eng 227 and Civ Eng 230. (Co-listed with Mech Eng 371).

ARCH ENG 372 Residential Renewable Energy Systems (LEC 2.0 and LAB 1.0)
Applications of renewable energy systems for residential use will be covered, including system selection and sizing. Economic and life cycle analysis will be used to evaluate solar, geothermal and wind power systems. Prerequisites: Senior standing and consent of instructor, or Mech Eng 227 or Civ Eng 242.

ARCH ENG 374 Infrastructure Strengthening With Composites (LEC 3.0)
The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Arch Eng / Civ Eng 217, Arch Eng / Civ Eng 223. (Co-listed with Civ Eng 374).

ARCH ENG 375 Low-Rise Building Analysis And Design (LEC 3.0)
Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ/Arch Eng 221 or Civ-Arch Eng 223. (Co-listed with Civ Eng 375).

ARCH ENG 384 Structural Dynamics (LEC 3.0)
This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: IDE 150 or equivalent; Civ/Arch Eng 217 or equivalent. (Co-listed with Civ Eng 384).

ARCH ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged by instructor.

Art (ART)

ART 20 Drawing I (LEC 3.0)
Principles of drawing: placement, proportion, perspective, chiaroscuro, values, line, form, texture, and techniques. Applied problems to develop perceptual observation.

ART 40 Painting I (LEC 3.0)
Basic Exploration of oil painting techniques and methods. Still life, landscape and figure.

ART 64 Sculpture (LEC 3.0)
Solving problems in shallow and BAS relief and small clay sculpture, study of contemporary and classical proportion, faux bronze and plaster casting.

ART 80 Art Appreciation (LEC 3.0)
A basic introductory course designed to familiarize students who have little or no knowledge of the arts with fundamental knowledge necessary for intelligent approach to experiencing the visual arts; painting, sculpture, and architecture.

ART 85 Study Of Film (LAB 1.0 and LEC 2.0)
A study of classic and contemporary films with emphasis on director's technique and philosophy. Films by Fellini, Antonioni plus Bergman, Chaplin, etc. will be viewed and discussed.

ART 90 Achieving a Life of Art (LEC 0.50)
An introduction to the profession and practice of art in its various forms. This is a Residential College Course.
ART 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ART 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ART 130 Advanced Drawing (LEC 3.0)

ART 150 Advanced Painting (LEC 3.0)
Advanced exploration of oil painting techniques and methods. Still life, landscape, and figure. Prerequisite: Art 40.

ART 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ART 201 Special Topics (LAB 2.0 and LEC 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ART 203 Architectural Design I (LAB 2.0 and LEC 1.0)
Introduction to the interaction between architecture and art. A series focused on the history of architecture as it relates to styles and functions. Theories of building and site design, plan and spatial organization, formal composition, and environmental context are considered as principle form determinants. Prerequisite: Sophomore standing.

ART 219 Art For Elementary Teachers (LEC 3.0)
Considers the vital role of art activities and creative experiences in the growth and development of children at their level. Prerequisite: Educ 40. (Co-listed with Educ 219).

ART 221 Introduction to Photography (LEC 3.0)
In this course the student will learn the basics of photographic composition and the use of the digital camera. A brief history of photography will provide context for the student’s own development. Prerequisite: Art 80 or Art 85 (required for Art minor credit) or Sp&M S 85 or Sp&M S 181 (required for Speech minor credit). (Co-listed with Sp&M S 221).

ART 222 Revolution And Romanticism In The Arts 1785 - 1832 (LEC 3.0)
This course will investigate the great revolution of thought, perception, language, through art during the period between 1785 and 1832. Artists, writers, and musicians to be studied include: Blake, David, Wordsworth, and Beethoven. The role of art and artists to the French Revolution will be stressed. Prerequisite: Introductory level Art or History course.

ART 245 Thomas Hart Benton And The Tradition Of American Art (LEC 3.0)
Missouri artist Tom Benton lived amidst controversy and acclaim from the 1920’s to the 1970’s. The American tradition from which Benton grew will be studied, then his own work and his subsequent influence. Prerequisite: Art 85 or Art 80.

ART 250 Thematic Studies In Film & Literature (LEC 3.0)
Different thematic relationships between film & literature (e.g., Poe & Hitchcock, Shakespeare on Film, etc.) will be studied. Prerequisite: Art 85.

ART 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ART 301 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

Biological Sciences (BIO SCI)

BIO SCI 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 102 Introduction To Biological Science (LEC 1.0)
An introduction to the study of biology at UMR. Students will consider personal and professional opportunities within the various areas of biology and become acquainted with Biological Sciences faculty and departmental and campus facilities. Required of freshman Biological Sciences majors.

BIO SCI 110 General Biology (LEC 3.0)
A comprehensive study of the general principles of the biology of plants, animals, and protists including population biology and regulation mechanisms. Prerequisite: Entrance requirements.

BIO SCI 111 Principles of Biology (LEC 3.0)
A comprehensive study of the general principles of the biology of plants, animals, and protists including population biology and regulation mechanisms. An in-depth study of the fundamental principles governing all living organisms from the molecular to the population level. Required for Biological Sciences majors. Cannot also receive credit for Bio Sci 110. Prerequisite: Entrance requirements.

BIO SCI 112 General Biology Lab (LAB 1.0 and LEC 1.0)
The laboratory work accompanying general biology consists of experiments designed to supplement and extend lectures in course Bio 1. Prerequisite: Preceded or accompanied by Bio Sci 110.

BIO SCI 113 Biodiversity (LEC 3.0)
This course provides a survey of all life, but emphasizes diversity of eukaryotes including protists, fungi, plants, and animals. Emphasis is on form, function, ecology, and evolution of plants and animals and other organisms.

BIO SCI 114 Biodiversity Lab (LAB 1.0)
This lab course is designed to accompany instruction in the Biodiversity class. Lab and field explorations of the varieties of life, with an emphasis is on form, function, ecology, and evolution of plants and animals and other organisms. Prerequisite: Preceded or accompanied by Biodiversity (Bio Sci 113).

BIO SCI 115 Zoology (LEC 3.0)
Survey class that explores the diversity of animal life. Emphasis on the morphology, physiology, development, ecology, and phylogeny of animals and protozoans.

BIO SCI 116 Zoology Laboratory (LAB 1.0)
Bio Sci 116 is designed to accompany Bio Sci 115 and consists of laboratory and field explorations of the diversity of animal life. Prerequisite: Preceded or accompanied by Bio Sci 115.

BIO SCI 119 Plant Biology Laboratory (LAB 1.0)
Bio Sci 119 is designed to accompany Bio Sci 118 and consists of experiments that will supplement and extend the lectures in Bio Sci 118. Among the topics to be covered are photosynthesis, diversity, respiration, anatomy and development, hormones, and transpiration. Prerequisites: Bio Sci 112, preceded or accompanied by Bio Sci 218.
BIO SCI 121 Microbes And Man -- Introductory Microbiology (LEC 3.0)
An introduction to the study of microorganisms in nature, especially as they affect humans. Consideration of the involvement of microorganisms in disease, decomposition, nutrition, agriculture, food processing and preservation, industrial applications and waste treatment.

BIO SCI 144 Introduction to Human Anatomy and Physiology I (LEC 3.0)
First semester of a two-semester sequence dealing with the structure and function of human organ systems. Includes the study of cells, tissues, and the integumentary, skeletal, muscular and nervous systems. Prerequisite: Any high school or college Biology course.

BIO SCI 146 Introduction to Human Anatomy and Physiology II (LEC 3.0)
Second semester of a two-semester sequence of the study of the structure and function of human organ systems, including the endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary and reproductive systems. Prerequisite: Bio Sci 144.

BIO SCI 150 Biotechnology in Film (LEC 3.0)
Popular films that use biology-based plots influence society by disseminating facts and providing misinformation. Popular movies serve as the basis for discussing the biotechnology behind popular movie plots and examining the relationship between public perceptions and biotechnology.

BIO SCI 151 Introduction to Environmental Sciences (LEC 3.0)
An introduction to environmental science, with an emphasis on biological aspects of current environmental problems. Topics range from chemical toxicity to global climate change. Environmental challenges facing local species and ecosystems will be emphasized.

BIO SCI 175 Introduction to Biological Design and Innovation (LAB 2.0 and LEC 1.0)
Students will identify problems in biomedical sciences, and then design and implement innovative solutions using advanced techniques. Students will present and defend their proposals and results. Prerequisite: Bio Sci 188.

BIO SCI 188 Introduction to Biomedical Problems (LEC 3.0)
Problem based learning approach to issues in medical science. Students will work in groups and individually to answer problems related to diagnostic testing and evaluation of diseases and other medical conditions. Prerequisite: Bio Sci 146.

BIO SCI 201 Special Topics (LAB 2.0 and LEC 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 211 Cell Biology (LEC 3.0)
The structure and function of eukaryotic and prokaryotic cells. Emphasis on macromolecules, organelles, metabolic pathways, bioenergetics, cell signaling, the cell cycle, and information processing. Prerequisite: Preceded or accompanied by Chem 3.

BIO SCI 212 Cell Biology Laboratory (LAB 1.0)
Laboratory course to accompany Cell Biology (Bio Sci 211). Laboratory work includes microscopy, biochemical assays, enzymology, and genetic analysis (PCR, mapping, electrophoresis, transfection, sequencing). Prerequisite: Preceded or accompanied by Bio Sci 211.

BIO SCI 218 Plant Biology (LEC 3.0)
An intermediate class covering plant form and function. Topics include the cellular structures unique to plants, their life cycles, and the mechanisms they use to survive, reproduce, and convert solar energy into a form usable by all other organisms. Prerequisite: Bio Sci 110 or Bio Sci 111.

BIO SCI 221 Microbiology (LEC 3.0)
General introduction to the culture and study of microorganisms, their physiology, structure, and contribution to biology. Prerequisite: Chem 3.

BIO SCI 222 Microbiology Lab (LAB 2.0)
General introduction to the techniques used for the culture and identification of microorganisms, their physiology, structure, and contribution to biology. Prerequisite: Preceded or accompanied by Bio Sci 221.

BIO SCI 231 General Genetics (LEC 3.0)
The study of the principles of heredity and reasons for variation in living organisms. Includes Mendelian principles, molecular, population, and evolutionary genetics with examples from a diverse array of species. Prerequisite: Bio Sci 110 or 111.

BIO SCI 235 Evolution (LEC 3.0)
A survey of the genetic and environmental mechanisms associated with organic evolution.

BIO SCI 241 Human Anatomy (LEC 3.0 and LAB 2.0)
Study of gross anatomy and microscopic anatomy of the human organ systems. Laboratory work includes dissection of the cat. Prerequisite: Bio Sci 110 or Bio Sci 111.

BIO SCI 242 Human Physiology (LEC 3.0)
Study of the function of the organ systems of the human body with emphasis on organ systems interactions. Prerequisites: Bio Sci 110, Bio Sci 111, or Bio Sci 211.

BIO SCI 243 Human Physiology Laboratory (LAB 1.0)
Laboratory activities and demonstrations of basic physiology of human organ systems. Prerequisite: Accompanied or preceded by Bio Sci 242.

BIO SCI 244 Human Anatomy and Physiology I (LEC 3.0)
First semester of a two-semester sequence dealing with the structure and function of human organ systems. Includes the study of cells, tissues, and the integumentary, skeletal, muscular and nervous systems. Prerequisite: Bio Sci 110 or Bio Sci 111 or Bio Sci 211.

BIO SCI 245 Human Anatomy Physiology I Lab (LAB 1.0)
Laboratory accompanying Human Anatomy and Physiology I (Bio Sci 244). This course may be taken separately at a later date. Prerequisite: Preceded or accompanied by Bio Sci 244.

BIO SCI 246 Human Anatomy and Physiology II (LEC 3.0)
Second semester of a two-semester sequence of the study of the structure and function of human organ systems, including the endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary and reproductive systems. Prerequisite: Bio Sci 244.

BIO SCI 247 Human Anatomy Physiology II Laboratory (LAB 1.0)
Laboratory accompanying Human Anatomy and Physiology II (Bio Sci 246). This course may be taken separately at a later date. Prerequisite: Bio Sci 246.

BIO SCI 251 Ecology (LEC 3.0)
Relationships between organisms and the environment. Topics include the influence of environmental factors on individual organisms, population dynamics, interspecific associations, and entire ecosystems. Prerequisite: Bio Sci 110 or Bio Sci 111.
BIO SCI 271 Issues in Public Health (LEC 2.0)
Due to globalization, diseases such as West Nile Disease, Ebola Hemorrhagic Fever, and SARS are able to overcome geographic barriers and become widespread. We will discuss the nature of these diseases and their impact on public health, national security, and the global economy. Prerequisite: Bio Sci 110 or Bio Sci 111.

BIO SCI 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

BIO SCI 301 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 310 Seminar (RSD 1.0)
Presentation of a scientific paper concerned with current topics in biological sciences. Prerequisite: Senior standing.

BIO SCI 311 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Comp Sci 311).

BIO SCI 315 Developmental Biology (LEC 3.0)
Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisite: Bio Sci 211.

BIO SCI 321 Pathogenic Microbiology (LEC 3.0)
A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio Sci 221 or Civ Eng 261.

BIO SCI 325 Microbiology In Bioengineering (LEC 3.0)
General introduction to prokaryotic and eukaryotic microorganisms and viruses. Consideration of various parameters affecting the growth, basic techniques of culture, and industrial applications of microorganisms. Prerequisite: Bio Sci 211.

BIO SCI 328 Nutritional And Medicinal Properties Of Plants (LEC 3.0)
A survey of the biochemical and physiological functions of mineral elements, vitamins, and other organic compounds from plants necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their effects and uses. Prerequisites: Bio Sci 110 or Bio Sci 111; and Bio Sci 211.

BIO SCI 331 Molecular Genetics (LEC 3.0)
A study of the properties and functions of DNA that make this macromolecule unique in the universe. Examples of replication, transcription, translation, repair, and regulation will be examined in viruses, prokaryotes, and eukaryotes. Prerequisites: Bio Sci 231 and Bio Sci 211.

BIO SCI 332 Molecular Genetics Laboratory (LAB 2.0)
This course provides experience in the use of a variety of DNA manipulation techniques that are common to molecular studies. These include DNA extraction, restriction mapping, Southern blotting, recombinant plasmid construction, DNA sequencing and analysis, and polymerase chain reaction. Prerequisite: Preceded or accompanied by Bio Sci 331.

BIO SCI 334 Genomics (LEC 3.0)
This course offers a general overview of the field of genomics. Topics covered include genome sequencing and annotation, transcriptomics, proteomics, metabolomics, genomic variation, and an overview of human, and several animal, plant, and microbial genome projects.

BIO SCI 335 Cancer Cell Biology (LEC 3.0)
Advanced biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. Prerequisite: Bio Sci 211.

BIO SCI 340 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Met Eng 340, Chem Eng 340).

BIO SCI 341 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with MS&E 341).

BIO SCI 342 Exercise Physiology (LEC 3.0)
Covers cardiovascular, pulmonary, and metabolic responses to aerobic and anaerobic muscular activities, work capacities, nutritional factors in performance, and role of exercise in health. Prerequisite: Bio Sci 110 or Bio Sci 111.

BIO SCI 345 Comparative Chordate Anatomy (LEC 2.0 and LAB 2.0)
An integrated, comparative study of chordate structures and systems, with emphasis on evolution, development and function. Includes examination of gross anatomy and histology of selected forms. Prerequisites: Bio Sci 113, Bio Sci 114.

BIO SCI 351 Introduction to Environmental Microbiology (LEC 3.0)
Environmental Microbiology is an interdisciplinary study of how microorganisms can impact humans and applied to solve problems such as water treatment and environmental cleanup of contaminants. This course differs from Bio Sci 451 as no NSF-style report or presentation is required. Prerequisite: Bio Sci 221.

BIO SCI 352 Biological Effects Of Radiation (LEC 3.0)
Introduction to biological effects of ionizing radiation including mode of induction of mutations, effects on the developing fetus and specific tissues plus therapeutic applications of various types of radiation. Prerequisites: Bio Sci 110 or Bio Sci 111; and Chem 3.

BIO SCI 354 Freshwater Ecology (LEC 3.0)
The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Prerequisite: Bio Sci 251.

BIO SCI 355 Advanced Biodiversity (LEC 3.0)
This course focuses on the enhancement and reduction of biodiversity and modern techniques of measuring and monitoring it. Topics include biogeography, community structure, competition, predation, food webs, geology-biology relationships, environmental change, and human impact. Additional costs and a week-long field trip are required. Prerequisite: Bio Sci 235 or Bio Sci 251.
BIO SCI 364 Global Ecology (LEC 3.0)
This class covers ecological topics at large scales, emphasizing global scales. Topics include global energy balance, biogeochemical cycles of water, carbon, nitrogen, and other biologically important elements, and global biodiversity. Prerequisite: Bio Sci 251.

BIO SCI 370 Toxicology (LEC 3.0)
A study of natural and man-made toxicants, various possible routes of exposure, absorption, distribution, biotransformation, specific target sites, and mechanisms involved in elicitation of toxic effects, as well as detoxification and excretion. Prerequisites: Bio Sci 211, Bio Sci 231, at least Junior standing.

BIO SCI 375 Biological Design and Innovation I (LAB 3.0)
Students identify significant problems in biological/biomedical sciences, and then design and implement innovative solutions using advanced techniques. Students present and defend proposals and results. Prerequisite: At least two 200 level or higher Biology courses.

BIO SCI 381 Immunology (LEC 3.0)
A study of the principles of immunology, including biological and biochemical aspects of the immune response, immunocompetence, serology, immunoglobulin and T-cell mediated allergies, tumor and transplantation immunology, autoimmune diseases, and the role of immunity in host defense. Prerequisites: Chem 223 or Chem 363 and Bio Sci 211.

BIO SCI 382 Neurobiology (LEC 3.0)
An intermediate course in cellular neurobiology. Emphasis will be placed on the unique properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of neurons, synaptic transmission, neurochemistry, signal transduction, neuropharmacology and neurodevelopment. Prerequisite: Bio Sci 211.

BIO SCI 383 Pharmacology (LEC 3.0)
The basic principles of drug action, pharmacokinetics, pharmacodynamics and toxicity. We will emphasize the actions of drugs used to treat cardiovascular and nervous system disorders. Students will review the primary literature to prepare both written and oral reports on drug actions. Prerequisite: Bio Sci 211.

BIO SCI 388 Biomedical Problems (LEC 3.0)
This course will use a problem-based learning approach to examine biological aspects of various medical conditions. Students will work in groups and individually to answer problems related to diagnostic testing and evaluation of diseases and other medical conditions. Prerequisites: Bio Sci 242 or 244 or 246.

BIO SCI 390 Undergraduate Research (IND 1.0-3.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Consent of instructor.

BIO SCI 391 General Virology (LEC 3.0)
An overview of the field of virology, including plant, animal, and bacterial viruses. Discussions will include morphology, classification, virus-host interactions, genetics, clinical and industrial aspects of viruses, and viruses as model systems for basic biological studies. Prerequisites: Bio Sci 110 or 111; Bio Sci 211, 221, Chem 1, 3, 221.

BUS 10 Introduction to College Success (LEC 1.0)
This course teaches essential skills for success in Business and Information Technology and a student’s future career. The course creates a sense of community in the department and prepares the student for the business world.

BUS 11 Introduction to College Success II (LAB 0.50)
A continuation of BUS 10. Students learn essential skills for success in Business and Information Technology. The course creates a sense of community in the department and prepares the students for the business world.

BUS 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

BUS 101 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 110 Introduction to Management and Entrepreneurship (LEC 3.0)
The course provides an introduction to the basic concepts of management and entrepreneurship to provide an awareness of what functions and challenges are faced by managers and entrepreneurs in today’s global environment. Applications of the concepts to the organization, operations, and resources are discussed. Appropriate for all majors.

BUS 120 Financial Accounting (LEC 3.0)
This course is an introduction to financial accounting and its significant role in making sound business decisions. Emphasis is on what accounting information is, why it is important, and how it is used to make strategic economic decisions.

BUS 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

BUS 201 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 202 Cooperative Training in Business (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry with credit arranged through departmental co-op advisor. Grade received depends on quality of reports submitted and work supervisors’s evaluation. Prerequisite: Completed 30 hours toward degree.

BUS 230 Business Law (LEC 3.0)
This course is an introduction to the nature and meaning of law and the legal environment of business. Topics include the legal process, sources of law, and institutions. Prerequisites: Bus 110 and Econ 121.

BUS 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

BUS 301 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 305 Accounting Essentials (LEC 1.5)
This course is an introduction to the essentials of financial and managerial accounting for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior standing; 3.0 GPA required.
BUS 306 Management and Business Law Essentials (LEC 1.5)
This course is an introduction to the essentials of management and business law for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

BUS 308 Operations Management Essentials (LEC 1.5)
This course is an introduction to the essentials of operations management for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

BUS 309 Mathematics and Statistics Essentials (LEC 1.5)
This course is an introduction to the essentials of mathematics and statistics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

BUS 311 Business Negotiations (LEC 3.0)
The purpose of this course is to understand the practices and processes of negotiation so that you can negotiate successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. Because almost everyone negotiates all the time, this course is relevant to almost any student. Prerequisite: Upperclassmen or graduate status.

BUS 312 Management Information Systems Essentials (LEC 1.5)
This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

BUS 315 Introduction to Teambuilding and Leadership (LEC 3.0)
This course covers an introduction to leadership styles, principles, models, issues, and applications through analytical and intellectual examination. Key components of teams are introduced, with opportunities to practice and develop both leadership and teambuilding skills.

BUS 320 Managerial Accounting (LEC 3.0)
Emphasizes internal use of accounting information in establishing plans and objectives, controlling operations, and making decisions involved with management of an enterprise (the determination of costs relevant to a specific purpose such as inventory valuation, control of current operation, or special decisions). Prerequisites: Bus 120 or Eng Mgt 147.

BUS 350 Customer Focus and Satisfaction (LEC 3.0)
Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. A semester long HoQ project will be done. Prerequisites: MKT 311 or MKT 307 or Eng Mgt 251. (Co-listed with MKT 350).

BUS 360 Business Operations (LEC 3.0)
This course examines the concepts, processes, and institutions that are fundamental to an understanding of business operations within organizations. Emphasis is on the management and organization of manufacturing and service operations and the application of quantitative methods to the solution of strategic, tactical and operational problems. Prerequisites: Math 8 or Math 12 or Math 14; any Statistics course; Bus 120 or Eng Mgt 147.

BUS 370 Human Resource Management (LEC 3.0)
The course examines employee selection, performance appraisal, training and development, compensation, legal issues, and labor relations. Prerequisite: Bus 110.

BUS 375 International Business (LEC 3.0)
This survey course will deal with business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

BUS 380 Strategic Management (LEC 3.0)
Study of the formulation and implementation of corporate, business and functional strategies designed to achieve organizational objectives. Case studies and research reports may be used extensively. Prerequisites: MKT 311 or Eng Mgt 251; Finance 250 or Eng Mgt 252; Senior standing.

BUS 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

BUS 396 Business Models for Entrepreneurship and Innovation (LEC 3.0)
This course uses problem based learning to expand student insight into the nature, development, and application of business models. It increases the practical skills and knowledge required to generate original models of value creation for both entrepreneurial start-ups and corporate innovation. Prerequisite: Senior or graduate standing.

BUS 397 Senior Business Design I (LEC 1.0)
In this course, students will become familiar with the principles of entrepreneurship; learn about the basic purpose, content and structure of business plans; and develop business presentation skills through practice. At the end of the semester, student teams will give presentations to a bank in an attempt to secure a loan to run the business the following semester. Prerequisite: Senior Standing.

BUS 398 Senior Business Design II (LEC 2.0)
In this course, students will be expected to carry out the business plans created in Bus 397. Progress reports are submitted roughly every 3 weeks during the semester. At the end of the semester, students terminate the business organization and profits are donated to a non-profit organization in the team’s name. Prerequisite: Bus 397.

CER ENG 102 Atomic Structure Of Crystalline Ceramics (LEC 3.0)
The crystal-chemical principles used to design and manufacture materials with specified properties are developed and applied to oxides, clays, silicates and other nonmetallic compounds.
CER ENG 103 Introduction To Glass Science And Technology (LEC 3.0)
A study of the atomic-level structure of oxide glasses and the relationships between composition, properties and structure of glass-forming systems. Simple rate processes will be introduced to explain temperature-dependent properties. Prerequisite: Cer Eng 102.

CER ENG 104 Ceramics In The Modern World (LEC 2.0)
An introduction to traditional and modern applications of ceramics providing a broad overview of all aspects of current ceramic technology.

CER ENG 111 Ceramic Materials Laboratory I-Characterization Of Materials (LAB 2.0)
Laboratory experience in collection, beneficiation, and characterization of ceramic raw materials; granulation, compaction, and sintering of particulate materials; and characterization at an introductory level. Standard laboratory practice including safety, report writing, and error analysis are also emphasized. Prerequisite: Sophomore standing.

CER ENG 112 Ceramic Materials Laboratory II-Glass And Ceramic Processing (LAB 2.0)
Laboratory experience in design, processing, and characterization of glasses and ceramics. Glasses are formulated, melted and characterized to correlate composition and properties. Clay-based ceramics are formulated to meet performance specifications, prepared by slip casting/extrusion, and fired. Prerequisite: Cer Eng 111.

CER ENG 201 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable Title.

CER ENG 202 Cooperative Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted at work supervisor’s evaluation.

CER ENG 203 Thermal Processes In Ceramics (LEC 3.0)
Considerations in rate controlled processes in the fabrication of ceramics, packing of powders, comminution and calcination, drying and firing of ceramic ware, polymorphic transformations, sintering, grain growth and hot pressing, relationships of fabrication techniques to physical properties.

CER ENG 205 The Engineering Design Process (LEC 2.0)
Introduction to elements of design process including strategic, planning, project, management, modelling, materials selection, engineering economics, safety, environmental issues and ethics. Prerequisite: Junior standing.

CER ENG 222 Applied Glass Forming (LEC 1.0 and LAB 1.0)
Examines the properties and behavior of molten glass along with basic forming techniques, including off-hand shaping, molding and casting. Prerequisite: Cer Eng 104 or Met Eng 125; freshmen, sophomore, or junior only or by instructor permission.

CER ENG 231 Ceramic Processing Lab I (LAB 2.0)
The first half of a two-semester sequence that gives students practical knowledge of the methods and techniques used in the fabrication of ceramics. Prerequisite: Cer Eng 122.

CER ENG 242 Ceramic Processing Lab II (LAB 2.0)
The second half of a two-semester sequence that gives students practical knowledge of the methods and techniques used in the fabrication of ceramics. Prerequisite: Cer Eng 231.
CER ENG 308 Electrical Ceramics (LAB 1.0 and LEC 2.0)
The application and design of ceramics for the electrical industry is discussed. Particular emphasis is placed on how ceramic materials are altered to meet the needs of a specific application. The laboratory acquaints the student with measurements which are used for electrical property evaluation. Prerequisite: Cer Eng 284.

CER ENG 315 Organic Additives In Ceramic Processing (LEC 2.0)
Basic chemistry, structure and properties of organic additives used in the ceramics industry; solvents, binders, plasticizers, dispersants. Use of organic additives in ceramic processing. Prerequisites: Cer Eng 203 and 231.

CER ENG 331 Ceramic Processing (LEC 3.0)
Powder, colloidal and sol-gel processing, forming methods, drying, sintering and grain growth. Relation of processing steps to densification and microstructure development. Prerequisite: Senior standing.

CER ENG 333 Microelectronic Ceramic Processing (LEC 3.0)
Materials, processing and design of microelectronic ceramics are covered. Introduction to devices, triaxial ceramics, high aluminas, tape fabrication, metallizations, thick film processing and glass-to-metal seals. Prerequisites: Cer Eng 203 & 242.

CER ENG 338 Thermal Properties Of Ceramics (LEC 3.0)
This course will teach the crystal physics underlying heat capacity, internal energy, phonon and photon conduction, and thermal expansion. These properties will be used to rationalize the behavior of a wide variety of ceramic materials in severe thermal environments. Prerequisite: Senior Standing.

CER ENG 340 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 340, Met Eng 340, Chem Eng 340).

CER ENG 352 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Met Eng 352).

CER ENG 362 Thermomechanical/Electrical/Optical Properties Lab (LAB 1.0)
Laboratory consisting of three separate modules of experiments for the characterization of the thermomechanical, electrical and optical properties of ceramics. The student will choose one of the three modules. Prerequisite: Civ Eng 110 or Cer Eng 284.

CER ENG 364 Refractories (LEC 3.0)
The manufacture, properties, uses, performance, and testing of basic, neutral and acid refractories. Prerequisite: Cer Eng 259.

CER ENG 369 Glass Science And Engineering (LEC 3.0)
The development, manufacturing methods, applications, and properties of flat, fiber, container, chemical, and special purpose glasses. Composition/property relationships for glasses and nucleation-crystallization processes for glass-ceramics are also covered. Prerequisite: Cer Eng 103.

CER ENG 371 Dielectric And Electrical Properties Of Oxides (LEC 3.0)
The processes occurring in inorganic materials under the influence of an electric field are considered from basic principles. Emphasis is placed on application to real systems. Prerequisite: Cer Eng 284.

CER ENG 377 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 377, Chem Eng 347, Physics 377, Met Eng 377).

CER ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

CER ENG 392 X-Ray Diffraction Analysis (LAB 1.0 and LEC 2.0)
Theory and practical aspects of x-ray diffraction analysis are covered including diffraction theory, qualitative and quantitative analysis techniques, electronic databases, and operation of modern powder diffractometers. Students cannot receive credit for both Cer Eng 292 and Cer Eng 392. Prerequisite: Preceded or accompanied by Cer Eng 291.

Chemical Engineering (CHEM ENG)

CHEM ENG 20 Computers And Chemical Engineering (LAB 1.0 and LEC 2.0)
Introduction to chemical engineering, both its intellectual and professional opportunities. Students are introduced to computer programming and software packages while performing meaningful chemical engineering calculations.

CHEM ENG 101 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course.

CHEM ENG 120 Chemical Engineering Material & Energy Balances (LAB 1.0 and LEC 2.0)
The application of mathematics, physics and chemistry to industrial chemical processes. The use of equations of state, chemical reaction stoichiometry, and the conservation of mass and energy to solve chemical engineering problems. Prerequisites: Chem 3; preceded or accompanied by Math 15 (or 21); preceded or accompanied by Chem Eng 20, or Comp Sci 73 & 77, or Comp Sci 74 & 78; or Comp Sci 53 & 54.

CHEM ENG 141 Chemical Engineering Thermodynamics I (LEC 3.0)
Development and application of the laws and fundamental relationships of thermodynamics to industrial chemical processes. Emphasis is placed on the estimation of thermophysical property values for applications in chemical process engineering. Prerequisites: Preceded or accompanied by Chem Eng 120, Math 22; and Chem Eng 20, or Comp Sci 73 & 77, or Comp Sci 74 & 78, or Comp Sci 53 & 54.
CHEM ENG 145 Chemical Process Materials (LEC 3.0)

CHEM ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course.

CHEM ENG 202 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

CHEM ENG 211 Professional Practice And Ethics (LEC 1.0)
Preparation for post-graduate activities including resume writing and job searching. Professional attitudes, practice, licensure, and ethics in the chemical engineering profession. Discussions led by visiting industrialists and other invited speakers. Discussion of professional development including professional and graduate programs. Generally offered fall semester only. Prerequisite: At least sophomore standing.

CHEM ENG 231 Chemical Engineering Fluid Flow (LEC 3.0)
Mass, energy, and momentum balance concepts in fluid flow are studied to provide a basis for study of flow measurement, fluid behavior, turbulent flow, dimensional analysis of fluid flows, and the study of some practical flow processes such as: filtration, fluidization, compressible flow, pipe networks. Prerequisites: Chem Eng 120, Math 204, and Physics 23.

CHEM ENG 233 Chemical Engineering Heat Transfer (LEC 2.0)
Process principles of heat transfer in the chemical process industry. Steady and unsteady state heat conduction and radiation heat transfer. Free and forced convection and condensation and boiling heat transfer. Practical heat exchanger design. Prerequisite: Chem Eng 141; preceded or accompanied by Chem Eng 231.

CHEM ENG 234 Chemical Engineering Laboratory I (LEC 1.0 and LAB 1.0)
Experiments associated with unit operations involving fluid flow and heat transfer. Principles of data and uncertainty analysis are introduced with emphasis on model building. Communication skills are stressed. This is a communication emphasized course. Prerequisites: Chem Eng 231 and Chem Eng 233.

CHEM ENG 235 Staged Mass Transfer (LEC 3.0)
Principles of equilibrium stage operations applied to distillation, liquid-liquid extraction, adsorption, and leaching. Methods for estimating pressure drop and stage efficiencies are also studied. Quantitative solutions to practical problems are stressed. Prerequisites: Chem Eng 245 and preceded or accompanied by Chem Eng 237 or Chem Eng 263.

CHEM ENG 236 Chemical Engineering Laboratory II (LEC 1.0 and LAB 2.0)
Experiments illustrating the unit operations of continuous and staged separation. Experimental design methods are extended to include the principles of regression and model building. Communication skills are stressed. This is a communication emphasized course. Prerequisites: Chem Eng 235, Chem Eng 237, preceded or accompanied by Chem Eng 281.

CHEM ENG 237 Continuous Mass Transfer (LEC 3.0)
Fundamentals of diffusion and mass transfer applied to absorption, extraction, humidification, drying and filtration. Design and rating of continuous chemical separators. Prerequisites: Chem Eng 233, 245 and preceded or accompanied by Chem 241.

CHEM ENG 245 Chemical Engineering Thermodynamics II (LEC 3.0)
Physical, chemical and reaction equilibrium. Study of the thermophysical relationships of multicomponent, multiphase equilibrium. Application of equilibrium relationships to the design and operation of chemical mixers, separators and reactors. Prerequisites: Grade of "C" or better in Ch Eng 120 and 141, accompanied or preceded by Math 204.

CHEM ENG 247 Molecular Chemical Engineering (LEC 3.0)
Introduction to the molecular aspects of chemical thermodynamics, transport processes, reaction dynamics, and statistical and quantum mechanics. Prerequisite: Chem Eng 245.

CHEM ENG 251 Chemical Engineering Process Dynamics And Control (LEC 3.0)
Study of the dynamics of chemical processes and the instruments and software used to measure and control temperature, pressure, liquid level, flow, and composition. Generally offered fall semester only. Prerequisite: Preceded or accompanied by any one of Chem Eng 234 or Chem Eng 236 or Chem Eng 264.

CHEM ENG 252 Process Dynamics And Control Laboratory (LAB 1.0)
Application of concepts of industrial process dynamics and control using experiments that demonstrate different control and sensing devices and software. This is a communications emphasized course. Prerequisite: Preceded or accompanied by Chem Eng 251.

CHEM ENG 263 Biochemical Separations (LEC 3.0)
The fundamentals of mass transfer are introduced and applied to various unit operations employed in the separation of chemical and biochemical compounds. Prerequisites: Chem Eng 245 and preceded or accompanied by Chem Eng 235.

CHEM ENG 264 Biochemical Separations Laboratory (LAB 2.0)
Introduction to the unit operations employed in the separation of chemicals and biochemicals. The experiments illustrate the staged and continuous separation systems that are involved. This is a communications emphasized course. Prerequisite: Chem Eng 263.

CHEM ENG 266 Biochemical Reactor Laboratory (LAB 3.0)
Introduction to the unit operations involved with the production of biochemicals. The experiments emphasize the isolation of proteins and enzymes from tissue and bacteria cells. This is a communications emphasized course. Prerequisites: Chem Eng 263 and preceded or accompanied by Chem Eng 235.

CHEM ENG 281 Chemical Engineering Reactor Design (LEC 3.0)
The study of chemical reaction kinetics and their application to the design and operation of chemical and catalytic reactors. Prerequisite: Preceded or accompanied by either Chem Eng 237 or Chem Eng 263.

CHEM ENG 283 Chemical Engineering Economics (LEC 2.0)
Economic analysis of a chemical process including capital requirements, operating costs, earnings, and profits. The economic balance is applied to chemical engineering operations and processes. Optimization and scheduling techniques are applied to process evaluation. Prerequisite: Preceded or accompanied by Chem Eng 235.

CHEM ENG 285 Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Prerequisite: Preceded or accompanied by Chem Eng 281.
CHEM ENG 288 Chemical Process Design (LAB 2.0 and LEC 1.0)
Engineering principles involved in the design and layout of chemical process equipment. Material and energy balances, equipment selection and design, and preconstruction cost estimation are performed for a capstone design project. Communication emphasized course. Prerequisites: Chem Eng 235 and Chem Eng 281; preceded or accompanied by Chem Eng 251, Chem Eng 252, and Chem Eng 283.

CHEM ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 301 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 320 Chemical Process Flowsheeting (LAB 1.0 and LEC 2.0)
The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Prerequisite: Math 204 or graduate standing.

CHEM ENG 333 Intermediate Separation Processes (LEC 3.0)
Fundamentals of separation operations such as extraction and distillation; rates of diffusion in equilibrium stages and continuous contactors; efficiencies; multistage contactors; performance of equipment; phase equilibrium data; multicomponent separation. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 335 Intermediate Transport Phenomena (LEC 3.0)
The similarities of flow of momentum, heat and mass transfer and the applications of these underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

CHEM ENG 339 Introduction to Molecular Modeling and Simulation (LEC 3.0)
An introduction to the concepts of molecular-based modeling and simulations, their connections to other engineering approaches and their role in multiscale modeling. Major methodologies such as molecular dynamics and lattice and off-lattice Monte Carlo, and special case studies are discussed. Prerequisite: Chem Eng 247.

CHEM ENG 340 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Met Eng 340).

CHEM ENG 341 Physical Property Estimation (LEC 3.0)
Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 346 Introduction to Nanomaterials (LEC 3.0)
Introduction to the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Prerequisite: Chem Eng 145, or Met Eng 125 or Chem 3.

CHEM ENG 347 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 377, Physics 377, Met Eng 377, Cer Eng 377).

CHEM ENG 349 Structure And Properties Of Polymers (LEC 3.0)
A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 350 Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Eng Mgt 350).

CHEM ENG 351 Principles Of Environmental Monitoring (LEC 3.0)
This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 231 and Physics 24, or graduate standing.

CHEM ENG 355 Intermediate Process Dynamics And Control (LEC 3.0)
A study of the dynamic properties of engineering operations and the interrelationships which result when these operations are combined into processes. Formulation of equations to describe open-loop and closed-loop systems. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 358 Intermediate Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Methods to design safety systems or alter the chemical process to reduce or eliminate the risks are covered. Prerequisite: Graduate Standing.

CHEM ENG 359 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 251, Elec Eng 231, Elec Eng 235 or graduate standing. (Co-listed with EI Eng 332).

CHEM ENG 365 Biochemical Reactors (LEC 3.0)
Application of chemical engineering principles to biochemical reactors, and human physiology. Emphasis on cells as chemical reactors, enzyme catalysis and biological transport phenomena. Prerequisite: Preceded or accompanied by Chem Eng 281 or graduate standing.

CHEM ENG 371 Environmental Chemodynamics (LEC 3.0)
Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.
CHEM ENG 372 Alternative Fuels (LEC 3.0)
Global energy outlook and available resources are discussed. Alternative energy options and their technologies are covered. Associated environmental concerns and technology are assessed. Special emphases are placed on renewable energies, transportation fuels, energy efficiencies, and clean technologies. Prerequisite: Chem Eng 235 or senior or graduate standing.

CHEM ENG 373 Pollution Prevention Via Process Engineering (LEC 3.0)
To arrive at environmentally benign process design, each processing system will be considered as an inter-connection of elementary units. Systematic methods capitalizing on synergistic process integrations will be employed. Linear, nonlinear and integer optimization, mass/heat exchange networks, and reactor and reaction networks will be used. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 379 Industrial Pollution Control (LEC 3.0)
The study of water, air, and thermal pollution control methods and the application of these methods to the solution of pollution problems in the chemical industry. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 381 Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Cer Eng 259. (Co-listed with Met Eng 381).

CHEM ENG 382 Hazardous Materials Management (LEC 2.0 and LAB 1.0)
Major themes: hazard identification and characterization; safety, health and environmental management; and the protection of safety, health and environment. Students will have an understanding of work place and environmental hazards in order to be able to facilitate their management and control. The course will include an intensive 30 hour hands-on workshop. Prerequisite: ChBE 235 or graduate standing.

CHEM ENG 383 Intermediate Chemical Reactor Design (LEC 3.0)
A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Chem Eng 281 or graduate standing.

CHEM ENG 384 Interdisciplinary Problems In Manufacturing Automation (LAB 1.0 and LEC 2.0)
The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Mech Eng 344, Eng Mgt 344).

CHEM ENG 385 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Eng Mgt 369).

CHEM ENG 387 Interfacial Phenomena In Chemical Engineering (LEC 3.0)
The course deals with the effects of surfaces on transport phenomena and on the role of surface active agents. Topics include fundamentals of thermodynamics, momentum, heat and mass transfer at interfaces and of surfactants. Some applications are included. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

CHEM ENG 388 Intermediate Process Design (LEC 3.0)
Study of newer unit operations, fluidization, chromatographic absorption, new developments in operations previously studied. Comparison of operations which might be selected for the same end result in an industrial process. Prerequisite: Chem Eng 235 or graduate standing.

CHEM ENG 389 Industrial Chemical Processes (LEC 3.0)
Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 235 or Chem 221, or graduate standing. (Co-listed with Chem 325).

CHEM ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Chemistry (CHEM)

CHEM 1 General Chemistry (LEC 2.0 and RSD 2.0)
A comprehensive study of the general principles of chemistry with emphasis on the fundamental laws and their application in practical computations. Prerequisite: Entrance requirements.

CHEM 2 General Chemistry Laboratory (LAB 1.0)
The laboratory work accompanying general chemistry consists of experiments designed to supplement lectures in Chem 1. Prerequisite: Preceded or accompanied by Chem 1 and Chem 4 or equivalent training program approved by S&T.

CHEM 3 General Chemistry (LEC 3.0)
Continuation of course Chem 1 with some emphasis on descriptive chemistry. The ionic theory and mass laws are introduced and applied at advantageous points in the lecture. Prerequisites: Chem 1 and 2.

CHEM 4 Introduction To Laboratory Safety & Hazardous Materials (LEC 1.0)
A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies.

CHEM 5 Accelerated General Chemistry (LAB 1.0 and RSD 1.0 and LEC 3.0)
An accelerated version of Chem 1, Chem 2, and Chem 3. Four lectures and three laboratory hours per week. Students who do not meet these entrance requirements must take Chem 1, 2, & 3. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by S&T. A minimum score of 60 for the sum of the MMPT and the ACT N. SCI. test scores with neither score below 27.

CHEM 8 Qualitative Analysis (LAB 2.0)
This course is to accompany the study of the metals in general chemistry and is devoted to the qualitative separation and detection of the metals. Prerequisite: Preceded or accompanied by Chem 3 and Chem 4 or an equivalent training program approved by S&T.

CHEM 10 General Chemistry For Non-Science Majors (LEC 3.0)
A one semester introduction to chemistry designed to acquaint the student with the philosophy of the chemist’s approach to problem solving and the contribution of chemistry to society. Prerequisite: Entrance requirements.
CHEM 11 Introduction To Chemistry (LEC 1.0)
Introduction to chemistry, its intellectual and professional opportunities. Students will be acquainted with various areas of chemistry and with departmental and campus facilities useful to their future studies. Required of all freshman chemistry majors; encouraged for undergraduate transfer chemistry majors.

CHEM 12 Invitational Seminar (LEC 1.0)
This invitational seminar will introduce the student to research in chemistry. A series of seminars will be presented by faculty and outside speakers on current topics in chemical research. Prerequisite: Chem 1 or Chem 5.

CHEM 51 Elementary Quantitative Chemical Analysis (LEC 2.0)
A treatise of the fundamental principles of analytical chemistry and their application in analytical methods. Prerequisite: Preceded or accompanied by Chem 3 or to be accompanied by Chem 52.

CHEM 52 Elementary Quantitative Chemical Analysis (LAB 2.0)
The application of the principles of analytical chemistry in gravimetric and volumetric determinations. Prerequisite: To be accompanied by Chem 51 and preceded or accompanied by Chem 4 or an equivalent training program approved by S&T.

CHEM 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM 110 Master Student (LEC 1.0)
Master Student is an orientation course for new and transfer students that addresses transition needs.

CHEM 151 Analytical Chemistry I (LAB 1.0 and LEC 3.0)
A study of analytical chemistry including an introduction to experimental error, statistics, principles of gravimetric and combustion analysis, chemical equilibrium, acid-base titrations, and electro-analytical determinations. Prerequisites: Chem 3 and preceded or accompanied by Chem 4 or equivalent training program approved by S&T.

CHEM 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM 201 Special Topics (RSD 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM 202 Cooperative Work Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental advisor. Grade received on quality of reports submitted and work supervisor’s evaluation.

CHEM 203 MST General Chemistry Lab (LAB 1.0)
The laboratory work accompanying the MST chemistry courses consists of experiments designed to supplement the lecture work in chemistry. This course is primarily intended for secondary education science teachers. Credit will not be given for both Chemistry 2 and Chemistry 203. Prerequisite: Entrance requirements for the MST program. Preceded or accompanied by Chem 204 or equivalent training program approved by S&T.

CHEM 204 Lab Safety and Environmental Safety (LEC 1.0)
A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies. This course is primarily intended for secondary education science teachers. Credit will not be given for both Chemistry 4 and Chemistry 204. Prerequisite: Entrance requirements for the MST program.

CHEM 210 Seminar (IND 0.0-6.0)
Discussion of current topics.

CHEM 221 Organic Chemistry I (LEC 4.0)
This course consists of four parts: 1) Structure, bonding, and nomenclature; 2) hydrocarbons (alkanes, alkenes, and alkynes), conjugated systems, ultraviolet and visible spectroscopy, stereochemistry, resonance, and molecular orbital theory; 3) substitution and elimination reactions, and 4) identification of organic compounds via infrared and NMR spectroscopy. Prerequisites: Chem 1, 2, 3; or Chem 5.

CHEM 223 Organic Chemistry II (LEC 4.0)
This course consists of three parts. The first part will cover aromaticity and reactions of aromatic compounds, the second part will cover carbonyl compounds, amines and their reactions, and the third part will cover bioorganic compounds that include carbohydrates, aminoacids, peptides, proteins, lipids, nucleosides, nucleotides, and nucleic acids. Prerequisite: Chem 221.

CHEM 224 Organic Chemistry Lab (LAB 1.0)
The use of organic chemical laboratory procedures. For chemical engineering majors only. Prerequisite: Preceded or accompanied by Chem 223 and Chem 4 or an equivalent training program approved by S&T.

CHEM 226 Organic Chemistry I Lab (LAB 1.0)
Laboratory involves purification techniques, simple and multistep synthesis and spectroscopic identification of organic functional groups. Prerequisites: Preceded or accompanied by Chem 221 and either Chem 4 or an equivalent training program approved by S&T.

CHEM 228 Organic Chemistry II Lab (LAB 1.0)
Continuation of Chem 226. Prerequisites: Chem 226, preceded or accompanied by Chem 223 and Chem 4 or an equivalent training program approved by S&T.

CHEM 237 Inorganic Chemistry (LEC 3.0)
A study of modern concepts of atomic structure, chemical bonding, thermodynamics and kinetics as related to the periodic relationship of the elements. Reference to topics of current interests as applied to the above areas.

CHEM 238 Inorganic Chemistry Laboratory (LAB 1.0)
Synthesis and characterization of inorganic chemicals, high and low temperature syntheses, inert atmosphere and vacuum manipulations, electrochemistry, magnetochemistry, spectroscopy (NMR, IR, UV/VIS), superconductivity. Prerequisites: Preceded or accompanied by Chem 237 and Chem 4 or an equivalent training program approved by S&T.

CHEM 241 Physical Chemistry (LEC 3.0)
A study of the laws of thermodynamics and their applications to the states of matter, solutions, and equilibria. Prerequisites: Math 22, Physics 24 or Physics 25.

CHEM 242 Physical Chemistry Laboratory (LAB 1.0)
Some typical operations of experimental physical chemistry. Prerequisites: Preceded or accompanied by Chem 241 and Chem 4 or an equivalent training program approved by S&T.
CHEM 243 Physical Chemistry (LEC 3.0)
A study of kinetic theory, chemical kinetics, electromotive force and ionic equilibria. Prerequisite: Chem 241 or consent of department.

CHEM 244 Physical Chemistry Laboratory (LAB 1.0)
A continuation of Chem 242. Prerequisite: Preceded or accompanied by Chem 243 and preceded or accompanied by Chem 4 or an equivalent training program approved by S&T.

CHEM 251 Analytical Chemistry II (LAB 1.0 and LEC 3.0)
A study of analytical chemistry including separation techniques for chemical and biochemical analysis, atomic - molecular mass spectrometry, atomic - molecular spectroscopy, surface analysis with electron spectroscopy, X-ray and mass spectrometry. Prerequisites: Chem 4, Chem 151, Chem 223 and Chem 241.

CHEM 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by S&T. Consent of instructor required.

CHEM 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM 310 Undergraduate Seminar (RSD 1.0)
Written and oral presentations of current topics in chemistry. This course may serve as part of the capstone requirement for chemistry majors.

CHEM 321 Intermediate Organic Chemistry I (LEC 3.0)
An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Prerequisite: Chem 223.

CHEM 322 Intermediate Organic Chemistry II (LEC 3.0)
A systematic study of organic reactions, their mechanisms and synthetic applications. Prerequisite: Chem 223.

CHEM 325 Industrial Chemical Processes (LEC 3.0)
Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 235 or Chem 221, or graduate standing. (Co-listed with Chem Eng 389).

CHEM 328 Organic Synthesis And Spectroscopic Analysis (LEC 1.0 and LAB 2.0)

CHEM 331 Selected Topics In Inorganic Chemistry (LEC 3.0)
A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates.

CHEM 343 Introduction To Quantum Chemistry (LEC 3.0)
A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 22, Physics 24 or Physics 25.

CHEM 344 Advanced Physical Chemistry (LEC 3.0)
Advanced undergraduate treatments of special topics of physical chemistry, which may include statistical mechanics, kinetics, group theory, or spectroscopy. Prerequisite: Chem 343.

CHEM 346 Chemical Thermodynamics (LEC 3.0)
A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Prerequisite: Chem 243.

CHEM 355 Instrumental Methods Of Chemical Analysis (LEC 3.0 and LAB 1.0)
Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Prerequisites: Chem 4, Chem 151, Chem 223, Chem 243.

CHEM 361 General Biochemistry (LEC 3.0)
A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Prerequisite: Chem 223.

CHEM 362 General Biochemistry Laboratory (LAB 2.0)
Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Prerequisites: Preceded or accompanied by Chem 361 and Chem 4 or an equivalent training program approved by S&T.

CHEM 363 Metabolism (LEC 3.0)

CHEM 367 Industrial Biochemistry (LEC 3.0)
A study of the problems involved in the utilization of biological systems for the production of bulk chemicals, the preparation of biologicals and the treatment of waste from plants producing biologicals and foodstuffs. Prerequisite: Junior standing.

CHEM 375 Principles Of Environmental Monitoring (LEC 3.0)
This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with specific examples. Prerequisites: Chem 221, Physics 25.

CHEM 381 Chemistry And Inherent Properties Of Polymers (LEC 3.0)
A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Prerequisite: Chem 223.

CHEM 384 Polymer Science Laboratory (LEC 1.0 and LAB 2.0)
Lectures and laboratory experiments dealing with polymerization reactions, solution properties and bulk or solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Prerequisite: Chem 381 or Chem Eng 375, preceded or accompanied by Chem 4 or an equivalent training program approved by S&T.

CHEM 385 Fundamentals Of Protective Coating I (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classification, manufacture, properties and uses of protective coatings. Prerequisite: Chem 223.

CHEM 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report is required of the student. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.
Civil Engineering (CIV ENG)

CIV ENG 1 Fundamentals Of Surveying (LAB 1.0 and LEC 2.0)
Surveying fundamentals: leveling, directions, angles, distances, errors, traverse calculations and basic adjustments. Fundamentals of horizontal curves. Lab exercises include leveling, traversing, horizontal circular curve layout and building layout. Prerequisite: Preceded or accompanied by Math 14 (or 8).

CIV ENG 3 Engineering Communications (LAB 1.0 and LEC 1.0)
Introduction to programming concepts and software tools (computer aided design drafting, computer mathematics, word processing, spreadsheets, and presentation software) with application to written and oral communication in professional civil and architectural engineering practice. Prerequisite: Sophomore standing. (Co-listed with Arch Eng 3).

CIV ENG 50 Statics (LEC 3.0)
Application of the principles of mechanics to engineering problems of equilibrium. Topics include resultants, equilibrium, friction, trusses, center of gravity and moment of inertia. Prerequisites: Physics 23 or 21; preceded or accompanied by Math 22.

CIV ENG 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 110 Mechanics Of Materials (LEC 3.0)
Application of the principles of mechanics to engineering problems of strength and stiffness. Topics include stress, strain, thin cylinders, torsion, beams, and combined stresses at a point. Prerequisite: Civ Eng 50 with grade of "C" or better.

CIV ENG 120 Materials Testing (LAB 1.0)
Designed to assist in the teaching of mechanics of materials. Topics include strain measurement, testing machines and properties of materials. Prerequisite: Preceded or accompanied by Civ Eng 110.

CIV ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 202 Cooperative Engineering Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

CIV ENG 210 Senior Seminar: Engineering In A Global Society (RSD 1.0)
Discussion of contemporary issues: public safety, health, and welfare; the principles of sustainable development; lifelong learning; impact of engineering solutions in a global and societal and political context; relationships with owners, contractors, and the public; public service; the Code of Ethics; and the Missouri licensing Statutes and Board Rules. Prerequisite: Senior standing. (Co-listed with Arch Eng and Env Eng 210).

CIV ENG 211 Transportation Engineering (LEC 2.0 and LAB 1.0)
A study of operating characteristics of transportation modes including highways, railways, inland waterways, airways, and pipelines. Consideration of traffic control devices, safety, system capacity, design of routes, planning of urban transportation systems, and economic evaluation of transportation alternatives. Prerequisites: Civ Eng 1 and Civ Eng 3.

CIV ENG 215 Fundamentals of Geotechnical Engineering (LAB 1.0 and LEC 2.0)
Analysis of geotechnical systems including soil classification, index properties, permeability, compressibility and shear strength. Basic geotechnical engineering design principles as they apply to civil constructed facilities, such as analysis of foundations and earth structures. Laboratory determination of the basic properties of soils. Prerequisite: Geo Eng 50 or Arch Eng 103; Civ Eng 110; and preceded or accompanied by Civ Eng 230.

CIV ENG 216 Construction Materials, Properties And Testing (LAB 1.0 and LEC 2.0)
A study of the origin, production, uses and general properties of construction materials accompanied by selected laboratory tests and demonstrations. Prerequisites: Civ Eng 120 or Min Eng 232; Civ Eng 215 or both Geo Eng 50 and Min Eng 241.

CIV ENG 217 Structural Analysis I (LAB 1.0 and LEC 2.0)
Loads on Structures. Analysis of statically determinate and indeterminate beams, frames and trusses. Influence lines and moving loads. Computation of deflections. Development and use of theorems of displacement methods including slope-deflection and moment distribution to analyze statically indeterminate structures. Computer solutions. Prerequisites: Civ Eng 50, 110 each with a grade of "C" or better. (Co-listed with Arch Eng 217).

CIV ENG 221 Structural Design In Metals (LAB 1.0 and LEC 2.0)
The analysis and design of structural elements and connections for buildings, bridges and specialized structures utilizing structural metals. Both elastic and plastic designs are considered. Prerequisite: Civ Eng 217 with a grade of "C" or better. (Co-listed with Arch Eng 221).

CIV ENG 222 Reinforced Concrete Design (LAB 1.0 and LEC 2.0)
The analysis and design of reinforced concrete beams, slabs, columns, retaining walls and footings by the elastic and ultimate strength methods, including an introduction to the design of prestressed concrete. Introduction to use of computers as a design aid tool. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 223).

CIV ENG 229 Foundation Engineering (LEC 3.0)
The effect of subsoil conditions on the behavior and choice of foundations. Topics include geotechnical explorations and the design of foundations, which includes the selection of foundation types, the analysis of bearing capacity and settlement of shallow/deep foundations, and retaining walls. Prerequisite: Civ Eng 215.

CIV ENG 230 Engineering Fluid Mechanics (LEC 3.0)
Study of fluids at rest and in motion. Topics include fluid properties, statics of fluids, and the control volume approach to conservation of mass, momentum and energy. Applications include flow in pipes, pipe systems, external flow, and fluid flow measurements. Prerequisites: IDE 150 or IDE 140, and Math 204, each with a grade of "C" or better.
CIV ENG 233 Engineering Hydrology (LEC 2.0 and LAB 1.0)
A study of hydrologic processes as they relate to design of structures for control and management of water. Emphasizes characterization of precipitation processes, development of design hydrographs, rainfall/runoff frequency analysis, ground-water and wells. Prerequisites: Civ Eng 230 with grade of "C" or better.

CIV ENG 234 Water Resources Engineering (LAB 1.0 and LEC 3.0)
An introduction to the engineering of water resources; flow in closed conduits, pumps, flow in open channels, surface water hydrology, rainfall analysis, hydrograph analysis, flow routing; and ground-water hydrology. Prerequisites: Civ Eng 230 and Stat 213 with grades of "C" or better.

CIV ENG 235 Hydraulic Engineering (LAB 1.0 and LEC 2.0)
A study of applied hydraulics to design of systems used for collection or distribution of water. Emphasis on open channel flow, hydraulic machinery, design of supply systems, drainage systems, and hydraulic transients. Prerequisites: Civ Eng 230 with grade of "C" or better.

CIV ENG 242 Fundamentals of Building Systems (LEC 3.0)
An examination of building life support systems and technology of interest to civil engineers in the planning, operation, and maintenance of buildings. Topics include human comfort, electrical, mechanical, water and waste, transportation, lighting, and other systems necessary for building utilization. Prerequisites: Physics 24, Math 22, and Junior Standing.

CIV ENG 247 Ethical, Legal And Professional Engineering Practice (LEC 2.0)
Discussions of laws concerning contracts, torts, agencies, real property, partnerships, and corporations. The purposes and implications of the engineering registration law, the effect of legal, ethical and marketing considerations of the practice of Civil Engineering. Prerequisite: Junior standing. (Co-listed with Arch Eng 247).

CIV ENG 248 Fundamentals Of Contracts And Construction Engineering (LEC 3.0)
A study of the concepts and techniques used in large construction projects for the preparation of engineer service contracts, the development of a project manual, detailed and conceptual cost estimating, and construction scheduling analysis. Prerequisite: Senior Standing. (Co-listed with Arch Eng 248).

CIV ENG 261 Fundamentals Of Environmental Engineering And Science (LAB 1.0 and LEC 2.0)
Course discusses fundamental chemical, physical, and biological principles in environmental engineering and science. Topics include environmental phenomena, aquatic pollution and control, solid waste management, air pollution and control, radiological health, and water and wastewater treatment systems. (Co-listed with Env Eng 261).

CIV ENG 262 Biological Fundamentals Of Environmental Engineering (LEC 3.0)
Introduction to the function of organisms related to environmental engineering. The course focuses on both the application of organisms to removing contaminants and the effects of contaminants on organisms. Prerequisites: Bio Sci 110 and preceded or accompanied by Civ/Env Eng 261. (Co-listed with Env Eng 262).

CIV ENG 265 Water And Wastewater Engineering (LEC 3.0)
A study of the engineering design principles dealing with the quantity, quality and treatment of water, and the quantity, characteristics, treatment and disposal of wastewater. Prerequisites: Civ Eng 230 with grade of "C" or better, Civ Eng 261. (Co-listed with Env Eng 265).

CIV ENG 298 Senior Design Project (LEC 3.0)
Open-ended design projects involving one or more areas of engineering. Planning design projects, philosophy of design, and application of engineering principles to design problems. Prerequisite: Civ Eng 248 or Arch Eng 248. (Co-listed with Arch Eng 298 and Env Eng 298).

CIV ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 301 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 302 Geomatics (LEC 3.0)
Horizontal and vertical geodetic datums and networks. Theory, calculations and applications of State Plane Coordinate Systems. Introduction to Geographic and Land Information Systems: hardware and software issues; data quality and accuracy; resource, environmental, cadastral and governmental applications; databases; GIS/LIS trends. Introduction to Global Positioning Systems (GPS): Project planning, data collection, data processing and network adjustment applications, Kinematic and RealTime GPS applications, hardware and software options and costs. Prerequisite: Civ Eng 1 with grade of "C" or better.

CIV ENG 304 Legal Aspects Of Boundary Surveying (LEC 3.0)
The U.S. Public Land Survey System (USPLSS): original GLO survey instructions and procedures. Resurveys on the USPLSS law, standards, procedures with emphasis on Missouri. Rights in real property; statute, case and administrative law applied to boundaries. Simultaneous and sequence conveyances. Unwritten rights in real property. Riparian boundaries. Writing and interpreting boundary descriptions. Land surveyor duties and responsibilities. Prerequisite: Civ Eng 1 with grade of "C" or better.

CIV ENG 306 Surveying Systems (LEC 3.0)
Celestial observations for azimuths. Introduction to State Plane Coordinate systems. Theory and calculations. Route surveying and geometrics, horizontal, spiral and vertical curves. Surveying aspects of residential and commercial subdivision design: lot layout, rights of way, easements, setbacks, platting, planning and zoning constraints, application of surveying software. Instrumentation: total stations, electronic levels, instrument calibrations. Prerequisite: Civ Eng 1 with grade of "C" or better.

CIV ENG 310 Seminar (LEC 1.0)
Discussion of current topics. Prerequisite: Senior standing.

CIV ENG 311 Geometric Design Of Highways (LEC 2.0 and LAB 1.0)
Development and applications of concepts of geometric design for rural and urban highways. Design controls and criteria; elements of design, including sight distance, horizontal and vertical alignment; cross-section elements; highway types; intersection design elements; types of interchanges and interchange design elements; grade separations and clearance; development of visual elements. Prerequisite: Civ Eng 211 with grade of "C" or better.

CIV ENG 312 Bituminous Materials (LEC 2.0 and LAB 1.0)
Properties, types, and grades of bituminous materials are presented. Emphasis is placed on usage, distress, surface treatment design, and asphalt concrete mix properties, behavior, design manufacture, and construction. Prerequisite: Preceded or accompanied by Civ Eng 216.
CIV ENG 313 Composition And Properties Of Concrete (LEC 3.0)
Properties of plastic and hardened concrete and the influence of cements, aggregates, water and admixtures upon these properties. The microstructure of cement gel and other factors are related to the behavior of hardened concrete under various types of loading and environments, drying shrinkage, creep and relaxation, fatigue, fracture, and durability. Introduction to statistical quality control of concrete production. Prerequisite: Civ Eng 216 with a grade of "C" or better.

CIV ENG 314 Geosynthetics In Engineering (LEC 3.0)
Geotechnical principles are applied to design of geosynthetic systems for foundation support, earth retention, drainage, and disposal of hazardous conventional wastes. Geosynthetic testing and identification. Emphasis is on design of geosynthetic earth reinforcement, roadway stabilization, filters, and waste containment systems. Prerequisite: Civ Eng 215 with grade of "C" or better.

CIV ENG 315 Intermediate Soil Mechanics (LEC 3.0)
General principles of soil mechanics and their applications, including mineralogy, soil structure, flow through porous media, shear strength, slope stability and consolidation. Prerequisites: Civ Eng 215 with grade of "C" or better.

CIV ENG 316 Geotechnical Earthquake Engineering (LEC 3.0)
Geotechnical earthquake hazards and mitigations, damage to structures, plate tectonics, seismicity, wave propagation, characterization of ground motions, theory of vibrations (1-DOF), effect of local soil conditions on ground response, development of design ground motions, liquefaction, dynamic lateral earth pressures and slope stability/deformation. Prerequisites: Civ Eng 215 with a grade of "C" or better.

CIV ENG 317 Asphalt Pavement Design (LEC 3.0)
Structural design of flexible pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 216 with a grade of "C" or better.

CIV ENG 318 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior Standing and Math 204. (Co-listed with Aero Eng 329, Mech Eng 329 and Elec Eng 329).

CIV ENG 319 Applied Mechanics In Structural Engineering (LEC 3.0)
A study of the basic relationships involved in the mechanics of structures. Topics include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge, building floors, and shell roofs. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 319).

CIV ENG 320 Structural Analysis II (LEC 3.0)
Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 217 or Arch Eng 217. (Co-listed with Arch Eng 320).

CIV ENG 322 Analysis And Design Of Wood Structures (LEC 3.0)
A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 322).

CIV ENG 323 Computer Methods Of Structural Analysis (LEC 3.0)
Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 323).

CIV ENG 326 Advanced Steel Structures Design (LEC 3.0)
The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 221 with a grade of "C" or better. (Co-listed with Arch Eng 326).

CIV ENG 327 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 327).

CIV ENG 328 Prestressed Concrete Design (LEC 3.0)
Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Civ Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 328).

CIV ENG 329 Foundation Engineering II (LEC 3.0)
Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Civ Eng 229 with a grade of "C" or better. (Co-listed with Arch Eng 329).

CIV ENG 330 Unsteady Flow Hydraulics (LEC 3.0)
The study of unsteady flow and its effect on closed water systems and in open channels. Prerequisites: Civ Eng 230 with a grade of "C" or better.

CIV ENG 331 Hydraulics Of Open Channels (LEC 3.0)
The phenomena accompanying the flow of water in open channels, such as uniform and varied flow, critical conditions, backwater curves, hydraulic jump, hydraulic drop and applications are studied in detail. Prerequisite: Civ Eng 230 with a grade of "C" or better.

CIV ENG 332 Transport Processes In Environmental Flows (LEC 3.0)
Dynamics, mixing and contaminant transport in surface water bodies, including rivers and lakes. Buoyancy modifications to the mixing and dynamics of pollutant discharges and surface water bodies. Transport of sediments. Exchange processes at the air/water and sediment/water interfaces. Prerequisite: At least a "C" in Civ Eng 230.
CIV ENG 333 Intermediate Hydraulic Engineering (LEC 3.0)
Application of fluid mechanics principles to the design. Kinematics of fluid motion, conservation of mass, linear and angular momentum, and energy. Requirements for similarity of fluid flow. Introduction to dynamics of fluid flows and viscous incompressible flows. Prerequisite: Civ Eng 230 with a grade of "C" or better.

CIV ENG 335 Water Infrastructure Engineering (LEC 2.0 and LAB 1.0)
Fundamental principles underlying comprehensive water infrastructure development; sanitary sewers, sanitary treatment facilities, stormwater sewers, stormwater detention, water power development, and hydraulic structures. The student is responsible for the planning and design of a water infrastructure development project. Prerequisite: Civ Eng 230 with a grade of "C" or better.

CIV ENG 337 River Mechanics And Sediment Transport (LEC 3.0)
Formation of rivers and the laws governing river regulation and improvements, including navigation and flood protection. Principles governing sediment transport. Prerequisite: Civ Eng 230 with a grade of "C" or better.

CIV ENG 338 Hydrologic Engineering (LEC 3.0)
A study of current up-to-date hydrologic techniques involving design of hydrologic input for bridges, culverts, reservoirs. Techniques involve extreme value statistics, model hydrographs, routing, etc. Prerequisite: Civ Eng 234 with a grade of "C" or better.

CIV ENG 341 Professional Aspects Of Engineering Practice (LEC 3.0)
A study of engineering registration laws, regulations, rules of professional responsibility and standards of practice. Review of causative factors of selected failures and their relationship to professional responsibility. Prerequisite: Senior standing.

CIV ENG 342 Construction Planning and Scheduling Strategies (LEC 3.0)
The goal of this course is to assist participants in gaining an understanding of schedule control techniques and the application of tools such as Primavera Software. Content areas to be addressed include: development of baseline schedules, progress monitoring and updating, recovery schedules, resource application and leveling. Prerequisite: Civ Eng or Arch Eng 248. (Co-listed with Arch Eng 342).

CIV ENG 345 Construction Methods (LEC 3.0)
Introduction to construction planning, selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Civ Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 345).

CIV ENG 346 Management Of Construction Costs (LEC 3.0)
Management of construction projects from inception to completion: estimates, role of network planning, project monitoring and control. Prerequisites: Civ Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 346).

CIV ENG 348 Green Engineering: Analysis of Constructed Facilities (LEC 3.0)
Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 248 or Arch Eng 248; and Junior Standing. (Co-listed with Arch Eng 348).

CIV ENG 349 Engineering And Construction Contract Specifications (LEC 3.0)
Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Civ Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 349).

CIV ENG 351 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 361 and Geophys 361).

CIV ENG 353 Traffic Engineering (LEC 3.0)
Driver, vehicle, and roadway characteristics; traffic control devices; traffic studies; intersection capacity, intersection design, traffic safety, and evaluation of traffic improvements. Traffic laws and ordinances, traffic engineering, traffic circulation, parking design, and forecasting traffic impacts. Prerequisite: Civ Eng 211 with a grade of "C" or better.

CIV ENG 356 Concrete Pavement Design (LEC 3.0)
Design of rigid pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 216 with a grade of "C" or better.

CIV ENG 360 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting), Safe Drinking Water Act, OSGA, TSCA, RCRA, AND CERCLA. Case studies will be emphasized. (Co-listed with Env Eng 360).

CIV ENG 361 Remediation Of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 265, Geo Eng 337 or Graduate Standing. (Co-listed with Env Eng 361).

CIV ENG 362 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 261 with a grade of "C" or better. (Co-listed with Env Eng 362).

CIV ENG 363 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 261 with grade of "C" or better; or graduate standing. (Co-listed with Env Eng 363).

CIV ENG 364 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 261, Env Eng/Civ Eng 262 and Env Eng/ Civ Eng 263; or Graduate standing. (Co-listed with Env Eng 364).
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 365 and Arch Eng 365).

CIV ENG 366 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 261 or Mech Eng 371 or Graduate Status. (Co-listed with Env Eng 366 and Arch Eng 366).

CIV ENG 367 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 230; or graduate standing. (Co-listed with Env Eng 367).

CIV ENG 368 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 230; or graduate standing. (Co-listed with Env Eng 368).

CIV ENG 369 Environmental Engineering Design (LEC 2.0 and LAB 1.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 265 or Env Eng 265. (Co-listed with Env Eng 369).

CIV ENG 373 Air Transportation (LEC 2.0 and LAB 1.0)
Runway configuration, airfield capacity, geometrics and terminal layout and design. Aircraft performance; navigation and air traffic control; airport planning and design; airline operations; aviation systems planning. Prerequisite: Civ Eng 211 with a grade of "C" or better.

CIV ENG 374 Infrastructure Strengthening With Composites (LEC 3.0)
The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Civ Eng / Arch Eng 217, Civ Eng / Arch Eng 223. (Co-listed with Arch Eng 374).

CIV ENG 375 Low-Rise Building Analysis And Design (LEC 3.0)
Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ -Arch Eng 221 or Civ-Arch Eng 223. (Co-listed with Arch Eng 375).

CIV ENG 380 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal/systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 233, 235, 265. (Co-listed with Env Eng 380).

CIV ENG 382 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 370, Env Eng 382, Comp Eng 382, Elec Eng 382).

CIV ENG 384 Structural Dynamics (LEC 3.0)
This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: IDE 150 or equivalent; Civ/Arch Eng 217 or equivalent. (Co-listed with Arch Eng 384).

CIV ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Computer Engineering (COMP ENG)

COMP ENG 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 111 Introduction To Computer Engineering (LEC 3.0)
Binary arithmetic, Boolean algebra, logic and memory elements, computer organization. Prerequisite: Sophomore standing. Comp Eng 112 is also a co-requisite for Comp Eng and Elec Eng majors.

COMP ENG 112 Computer Engineering Laboratory (LAB 1.0)
Introduction to digital design techniques, logic gates, Medium Scale Integration (MSI) parts and flipflops, Timing analysis, Programming and use of Programmable Logic Devices (PLD). Prerequisite: Preceded or accompanied by Comp Eng 111.

COMP ENG 200 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 201 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 202 Cooperative Engineering Training (IND 1.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluations.
COMP ENG 213 Digital Systems Design (LEC 3.0)
Microcontroller-based digital system design methodology and techniques. Topics include basic machine organization, interface design, and C and assembly language programming for real-time embedded systems. Prerequisites: Comp Eng 111 and Comp Sci 53 (or programming equivalent) each with grade of "C" or better.

COMP ENG 214 Digital Engineering Lab II (LAB 1.0)
Advanced digital design techniques, Microcontroller based design, hardware and software codesign. Prerequisites: Comp Eng 111, Comp Eng 112, and Comp Sci 53 (or programming equivalent) each with grade of "C" or better. Preceded or accompanied by Comp Eng 213, Elec Eng 121 and Elec Eng 122.

COMP ENG 215 Computer Organization and Design (LEC 3.0)
Introduction to basic concepts of computer organization and design: metrics for computer performance, computer arithmetic, Von Neuman architecture, instruction implementation, control unit, pipelining, memory systems hierarchy, cache memories and basic I/O controllers. Prerequisites: Comp Eng 111. Should be preceded or accompanied by Comp Eng 213.

COMP ENG 300 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 301 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 311 Introduction To VLSI Design (LEC 3.0)
An introduction to the design and analysis of digital integrated circuits (ICs). Topics include basic manufacturing techniques, transistor-level design and analysis of logic and memory circuits, logic timing, and parasitics. Computer aided design tools are used to develop circuits in the lab. Prerequisites: Elec Eng 121 and Comp Eng 111.

COMP ENG 312 Digital Systems Design Laboratory (LAB 1.0 and LEC 2.0)
Experimental studies of problems with high speed digital signals in circuits. Student designs, wires, tests, and programs a microprocessor based single board computer project. A FPGA design is programmed and tested. Prerequisite: Comp Eng 213 or 313.

COMP ENG 313 Principles of Computer Architecture (LEC 3.0)
Principles of performance measurement and instruction set design; advanced issues in pipelining; instruction level parallelism (dynamic scheduling, branch prediction, multi-issue processors); memory hierarchies for superscalar processors; multiprocessors; multi-threading; storage systems; and interconnection networks. Prerequisite: Comp Eng 215.

COMP ENG 314 Embedded Processor System Design (LEC 3.0)
Development of hardware and software for embedded systems, including real-time operating systems, advanced programming, communication schemes, hardware peripherals and sensors, control methodologies, printed-circuit board design, interrupts, microcontrollers, and hardware-software co-design. One or more team design projects. Prerequisites: Comp Eng 213 or equivalent and 80x51 processor experience.

COMP ENG 315 Digital Computer Design (LEC 3.0)
Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software tradeoffs in different levels of computer system design. Prerequisites: Comp Eng 213 and Comp Eng 214.

COMP ENG 316 Advanced Microcomputer System Design (LEC 3.0)
The design of digital systems based on advanced microprocessors. Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language tradeoffs. Hardware and software laboratory projects required. Prerequisite: Comp Eng 313.

COMP ENG 317 Fault-Tolerant Digital Systems (LEC 3.0)
Design and analysis of fault-tolerant digital systems. Fault models, hardware redundancy, information redundancy, evaluation techniques, system design procedures. Prerequisites: Comp Eng 111 and Comp Eng 112.

COMP ENG 318 Digital System Modeling (LEC 3.0)
Digital system modeling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies. Prerequisite: Comp Eng 111 with a grade of "C" or better.

COMP ENG 319 Digital Network Design (LEC 3.0)
Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internetworking. A modeling tool is used for network design and simulation. Prerequisite: Comp Eng 213 or computer hardware competency.

COMP ENG 325 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Elec Eng 325).

COMP ENG 331 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisite: Comp Eng 213 or Comp Sci 284.

COMP ENG 342 Real-Time Digital Signal Processing (LEC 2.0 and LAB 1.0)
Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisite: Elec Eng 215 or Elec Eng 267.

COMP ENG 345 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: Elec Eng 267 (Co-listed with Elec Eng 345).

COMP ENG 347 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Elec Eng 347).
COMP ENG 348 Wireless Networks (LAB 1.0 and LEC 2.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and ad hoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Elec Eng 348 and Sys Eng 348).

COMP ENG 349 Trustworthy, Survivable Computer Networks (LEC 3.0)
This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Comp Eng 319 or Comp Sci 265.

COMP ENG 354 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Sci 354, Philos 354 and Math 354).

COMP ENG 358 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Comp Sci 153 or programming competency. (Co-listed with Elec Eng 367 and Sys Eng 367).

COMP ENG 372 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasites (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 271 or Comp Eng 213, and Senior standing. (Co-listed with Elec Eng 372).

COMP ENG 378 Mechatronics (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Elec Eng 378).

COMP ENG 382 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media: textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 370, Env Eng 382, Elec Eng 382, Civ Eng 382).

COMP ENG 388 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A “C” or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Sci 345 and Elec Eng 388).

COMP ENG 390 Undergraduate Research (IND 1.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

COMP ENG 391 Computer Engineering Senior Project I (RSD 0.50 and LAB 0.50)
A complete design cycle. Working in small teams, students will design, document, analyze, implement, and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Comp Eng 111, Econ 121 or 122, Sp&M S 85, English 160, Comp Eng 213, 214, 215, and Elec Eng 121.

COMP ENG 392 Computer Engineering Senior Project II (LAB 3.0)
A continuation of Comp Eng 391. Prerequisite: Comp Eng 391.

Computer Science (COMP SCI)

COMP SCI 1 Introduction To Computer Science (LEC 1.0)
This course is devoted to an introduction of various areas of Computer Science, the faculty members, and lab equipment. Computer ethics will be discussed in several lectures.

COMP SCI 53 Introduction To Programming (LEC 3.0)
Programming design and development using C++. Emphasis placed on problem solving methods using good programming practices and algorithm design and development. Topics included are syntax/semantics, logical, relational and arithmetic operators, decision branching, loops, functions, file I/O, arrays, output formatting, C-strings, and an introduction to Object-Oriented Programming including the development and use of classes. Prerequisite: Accompanied by Comp Sci 54.

COMP SCI 54 Introduction To Programming Laboratory (LAB 1.0)
Practical applications of concepts learned in Computer Science 53. Hands-on instruction in C++ developing, debugging, and testing programming projects. Prerequisite: Accompanied by Comp Sci 53.

COMP SCI 73 Basic Scientific Programming (LEC 2.0)
Introduction to the structure of programs and programming techniques in Fortran to solve science and engineering problems. Topics include data representation, basic solutions of numerical problems and the debugging and verification of programs. Prerequisite: Entrance requirements.

COMP SCI 74 Introduction To Programming Methodology (LEC 2.0)
Basic structured programming and problem solving techniques using C++. Development, debugging, and testing of programs, data representation. Topics to include syntax/semantics, operators, loops, decision branching, arrays, file I/O. This course is a terminal course for non-majors and is not sufficient for entry into Computer Science 153.

COMP SCI 77 Computer Programming Laboratory (LAB 1.0)
A laboratory to accompany Comp Sci 73 which emphasizes the designing, writing and debugging of programs in Fortran. Prerequisite: Accompanied by Comp Sci 73.

COMP SCI 78 Programming Methodology Laboratory (LAB 1.0)
A hands-on introduction to structured programming in C++. Development, coding, debugging, and execution of programming concepts discussed in Computer Science 74. Prerequisite: Accompanied by Computer Science 74.
COMP SCI 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 128 Discrete Mathematics For Computer Science (LEC 3.0)
A rigorous treatment of topics from discrete mathematics which are essential to computer science. Principal topics include: formal logic (propositional & predicate), proof techniques, mathematical induction, program correctness, sets, combinatorics, probability, relations, functions, matrices, graph theory and graph algorithms. Prerequisite: A "C" or better grade in Comp Sci 53 or at least Sophomore standing.

COMP SCI 153 Data Structures (LEC 3.0)
A continuation of the development of structured programming concepts and their use in program development. Stacks, queues, linked list, arrays, trees, sorting and searching will be taught together with their use in implementations of a number of algorithms. Prerequisite: Grade of "C" or better in Comp Sci 53.

COMP SCI 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 202 Cooperative Work Training (IND 1.0-5.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation. Not more than 9 hours may be applied to the B.S. degree.

COMP SCI 206 Software Engineering I (LEC 3.0)
Development of methodologies useful in the software engineering classical life cycle. This includes: requirements, design, implementation, and testing phases. These methodologies are reinforced through utilization of a CASE tool and a group project. Prerequisite: A "C" or better grade in Comp Sci 253 and at least Junior standing.

COMP SCI 210 Seminar (IND 0.0-6.0)
Discussion of current topics.

COMP SCI 220 Theory of Computer Science (LEC 3.0)
This course will cover the theoretical underpinnings of computer science. In particular, this course will cover the following topics: basic computability and formal language concepts, regular languages, context free languages, recursively-enumerable languages, and classes P, NP, and NP-completeness. Prerequisite: A "C" or better grade in both Comp Sci 128 and Comp Sci 153.

COMP SCI 228 Introduction To Numerical Methods (LEC 3.0)
Finite difference interpolation, numerical differentiation and integration, linear systems of equations, solution of nonlinear equations, numerical solution of ordinary differential equations, computational techniques and the programming of a large number of problems on digital computers. Prerequisite: A "C" or better grade in both Comp Sci 128 and Comp Sci 153.

COMP SCI 234 Introduction To Computer Organization And Assembly (LEC 3.0)
A detailed study designed to teach the building blocks of a computer system, assembly language programming and the basic computer organization concepts. Subjects include digital logic, performance issues, machine & assembly language, binary arithmetic, and the structure of an ALU. Prerequisites: Comp Sci 153 and Comp Sci 128.

COMP SCI 235 Computer Organization (LEC 3.0)
A detailed study of computer organization concepts and the components of a computer system including control unit, microprogramming, pipelining, memory hierarchy, cache design, virtual memory, I/O devices, and a brief introduction to parallel processors. Prerequisite: Comp Sci 234.

COMP SCI 238 File Structures And Introduction To Database Systems (LEC 3.0)
Course covers major topics in file structures and database systems including techniques for disk access and organization, record and file structures, index structures, sequential file, dense/sparse and secondary indexes, B-trees, range queries, insertion/deletion, hash tables, fundamentals of database systems, the ER model, relational model, algebra and SQL. Prerequisite: A "C" or better grade in Comp Sci 153.

COMP SCI 253 Algorithms (LEC 3.0)
Students will solve recurrence relations, analyze algorithms for correctness and time/space complexity, apply these analysis techniques to fundamental dynamic programming, greedy, shortest-path, minimal spanning trees, and maximum flow algorithms and validate these analyses through programming. Prerequisite: A "C" or better grade in both Comp Sci 128 and Comp Sci 153; preceded by "C" or better grade in Calc I or accompanied by Calc I.

COMP SCI 256 Programming Languages And Translators (LEC 3.0)
Covers basic design of programming languages, compilers and interpreters. The concepts of syntax, variables, expressions, types, scope, functions, procedures, statements, I/O, exception handling and concurrency are introduced. The manner in which various programming languages handle these concepts is discussed. Prerequisite: A "C" or better grade in Comp Sci 220.

COMP SCI 263 Introduction to Computer Security (LEC 3.0)
This course encompasses threats and vulnerabilities, trust and security policies, and enforcement. Specific topics include access control, risk management, systems and applications life cycle, physical security, key management, transmission security, and cryptography. Prerequisite: A "C" or better grade in Comp Sci 253.

COMP SCI 265 Computer Network Concepts And Technology (LEC 3.0)
This course will introduce computer network concepts and will survey the current and evolving technology for the construction, operation, and management of those networks. Both hardware and software issues will be addressed with a focus on local area networks. Prerequisite: A "C" or better grade in Comp Sci 284.

COMP SCI 272 Java and Object Oriented Design (LEC 3.0)
This course will cover Basic Java, Applets, Application, Classes, interfaces, Strings, Arrays, Generics, inheritance, Polymorphism, Algorithm and Object Oriented Design, Software Testing, Exception Handling, File I/O. The use of Graphical User Interfaces in program design and introduction to Software Life Cycle. Project included. Prerequisite: A "C" or better grade in Comp Sci 53.

COMP SCI 274 Introduction To Operating Systems (LEC 3.0)
This course teaches the concepts, structure, and mechanisms of Operating Systems. Topics include process management, concurrency, synchronization, deadlock, multitreading, memory management, scheduling, and internetworking. Special emphasis is given to Unix and its modern-day derivatives. Prerequisites: A "C" or better grade in all of Comp Sci 153, Comp Sci 128, and Comp Eng 213.
COMP SCI 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 302 Agile Software Development (LEC 3.0)
Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs and measure project progress and productivity. Prerequisite: A "C" or better grade in Comp Sci 206.

COMP SCI 307 Software Testing And Quality Assurance (LEC 3.0)
It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: A "C" or better grade in Comp Sci 253.

COMP SCI 308 Object-Oriented Analysis And Design (LEC 3.0)
This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: A "C" or better grade in Comp Sci 253.

COMP SCI 310 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

COMP SCI 311 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Bio Sci 311).

COMP SCI 317 Intellectual Property For Computer Scientists (LEC 3.0)
A presentation of the relationship between the law of intellectual property and computer science. Topics include the application of copyright principles to computer programs, protection of computer programs through patents and trade secret law, and the effect of various agreements which are frequently encountered by the computer scientist. Prerequisite: Senior or graduate standing.

COMP SCI 325 Analysis Of Algorithms (LEC 3.0)
The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking, and graph algorithms. Prerequisite: A "C" or better grade in Comp Sci 253.

COMP SCI 328 Object-Oriented Numerical Modeling I (LEC 3.0)
A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: A "C" or better grade in both Comp Sci 228 and Comp Sci 153; a "C" or better grade in one of Math 208, 203, 229.

COMP SCI 329 Object-Oriented Numerical Modeling II (LEC 3.0)
A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: A "C" or better grade in Comp Sci 328.

COMP SCI 338 Database Systems (LEC 3.0)
This course introduces the advanced database concepts of normalization and functional dependencies, transaction models, concurrency and locking, timestamping, serializability, recovery techniques, and query planning and optimization. Students will participate in programming projects. Prerequisite: A "C" or better grade in both Comp Sci 128 and Comp Sci 238.

COMP SCI 342 Java Gui & Visualization (LEC 3.0)

COMP SCI 345 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A "C" or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Eng 388 and Elec Eng 388).

COMP SCI 347 Introduction To Artificial Intelligence (LEC 3.0)
A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: A "C" or better grade in Comp Sci 253.

COMP SCI 348 Evolutionary Computing (LEC 3.0)
Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisite: A "C" or better grade in both Comp Sci 253 and in a Statistics course.

COMP SCI 352 Agile Software Development (LEC 3.0)
Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs and measure project progress and productivity. Prerequisite: A "C" or better grade in Comp Sci 206.

COMP SCI 353 Multimedia Systems (LEC 3.0)
This course introduces the concepts and components of Multimedia information systems. Topics include: Introduction to Multimedia Data, Multimedia Date Compression, Techniques and Standards, Indexing and Retrieval, Data Storage Organization, Communication and Synchronization, Applications-Media-OnDemand Systems, Video Conferencing, Digital Libraries. Prerequisite: A "C" or better grade in Comp Sci 153.

COMP SCI 354 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Math 354, Philos 354 and Comp Eng 354.)

COMP SCI 356 The Structure of a Compiler (LEC 3.0)
Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisite: A "C" or better grade in both Comp Sci 256 and Comp Sci 253.
COMP SCI 358 Interactive Computer Graphics (LEC 3.0)
Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisite: A "C" or better grade in both Comp Sci 228 and Comp Sci 253.

COMP SCI 362 Security Operations & Program Management (LEC 3.0)
An overview of information security operations, access control, risk management, systems and application lifecycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: A "C" or better grade in all of: operating systems, computer networking, and a writing emphasized course.

COMP SCI 365 Computer Communications And Networks (LEC 3.0)
Network architecture model including physical protocols for data transmission and error detection/correction, data link concepts, LAN protocols, internetworking, reliable end to end service, security, and application services. Students will implement course concepts on an actual computer network. Prerequisite: A "C" or better grade in Comp Sci 284.

COMP SCI 366 Regression Analysis (LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Stat 346).

COMP SCI 381 The Structure Of Operating Systems (LEC 3.0)
The hardware and software requirements for operating systems for uniprocessing, multiprocessing, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: A "C" or better grade in Comp Sci 284.

COMP SCI 384 Distributed Operating Systems (LEC 3.0)
This is a study of modern operating systems, particularly distributed operating systems. Topics include a review of network systems and interprocess communication, causality, distributed state maintenance, failure detection, reconfiguration and recovery, load balancing, distributed file systems, distributed mutual exclusion, and stable property detection including deadlock detection. A group project in Distributed Systems programming will be required. Prerequisite: A "C" or better grade in both Comp Sci 284 and Comp Sci 253.

COMP SCI 387 Introduction to Parallel Programming and Algorithms (LEC 3.0)
Parallel and pipelined algorithms, architectures, network topologies, message passing, process scheduling and synchronization. Parallel programming on clusters. Cost, speedup and efficiency analysis. Prerequisite: A "C" or better grade in both Comp Sci 284 and Comp Sci 253.

COMP SCI 388 Introduction to High Performance Computer Architecture (LEC 3.0)
Overviews high performance architecture of computing systems and covers various architectural/hardware and software/algorithmic means that enhance performance. Uniprocessor and concurrent systems are investigated. Various computational models are studied and linked to commercial systems. Prerequisite: A "C" or better grade in both Comp Sci 213 and Comp Sci 253.

COMP SCI 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the faculty supervisor.

COMP SCI 397 Software Systems Development I (LEC 3.0)
Class members will work in small teams to develop a complete software system beginning with end-user interviews and concluding with end-user training. Prerequisite: A "C" or better grade in Comp Sci 206 and 100 credit hours completed.

COMP SCI 398 Software Systems Development II (LEC 3.0)
This course is an optional continuation of Comp Sci 397. Those interested in project management should take this course since participants become officers or group leaders in the class "corporation." This course is especially important for those going straight into industry upon graduation. Students with coop experience may find this course redundant. Prerequisite: A "C" or better grade in Comp Sci 397.

Economics (ECON)

ECON 100 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of instructor required.

ECON 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ECON 111 Business And Economic Statistics I (LEC 3.0)
This is an introductory course in business and economic statistics. Our main objective is to familiarize the student with elementary statistical concepts within the context of numerous applications in Business and Economics. We will highlight the primary use of statistics, that is, to glean information from an available sample regarding the underlying population. Prerequisite: Math 2 or Math 4 with a grade of "C" or better. (Co-listed with Stat 111).

ECON 121 Principles Of Microeconomics (LEC 3.0)
An examination of how resources and products are priced and how income is distributed within various types of market structures.

ECON 121H Principles Of Microeconomics (LEC 3.0)
AN EXAMINATION OF HOW RESOURCES AND PRODUCTS ARE PRICED AND HOW INCOME IS DISTRIBUTED WITHIN VARIOUS TYPES OF MARKET STRUCTURES.

ECON 122 Principles Of Macroeconomics (LEC 3.0)
A study of alternative strategies for managing the U.S. economy within a global environment, to attain the goals of full employment, stability and growth.

ECON 200 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of instructor required.

ECON 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
ECON 211 Economic and Business Applications (LAB 1.0 and LEC 2.0)
Introduction and application of basic econometric and statistical techniques to solve real business and economics problems. Practical, hands-on use of Excel and SPSS will be introduced in the course. Prerequisites: Econ 121 or 122; Math 4 or higher; Stat 115 or 211 or 213 or 215 or 217 or 343.

ECON 220 History Of Economic Thought (LEC 3.0)
Contributions of the classical and modern economists to the development of economic thought. Course aims at establishing a synthesis of evolving doctrines which have become the basis of currently accepted economic theory. Prerequisites: Econ 121 and 122.

ECON 221 Intermediate Microeconomic Theory (LEC 3.0)
Analysis of demand and supply in various market environments using the theories of production, resource pricing, and distribution of income. Emphasis on efficiency attainment and the rationale for market intervention. Prerequisites: Econ 121 and 122.

ECON 222 Intermediate Macroeconomic Theory (LEC 3.0)
Examines the theoretical framework of national income and product generation, and the use of this theory to construct approaches such as, monetary and fiscal policy to attain economic, political and social goals. Prerequisites: Econ 121 and 122.

ECON 223 Managerial Economics (LEC 3.0)
Business students who become managers of business enterprises should understand how market economic forces create opportunities for making profit. Business students need to be trained in managerial applications of microeconomic theory. Managerial Economics brings together those topics in micro theory that can be applied to business decision making. Prerequisites: Econ 121 & 122.

ECON 230 Law And Economics (LEC 3.0)
Study of application of economics analysis to legal concepts, issues and reasoning. Emphasizes the use of microeconomic theory to examine questions of efficacy and efficiency of decisions emanating from three major areas of common law -property rights, contracts and torts. Prerequisite: Econ 121 or equivalent.

ECON 260 Introduction to Sports Economics (LEC 3.0)
The course uses economics to analyze the business of sports. The course is designed for students with both an introductory or broader economics background, but who have not studied the economics of sports. Topics include labor relations, stadium financing, league structure, competitive balance, amateurism, sports gambling and in-game strategy. Prerequisite: Econ 121 or Econ 122.

ECON 270 Mining Industry Economics (LEC 3.0)
Importance of the mineral industry to national economy, uses, distribution, and trade of economic minerals, time value of money, mineral taxation, economic evaluation utilizing depreciation, depletion, and discounted cashflow concepts, social and economical significance of mineral resources. Prerequisite: Econ 121 or Econ 122. (Co-listed with Min Eng 270).

ECON 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ECON 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ECON 302 Internship (IND 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline-specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisite: Senior status; must have completed 24 hours in major.

ECON 305 Micro and Macro Economics Essentials (LEC 1.5)
This course is an introduction to the essentials of micro and macro economics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Senior or Junior standing and 3.0 GPA required.

ECON 311 Econometrics (LEC 3.0)
Applied statistical analysis of economic phenomena, including identification, least squares bias, and autocorrelation with emphasis on recent estimation procedures. Prerequisites: Stat 115 & 116, Econ 221 and 222.

ECON 315 Mathematical Economics (LEC 3.0)
Marginal analysis, calculus, and linear algebraic systems are applied in selected advanced topics in economics such as price theory, general equilibrium theory, input-output analysis, activity analysis, and game theory. Prerequisite: Econ 221, 222, and Math 8.

ECON 320 Money And Banking (LEC 3.0)
Study of the origin, principles, and functions of money, emphasizing the role of banks in the effectuation of monetary policies geared to achieve various economic and political goals. Prerequisite: Econ 221.

ECON 322 International Trade (LEC 3.0)
Analysis of gains from trade; the effects of factor mobility; effects of trade restrictions on trade flow and income distribution; arguments for restricting trade; and effects of trade on economic development, employment and human capital development. Prerequisite: Econ 221.

ECON 323 International Finance (LEC 3.0)
Examination of the international monetary system, the Balance of Payments, the foreign exchange market, futures and options markets; foreign exchange and other risk management for firms, financing from a global perspective and direct foreign investment. Prerequisite: Econ 222.

ECON 330 Public Finance (LEC 3.0)
Study of government expenditures and sources of revenue. Particular emphasis is given to governmental decision making--how these decisions affect the economy and the behavior of individuals, firms, and families within the economy; and how these decisions may be evaluated. Prerequisite: Econ 221.

ECON 335 Cost-Benefit Analysis (LEC 3.0)
Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. Prerequisite: Econ 221.

ECON 337 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 15 or Math 21, Econ 221 or Econ 222 or Econ 250 or Econ 321, Stat 211 or Stat 213 or Stat 215 or Stat 217 or Stat 343. (Co-listed with Math 337).
ECON 340 Environmental And Natural Resource Economics (LEC 3.0)
Optimum use of replenishable and non-replenishable resources, public goods and common resources, externalities, private vs. public costs, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. Prerequisite: Econ 221. (Co-listed with Min Eng 342).

ECON 342 Foundations of Sustainability (LEC 3.0)
This interdisciplinary course is designed as an introduction to sustainability in commerce. It examines the concept of environmental, social, and economic issues in an organizational context. Principles, processes, and practices of sustainability will be explored. Prerequisites: Senior or Graduate standing.

ECON 344 Introduction to Global Eco- and Social-preneurship and Innovation (LEC 3.0)
This interdisciplinary course applies an entrepreneurial mindset to the environmental and social opportunities and challenges facing the global community. Topics are examined from multiple perspectives: nonprofit, hybrid, and for-profit organizations. Credit cannot be earned for both Econ 344 and 444. Prerequisite: Econ 342.

ECON 351 Economic Development (LEC 3.0)
Theoretical analysis of the problem of economic development of the "poor" countries, where two-thirds of the world's population lives. Treatment of basic problem areas leading to a synthesis of theoretical approaches for the achievement of development. Prerequisite: Econ 221 or 222.

ECON 355 Energy Economics (LEC 3.0)
Market structure. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. Prerequisite: Econ 221. (Co-listed with Min Eng 355).

ECON 357 Network Economy (LEC 3.0)
Emerging Network/Internet economy, using traditional economic tools. Topics: production and reproduction cost of information, information as an "experience good," versions of products, switching cost, lock-in effects, market adoption dynamics, first-mover advantage, intellectual property rights. Prerequisite: Econ 121 or Econ 122. (Co-listed with IS&T 357).

ECON 360 Statistical Models in Actuarial Science (LEC 3.0)
This course covers the statistical foundation of actuarial models and their applications. Topics include survival and severity models, Kaplan-Meier and Nelson-Aalen estimators, aggregate and credibility models for insurance losses, discrete time Markov chains, ruin theory, and simulation. Prerequisite: Stat 343 and either Stat 344 or a 200-level Stat course. (Co-listed with Stat 355).

ECON 375 Labor Economics (LEC 3.0)
Labor as a factor of production, collective bargaining, trade unionism, labor legislation, from the viewpoint of public policy. Prerequisite: Econ 221 or Econ 222.

ECON 389 Problems In Economic Policy (LEC 3.0)
Advanced course designed for students majoring within the department. Appraisal and analysis of major problems of economic policy. Research and reports. Topics covered vary from year to year. Offered jointly by members of the department. Prerequisite: Seniors with 24 or more hours in Econ.

Education (EDUC)

EDUC 40 Perspectives In Education (LEC 2.0)
This course is an introduction course which will assist students planning to enter the teacher-education program in assessing their personal and professional characteristics required for the teaching profession. It is an overview of the teacher education profession for elementary, middle and secondary.

EDUC 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EDUC 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EDUC 102 Educational Psychology (LEC 3.0)
Principles of psychology relevant to the field of education. Course covers theoretical and applied information on such topics as human growth and development, and cognitive and behavioral views of learning and intelligence. The course also covers motivation, creation of learning environments, measurement and evaluation of learning. Prerequisite: Psych 50. (Co-listed with Psych 155).

EDUC 104 Teacher Field Experience (LAB 2.0)
Observation and analysis of instructional techniques and duties in the classroom and school environment by discipline. Student will spend at least 30 contact hours per credit hours in classroom. In addition, library and field experience reports will be made. In addition, Action Research and Seminars will be required. Prerequisite: Educ 40.

EDUC 164 Aiding Elementary, Middle And Secondary Schools (LAB 2.0)
Instructionally-related clinical/administrative and monitorial duties in the classroom during semesters and summer. Student works 30 hours for each credit, with instructor supervising. Also, Action Research and Seminars are required. Prerequisites: Educ 40 and 104.

EDUC 174 School Organization & Adm For Elementary & Secondary Teachers (LEC 2.0)
Required for certification of elementary and secondary teachers. Course content relates to methods of organization and management in the elementary and secondary schools. Prerequisites: Educ 40 and 104.

EDUC 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EDUC 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EDUC 202 Problems Of Teaching Social Studies (LEC 2.0)
A study of current methodologies for teaching in area of specialization.

EDUC 203 Problems Of Teaching Mathematics (LEC 2.0)
A study of current methodologies for teaching in area of specialization.

EDUC 205 Problems Of Teaching Science/Chemistry (LEC 2.0)
A study of current methodologies for teaching in area of specialization.

EDUC 206 Problems Of Teaching Science/Physics (LEC 2.0)
A study of current methodologies for teaching in area of specialization.

EDUC 207 Problems Of Teaching English (LEC 2.0)
A study of current methodologies for teaching in area of specialization.

EDUC 208 Psychological & Educational Development Of The Adolescent (LEC 3.0)
A theoretical and empirical examination of the psychological and educational development of the adolescent.
EDUC 211 Child Psychology (LEC 3.0)
The psychological, intellectual, social, and physical development of children with emphasis on the cognitive and affective processes. The theory, research and application will be studied. Prerequisite: Educ 40 or Psych 50.

EDUC 212 Children’s Literature (LEC 3.0)
Introduction to the study and teaching of children’s literature. Emphasis on historical developments, multi-cultural issues and works. Computer intensive. Prerequisites: English 20 and one semester of college literature. (Co-listed with English 212).

EDUC 215 Teaching Of Reading In Elementary And Middle School (LEC 3.0)
Current materials, methods and teaching techniques in teaching reading in elementary and middle school grades. Emphasis on assessing elementary and middle students needs, individualizing programs based on needs, reading in the content areas, study skills and recreational reading as a lifetime habit. Prerequisite: Educ 40.

EDUC 216 Teaching Reading In Content Area (LEC 3.0)
For elementary, middle and secondary school teachers. Specific ways teachers can help students improve reading skills in content areas and ways reading can be taught in reading classes.

EDUC 217 Analysis And Correction Of Reading Difficulties (LEC 3.0)
Procedures for diagnosing and correcting reading problems within the classroom. Acquaint preservice teachers preparing for elementary with commercial prepared informal diagnostic instruments, attitude and interest inventories, prescriptive measures, anecdotal records and strategies for corrective reading instruction within the regular classroom for elementary children. Prerequisite: Educ 215.

EDUC 218 Language Arts For Elementary Teachers (LEC 3.0)
Courses used in teaching integrated language arts in elementary grades. The strategies would be the development of written and oral communication for use in elementary grades. Prerequisite: Educ 40.

EDUC 219 Art For Elementary Teachers (LEC 3.0)
Considers the vital role of art activities and creative experiences in the growth and development of children at their level. Prerequisite: Educ 40. (Co-listed with Art 219).

EDUC 221 Teaching Math In Elementary And Middle Schools (LEC 3.0)
The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Math 221).

EDUC 222 Geometric Concepts For Elementary Teachers (LEC 3.0)
The course covers methods of teaching the study of points, lines, polygons, similarity, congruence, constructions, and proof in Euclidean Plane Geometry. Transformational geometry and trigonometry are introduced to elementary teachers. Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Math 222).

EDUC 230 Methods In Physical Education K-4 (LEC 3.0)
The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the younger child. (Co-listed with Phy Ed 230).

EDUC 231 Methods In Physical Education 5-9 (LEC 3.0)
The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the student in transition from childhood to young adulthood (5-9). (Co-listed with Phy Ed 231).

EDUC 251 Historical Foundation Of American Education (LEC 3.0)
Development of American educational institutions and ideas, and of social forces that have influenced them. Prerequisites: Educ 40 and History 175 or 176.

EDUC 280 Teaching Methods And Skills In The Content Areas (LEC 6.0)
Series of weekly experiences, demonstrations, observations, micro teaching, small group discussions to develop concepts of and skills in a variety of basic teaching tasks. Also, demonstration and lecture exercises in the preparation and use of audio visual materials for teaching. Prerequisites: Educ 40 and 104.

EDUC 281 Teaching Methods Seminars (LEC 1.0)
Weekly seminars will be required for all students enrolled in student teaching. Contemporary educational topics, trends, reflective decision making and other pertinent topics will be covered. Reflection of topics and experiences will be exhibited in papers, portfolios and journal writings. Prerequisites: Meet all requirements for student teaching and concurrently be enrolled in student teaching.

EDUC 299 Student Teaching (LEC 12)
Student teaching will be supervised participation, on the level of certification in an assigned Public School. Student teaching is based on 16 weeks (8 weeks in two schools and requires the student teacher to demonstrate his/her ability to be effective decision making teacher and an inquiry learner. Prerequisites: Professional standing and arrangements made previous semester.

EDUC 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EDUC 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EDUC 305 Philosophy And Administration Of The Middle School (LEC 3.0)
The course will acquaint students with aspects of education that are unique to the middle school. Attention will be given to the philosophy underlying the middle school. Finally, leadership theories most appropriate to the middle school will be studied.

EDUC 315 Advanced Adolescent Development (LEC 3.0)
This course is an advanced examination of the intellectual and social development of the adolescent. Theories of adolescent development and their implications for the educative process are covered and debated.

EDUC 320 Professional Development (LEC 1.0)
This online course focuses on the responsibilities of the professional development committee, state requirements, and components of effective programs that positively impact student performance. Students will examine the relationships among the district’s Comprehensive School Improvement Plan, MSIP and the PD Plan. Prerequisite: Graduate standing.
EDUC 325 Novell Netware 4.1 / 4.11 (LEC 3.0)
A practical, hands-on course for Novell network administration including NDS planning, mapping and documentation; system power up/down; security, resource service management; user management from creation to user and workstation maintenance; application software installation and management, and Novell Server installation.

EDUC 335 Curriculum And Instruction Of The Middle School (LEC 3.0)
This course advances teachers' understanding of middle school curriculum and instruction. It utilizes knowledge about the nature and needs of young adolescents in developing interdisciplinary learning units, and fosters applications appropriate to experienced teachers' professional assignments. Prerequisite: Graduate standing.

EDUC 339 Current Issues In Educ: Performance Based Assessment, Beginning (LEC 1.0 and LAB 2.0)
This course is intended to provide an understanding of the principles of sound classroom assessment, the five different types of learning outcomes that need to be assessed and the choice of an assessment that best evaluates the achievement targets. Prerequisite: Practicing educator.

EDUC 340 Current Issues In Educ: Performance Based Assessment, Intermediate (LEC 3.0)
This course will provide participants with an understanding of performance-based assessments, how to construct performance tasks and how to construct scoring guides.

EDUC 341 Current Issues In Educ: Performance Based Assessment, Advanced (LAB 2.0 and LEC 1.0)
This course is intended to provide an understanding of balanced classroom assessment. Students will learn to create multiple types of assessment measures for the purpose of evaluating a wide variety of achievement targets. Prerequisite: Practicing educator.

EDUC 345 Introducing Educators To Computers (LEC 1.0)
A basic introduction to computers for K-12 educators. Includes identification and use of hardware components, as well as the fundamentals of using the operating system and basic computer software. Actual software taught will reflect current usage. Prerequisite: Post Bac/practicing teacher.

EDUC 350 Social Studies In The Elementary School (LEC 3.0)
Problems in preparation, teaching of social studies units with suitable materials, techniques for elementary teachers. Prerequisite: Instructor's approval.

EDUC 354 Psychology Of The Exceptional Child (LEC 3.0)
Study of the psychology of children on both ends of the educational spectrum. The course presents the fundamentals of providing services as well as understanding the abilities and disabilities of children classified as exceptional. Includes coverage of various disabilities, and the implications of dealing with personal, family and classroom issues Prerequisite: Psych 50. (Co-listed with Psych 354).

EDUC 370 Teachers Academy: Effective Instructional Strategies (LEC 3.0)
Participants will develop an understanding of research-based instruction and the ability to implement the instructional strategies in their classrooms. In addition to effective instructional practices, the teachers' academy will focus on leadership, empowerment, collaboration and renewal. Prerequisite: Graduate standing.

Electrical Engineering (ELEC ENG)

ELEC ENG 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ELEC ENG 110 Transfer Student Seminar (LEC 0.50)
Discussion of current topics. Prerequisite: First semester transfer student.

ELEC ENG 121 Introduction to Electronic Devices (LEC 3.0)
Materials and device structures for applications in analog and digital electronics. Topics include characteristics and basic circuits for diodes, field-effect transistors, bipolar junction transistors, and operational amplifiers. Prerequisites: Elec Eng 151, Elec Eng 152, and Physics 24 each with grade of "C" or better; passing the Elec Eng Advancement Exam I. Students should enroll in Elec Eng 121 and Elec Eng 122 simultaneously.

ELEC ENG 122 Electronic Devices Laboratory (LAB 1.0)
Laboratory tools and measurement techniques for basic electronic circuits using diodes, field-effect transistors, bipolar junction transistors, and operational amplifiers. Topics include DC biasing and applications in analog and digital electronics. Prerequisites: Elec Eng 151, Elec Eng 152, and Physics 24 each with grade of "C" or better; passing the Elec Eng Advancement Exam I. Preceded or accompanied by Elec Eng 121.

ELEC ENG 151 Circuits I (LEC 3.0)
Circuit elements, signals, Kirchhoff's laws, network theorems, mesh and nodal analysis, transient and complete response of RL, RC, and RLC circuits. Prerequisites: Math 15 (or 21) with a grade of "C" or better. Students should enroll in Elec Eng 151 and Elec Eng 152 simultaneously.

ELEC ENG 152 Circuit Analysis Laboratory I (LAB 1.0)
Safety, basic measurements and meters, oscilloscopes, resistor networks, measurement of capacitors and inductors, RLC circuit response. Prerequisite: Preceded or accompanied by Elec Eng 151. A student who drops Elec Eng 151 must also drop Elec Eng 152.

ELEC ENG 153 Circuits II (LEC 3.0)
Analysis of steady state AC circuits, phasor notation, polyphase circuits, complex frequency and frequency response, magnetically coupled circuits. Prerequisites: Elec Eng 151 and Math 22 each with grade of "C" or better; passing the Elec Eng Advancement Exam I.

ELEC ENG 200 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 201 Special Topics (LAB 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ELEC ENG 202 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

ELEC ENG 205 Electromechanics (LEC 3.0)
Magnetics and magnetically coupled circuits, electromechanical energy conversion, rotating magnetic fields, stepper motors, DC machines, induction machines, synchronous machines, and brushless DC machines. Prerequisites: Physics 24 with a grade of C or better, Elec Eng 153 with a grade of C or better, passing grade on Elec Eng Advancement Exam II. Elec Eng 208 is a corequisite.
ELEC ENG 207 Power System Design And Analysis (LEC 3.0)
Power system components and transmission lines, three phase balanced power system theory, analysis and design including economic and reliability considerations, and fault analysis. A power system design project using a graphical power flow program is included. Prerequisites: Elec Eng 153 with a grade of "C" or better and passing grade on the Elec Eng Advancement Exam II. Co-req Elec Eng 209.

ELEC ENG 208 Electromechanics Laboratory (LAB 1.0)
Experiments with power measurement, transformers, magnetically coupled circuits, rotating magnetic fields, stepper motors, DC machines, induction machines, synchronous machines, and brushless DC machines. Prerequisites: Elec Eng 153 with a grade of "C" or better, passing grade on the Elec Eng Advancement Exam II. Elec Eng 205 is a corequisite.

ELEC ENG 209 Power System Design And Analysis Laboratory (LAB 1.0)
Computer-aided analysis of voltage regulation, power flow, compensation, and economic analysis. Individual projects are required. Prerequisites: Elec Eng 153 with a grade of "C" or better; passing the Elec Eng Advancement Exam II. Elec Eng 207 is a corequisite.

ELEC ENG 210 Senior Seminar (RSD 0.50)
Discussion of current topics. Prerequisite: Next to last semester senior.

ELEC ENG 215 Discrete Linear Systems (LEC 3.0)
Analysis methods for discrete-time signals and systems in the time and frequency-domains including signal models and Fourier techniques. Continuous-time concepts are included as introductory material. Prerequisites: Elec Eng 153 with grade of "C" or better; passing the Elec Eng Advancement Exam II. Students should enroll in Elec Eng 215 and corequisite of Elec Eng 216.

ELEC ENG 216 Discrete Linear Systems Laboratory (LAB 1.0)
Software tools for signal and system representation and for time and frequency-domain systems analysis. Prerequisites: Elec Eng 153 with grade of "C" or better; passing the Elec Eng Advancement Exam II. Preceded or accompanied by Elec Eng 215 and corequisite of 216.

ELEC ENG 217 Continuous Linear Systems (LEC 3.0)
Analysis methods for continuous-time signals and systems in the time and frequency domains including signal models, Fourier transforms, and Lalace transforms. Examples of control and communication systems are included. Prerequisites: Elec Eng 215, Elec Eng 216, and Math 204 each with grade of "C" or better. Students should enroll in Elec Eng 217 and corequisite of Elec Eng 218.

ELEC ENG 218 Continuous Linear Systems Laboratory (LAB 1.0)
Laboratory and software tools for the analysis of linear and non-linear systems. Topics include spectral analysis, transforms, and applications. Prerequisites: Elec Eng 215, Elec Eng 216, and Math 204 each with grade of "C" or better. Corequisite of Elec Eng 217.

ELEC ENG 225 Electronic And Photonic Devices (LEC 3.0)
Semiconductor materials and devices for electronic and photonic applications. Topics include crystal physics, electron and photon behavior, pn junctions, heterojunctions, junction diodes, optoelectronic devices, and ohmic and rectifying contacts. Prerequisite: Elec Eng 121 and Elec Eng 153 each with grade of "C" or better; passing the Elec Eng Advancement Exams II and III.

ELEC ENG 231 Control Systems (LEC 3.0)
Formulation of the control problem, system equations and models, frequency, time, and state space analysis and design of linear control systems. Prerequisites: Elec Eng 153 and Math 204 each with a grade of "C" or better; passing the Elec Eng Advancement Exam II.

ELEC ENG 235 Controllers For Factory Automation (LEC 2.0 and LAB 1.0)
Introduction to programmable automation, programmable logic controller (PLC) hardware, programming languages and techniques, closed-loop strategies using PLC's, sensors, transducers. Case studies. Laboratory experiments. Prerequisites: Elec Eng 153 and Comp Eng 111 each with a grade of "C" or better.

ELEC ENG 243 Communication Systems (LEC 3.0)
Signals and their spectra; signal filtering; amplitude, angle and pulse modulation; multiplexing; noise in communications systems. Prerequisite: Elec Eng 217 with a grade of "C" or better.

ELEC ENG 253 Electronics I (LEC 3.0)
Diode and transistor circuits, small signal analysis, amplifier design, differential and operational amplifiers, flipflop circuits and waveshaping. Prerequisites: Elec Eng 153, Elec Eng 121, Elec Eng 122, and Comp Eng 111 each with a grade of "C" or better. Passing grade on Elec Eng Advancement Exam II and III. Elec Eng 255 is a corequisite.

ELEC ENG 254 Electronics II (LEC 3.0)
Continuation of Elec Eng 253. Diode and transistor circuits, small signal analysis, amplifier design, differential and operational amplifiers, flipflop circuits and waveshaping. Prerequisites: Elec Eng 253 and Elec Eng 255 each with a grade of "C" or better. Elec Eng 256 is optional, but recommended.

ELEC ENG 255 Electronics I Laboratory (LAB 1.0)
Experiments in design with diodes, transistors, differential and operational amplifiers, and logic components. Prerequisites: Elec Eng 153, Elec Eng 121, Elec Eng 122, and Comp Eng 111 each with a grade of "C" or better. Passing grade on Elec Eng Advancement Exam II and III. Elec Eng 255 is a corequisite.

ELEC ENG 256 Electronics II Laboratory (LAB 1.0)
Experiments in design with diodes, power transistors, integrated circuits, advanced bipolar and FET logic gates, flipflops and registers. Prerequisites: Elec Eng 253 and Elec Eng 255 each with a grade of "C" or better. Elec Eng 254 is a corequisite.

ELEC ENG 271 Electromagnetics (LEC 4.0)
Static electric and magnetic fields using vector analysis and time-varying electromagnetic fields using Maxwell's equations. Topics include Coulomb's law, Gauss's law, Ampere's law, dielectric and magnetic materials, plane waves, and transmission lines. Prerequisites: Elec Eng 153, Elec Eng 152, Physics 24, and Math 204 each with a grade of "C" or better. Passing grade on Elec Eng Advancement Exam II.

ELEC ENG 281 Electrical Circuits (LEC 3.0)
Alternating and direct current circuits taught primarily as an a-c course with d-c as special case. Current, voltage and power relations; complex algebra, network theorems; voltage and power relations in polyphase circuits. Not for electrical majors. Prerequisites: Math 204 or 229; Physics 24.

ELEC ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 301 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
ELEC ENG 302 Extra High Voltage Engineering (LEC 2.0 and LAB 1.0)
The physical phenomena associated with high voltage dielectric breakdown are presented. Methods of generating and measuring high voltages and currents are explained. Demonstration of design and performance. Field trips to companies for laboratory testing of high voltage according to industry standards will serve as the lab part of the course. Prerequisite: Senior standing.

ELEC ENG 304 Electric Power Quality (LEC 3.0)
Definitions of power quality, types of power quality problems; sources of sags, transient overvoltages and harmonics; distribution overcurrent protection methods and their effect on power quality and reliability; harmonic analysis, principles of controlling harmonics, devices for filtering harmonics; power quality improvement methods. Prerequisite: Elec Eng 205 or Elec Eng 207.

ELEC ENG 305 Electric Drive Systems (LEC 3.0)
Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Prerequisites: Elec Eng 205 and Elec Eng 231.

ELEC ENG 307 Power Systems Engineering (LEC 3.0)
Network analysis applied to power systems; the load flow concept; economic operation of power systems; synchronous machine reactances and transient stability; symmetrical components and asymmetrical faults; protective relaying. Prerequisite: Elec Eng 207.

ELEC ENG 309 Electric-Drive Vehicles (LEC 3.0)
Course covers introductory topics related to understanding/analysis of electric, hybrid/plug-in hybrid power trains. Classification of hybrid drivetrains, driving cycles, energy storage systems, mechanical coupling devices, automotive applications of fuel cells and introduction to power converters. Prerequisite: Senior standing and Physics 24.

ELEC ENG 323 Classical Optics (LEC 3.0)
Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with Physics 323).

ELEC ENG 324 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear systems theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Elec Eng 265 & 271 or Physics 208 & 321. (Co-listed with Physics 324).

ELEC ENG 325 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Comp Eng 325).

ELEC ENG 326 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 271 or Physics 321. (Co-listed with Physics 326).

ELEC ENG 329 Smart Materials And Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Aero Eng 329, Mech Eng 329 and Civ Eng 318).

ELEC ENG 331 Digital Control (LEC 3.0)
Analysis and design of digital control systems. Review of ztransforms; root locus and frequency response methods; state space analysis and design techniques; controllability, observability and estimation. Examination of digital control algorithms. Prerequisite: Elec Eng 231.

ELEC ENG 332 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 251, Elec Eng 231, Elec Eng 235 or graduate standing. (Co-listed with Chem Eng 359).

ELEC ENG 333 System Simulation And Identification (LEC 3.0)

ELEC ENG 335 Advanced Plc (LEC 2.0 and LAB 1.0)
Advanced programmable logic controller (PLC) programming, function block, structured text, function chart, sequencer. Factory communications, system simulation, human-machine interface (HMI) programming. Advanced PID control. Network security and reliability. Class-wide project. Prerequisite: Elec Eng 235.

ELEC ENG 337 Neural Networks For Control (LEC 3.0)
Introduction to artificial neural networks and various supervised and unsupervised learning techniques. Detailed analysis of some of the neural networks that are used in control and identification of dynamical systems. Applications of neural networks in the area of Control. Case studies and a term project. Prerequisite: Elec Eng 265.

ELEC ENG 338 Fuzzy Logic Control (LEC 3.0)
A mathematical introduction to the analysis, synthesis, and design of control systems using fuzzy sets and fuzzy logic. A study of the fundamentals of fuzzy sets, operations on these sets, and their geometrical interpretations. Methodologies to design fuzzy models and feedback controllers for dynamical systems. Various applications and case studies. Prerequisite: Elec Eng 265.

ELEC ENG 341 Digital Signal Processing (LEC 3.0)
Spectral representations, sampling, quantization, z-transforms, digital filters and discrete transforms including the Fast Fourier transform. Prerequisite: Elec Eng 267.

ELEC ENG 343 Communications Systems II (LEC 3.0)
Random signals and their characterization; noise performance of amplitude, angle and pulse modulation systems; digital data transmission; use of coding for error control. Prerequisite: Elec Eng 243.
ELEC ENG 344 Stochastic Signal Analysis I (LEC 3.0)
Introduction to the application of probabilistic models to typical electrical engineering problems. Topics include: methods for describing random voltages, random digital signals, correlation, linear mean-square estimation, linear transformation of random digital signals, and bit-error rate calculation for communication systems. Prerequisites: Math 204 and Elec Eng 153.

ELEC ENG 345 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: Elec Eng 267. (Co-listed with Comp Eng 345).

ELEC ENG 347 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Comp Eng 347).

ELEC ENG 348 Wireless Networks (LAB 1.0 and LEC 2.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Sys Eng 348).

ELEC ENG 351 Advanced Electronic Circuits (LEC 3.0)
Application of feedback theory, oscillators and frequency standards, precision analog techniques, low-power circuit design, interfacing sensors, designing for high reliability, electronics for harsh environments. Prerequisite: Elec Eng 254.

ELEC ENG 352 Photovoltaic Systems Engineering (LEC 3.0)
Physics and characteristics of photovoltaic (solar) cell technologies, electronic control of alternative energy sources, site selection, array design, energy storage methods, electrical code compliance, stand-alone systems, grid-intertie systems, legal and economic considerations. Prerequisite: Senior or graduate standing in Science or Engineering.

ELEC ENG 353 Power Electronics (LEC 3.0)
Analysis, design, modeling, and control of switching mode power converter circuits for ac-dc, dc-dc, dc-ac, and ac-ac conversion. Power semiconductor devices, passive components, and non-ideal sources and loads. Applications to industry, consumer goods, electric vehicles, and alternative energy. Prerequisite: Elec Eng 253.

ELEC ENG 354 Power Electronics Laboratory (LAB 2.0)
An introduction to power electronic circuits is presented. Students will construct several dc/dc, dc/ac and ac/dc converters. Various switching algorithms, including pulse width modulation, delta modulation, and hysteresis control will be developed to regulate and control the respective circuits. Prerequisite: Co-requisite Elec Eng 353.

ELEC ENG 355 High-Frequency Amplifiers (LEC 3.0)
Analysis and design of high frequency amplifiers. Topics include parameter conversions, activity and passivity, stability criteria, device operating conditions, Smith chart usage, matching networks, microstrip, scattering parameters, and practical applications. Prerequisites: Elec Eng 254, 271.

ELEC ENG 356 Computer-Aided Network Design (LEC 3.0)
Analysis and design of active and passive electric networks. Theory and computer application, including methods for automatic formulation of network state equations, network tolerance, network optimization, and device modeling. Prerequisites: Elec Eng 253, 267.

ELEC ENG 357 Communication Circuits (LEC 3.0)
Analysis and design of circuits used in communication systems. Topics include RF semiconductor devices, low-noise amplifiers, mixers, modulators, crystal oscillators, AGC circuits, highpower RF amplifiers, phase-locked loops, impedance matching, and frequency-selective networks and transformers. Prerequisites: Elec Eng 254, preceded or accompanied by Elec Eng 243.

ELEC ENG 358 Introduction To Circuit Synthesis (LEC 3.0)

ELEC ENG 359 Introduction To Neural Networks & Applications (LEC 3.0)
Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counterpropagation networks, self organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisites: Math 204 or 229; graduate standing. (Co-listed with Sys Eng 378).

ELEC ENG 360 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 271 or Comp Eng 213, and Senior standing. (Co-listed with Comp Eng 372).

ELEC ENG 361 Interference Control in Electronic Systems (LEC 3.0)
Principles of high frequency effects in PCBs and components, generation of unwanted radio-frequency (RF) signals by ICs, RF radiation mechanisms, shielding, and immunity against electrostatic discharge and RF signals. Prerequisites: Elec Eng 217 and 271.

ELEC ENG 362 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 271 or Comp Eng 213, and Senior standing. (Co-listed with Comp Eng 372).

ELEC ENG 363 Antennas And Propagation (LEC 3.0)
Propagated fields of elemental dipole, directivity and gain, radiation resistance, the half-wave dipole, wire antennas, arrays, broadband antennas, aperture antennas, horn antennas, and antenna temperature. Prerequisite: Elec Eng 271.

ELEC ENG 364 Wave Propagation and Transmission Lines (LEC 3.0)
The materials in this course are intended to provide a) follow up electromagnetics related courses, b) electromagnetics related career including RF design and c) a graduate degree in electromagnetic related fields an in-depth understanding of the basics of wave propagation and transmission lines. Prerequisite: Elec Eng 271.
ELEC ENG 375 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 24 or 25. (Co-listed with Met Eng 305).

ELEC ENG 377 Microwave And Millimeter Wave Engineering And Design (LEC 3.0)
Introduce senior and graduate students to the concept of microwave an millimeter wave engineering and component design such as waveguide, couplers, detectors, mixers, etc., including network theory and scattering matrix. Finally, their application in various microwave circuits will be discussed. Prerequisites: Elec Eng 253, 271.

ELEC ENG 378 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Comp Eng 378).

ELEC ENG 379 Microwave Principles For Mixed-Signal Design (LEC 3.0)
Transmission lines; coupled transmission lines; microwave network analysis; impedance matching and tuning; design of microwave amplifiers and oscillators. Prerequisite: Elec Eng 271.

ELEC ENG 382 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 370, Env Eng 382, Comp Eng 382, Civ Eng 382).

ELEC ENG 388 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A "C" or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Sci 345 and Comp Eng 388).

ELEC ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

ELEC ENG 391 Electrical Engineering Senior Project I (LAB 0.50 and RSD 0.50)
A complete design cycle. Working in small teams, students will design, document, analyze, implement and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Comp Eng 111, Econ 121 or 122, Sp&M S 85, English 160, at least 3 of the following: Elec Eng 205, Elec Eng 207, Elec Eng 215, Elec Eng 217, Elec Eng 271, Elec Eng 253.

ELEC ENG 392 Electrical Engineering Senior Project II (LAB 3.0)
A continuation of El Eng 391. Prerequisite: Elec Eng 391 with a grade of "C" or better.

Engineering Management (ENG MGT)

ENG MGT 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 124 Practical Concepts for Technical Managers (LEC 1.0)
This course introduces topics relevant to the technical manager in the 21st Century. Topics covered include management practices, leadership, communications, project management, working in the global environment, risk management, systems engineering, product development, and quality management.

ENG MGT 134 Managing Engineering And Technology (LEC 3.0)
Introduces the management functions of planning, organizing, motivating, and controlling. Analyzes the application of these functions in research, design, production, technical marketing, and project management. Studies evolution of the engineering career and the transition to engineering management. Prerequisite: A grade of "C" or better is required in this course to meet Engineering Management degree requirements.

ENG MGT 137 Economic Analysis of Engineering Projects (LEC 2.0)
Engineering project analysis from an engineering economics perspective. Topics include: interest, equivalent worth, comparing alternatives, rate of return methods, depreciation and taxes, inflation and price changes, benefit-cost analysis and risk analysis. Prerequisite: Math 15.

ENG MGT 147 Engineering Accounting and Finance (LEC 3.0)
This course is designed to introduce the fundamentals of accounting and finance and provide the student with tools used in making financial decisions within a technically based enterprise. Prerequisite: Eng Mgt 137, or understanding of engineering economic principles.

ENG MGT 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 202 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

ENG MGT 213 Introduction to Complex System Management (LEC 3.0)
Provide an understanding of complex systems and tools to manage complexity in system design, construction, and operation. Topics include: Systems thinking, modeling and simulation of systems, uncertainty in engineering, risk, and decision making in certain and uncertain environments. Prerequisite: Math 8 or Math 14.

ENG MGT 224 Competition Team Design (LAB 1.0)
Students will participate in a significant design activity as part of one of the experiential learning design team projects. Design activity will be reported and assessed at the end of the semester through a design report and oral presentation. Prerequisite: Sophomore (or greater) standing and membership in an experiential learning design team.
ENG MGT 233 Competition Team Leadership (LEC 1.0)
Students will participate in open lecture on team based management and leadership as it pertains to ongoing project activities. Project activity reports will be generated using real project data and assessed at the end of the semester through a project master plan and oral presentation. Prerequisite: Sophomore (or greater) standing and leadership role in an experiential learning design team or nomination by an experiential learning team advisor.

ENG MGT 242 Competition Team Communication (LAB 0.50 and LEC 0.50)
Communication skills, both technical and promotional, will be covered. Students will practice both communication skills in written, oral and media-based modes. Specific activities will include writing a proposal for funding, developing a promotional media piece and speaking to external groups about a SDELG team. Assessment will be made on each of the deliverables. Prerequisite: Sophomore (or greater) standing and membership in an experiential learning design team.

ENG MGT 251 Marketing Management (LEC 3.0)
Study of basic functions of marketing in the technological enterprise, including product selection and development, market research, market development, selection of distribution channels and advertising, marketing strategy. Prerequisite: Eng Mgt 134. A grade of "C" or better is required in this course to meet Engineering Management degree requirements.

ENG MGT 253 Operations And Production Management (LEC 3.0)
Concepts of operations and production management are presented at an introductory level. Qualitative and quantitative tools and techniques used for the optimization of the operations component of the total enterprise are explored in the context of improved productivity and strategic competitiveness. Prerequisites: Eng Mgt 134 and 147; Stat 215 or Stat 217.

ENG MGT 254 Introduction to Project Management (LEC 3.0)
This course covers the fundamentals of project management including project definition, project selection, project planning, estimating, scheduling, resource allocation and project control. Prerequisite: Eng Mgt 134.

ENG MGT 257 Materials Handling And Plant Layout (LEC 2.0 and LAB 1.0)
The design and objectives of materials handling equipment including diversity of application in industry from the viewpoint of efficient movement of materials and products from the receiving areas to the shipping areas. The layout of a plant to include materials handling equipment is considered throughout. Cost comparison of various systems will be made. (Co-listed with Mech Eng 256).

ENG MGT 260 General Management-Design And Integration (LEC 3.0)
Integrating and executing marketing, production, finance, and engineering policies and strategies for the benefit of an enterprise. Analysis, forecasting, and design methods using case studies and management simulation. Prerequisites: Eng Mgt 147, 251, 253, 254; senior standing. A grade of "C" or better is required in this course to meet Engineering Management degree requirements.

ENG MGT 266 Quality (LEC 3.0)
This course will provide an overview of quality tools and methodologies and how they apply to engineering management. Quality management methodologies will be explored as well as current and relevant tools and techniques used in the successful application of quality into various environments. Prerequisites: Stat 215 or Stat 217.

ENG MGT 299 Engineering Management Senior Design (LEC 3.0)
Open-ended design projects will be addressed with small teams. The emphasis will be on solving industry-based projects that are broad in nature and which will require the students to incorporate the knowledge and skills acquired in earlier course work in the solution of the problems. Prerequisites: Eng Mgt 260 and 266.

ENG MGT 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENG MGT 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 308 Economic Decision Analysis (LEC 3.0)
Comprehensive treatment of engineering economy including effects of taxation and inflation; sensitivity analysis; decisions with risk and uncertainty; decision trees and expected value, normally includes solutions on personal computer and student problem report. Prerequisite: Graduate students without previous course in engineering economy because of partial overlap.

ENG MGT 309 Six Sigma (LEC 3.0)
This course is an introduction to the principles of implementing the Six Sigma philosophy and methodology. Topics include tools and methods including process flow diagrams, cause and effect diagrams, failure mode and effects analysis, gage R&R, capability studies, design of experiments and strategy for organizing six sigma techniques in industry. Prerequisite: Graduate standing.

ENG MGT 311 Human Factors (LEC 3.0)
An examination of human-machine systems and the characteristics of people that affect system performance. Topics include applied research methods, systems analysis, and the perceptual, cognitive, physical and social strengths and limitations of human beings. The focus is on user-centered design technology, particularly in manufacturing environments. Prerequisite: Psych 50. (Co-listed with Psych 311).

ENG MGT 313 Managerial Decision Making (LEC 3.0)
Individual and group decision making processes and principles for engineers and technical managers with emphasis on the limitations of human rationality and the roles of social influence and organizational contexts; principles and skills of negotiation. Prerequisite: Senior or graduate standing.

ENG MGT 314 Management for Engineers and Scientists (LEC 3.0)
The transition of the engineer or scientist to manager; study of management roles and theory, organizational systems and behavior, managing and motivating technical personnel, leadership, communication, processes, and customer focus. Prerequisite: Graduate standing.

ENG MGT 320 Technical Entrepreneurship (LEC 3.0)
Student teams develop a complete business plan for a company to develop, manufacture and distribute real technical/product service. Lectures & business fundamentals, patents, market/ technical forecasting, legal and tax aspects, venture capital, etc., by instructor and successful technical entrepreneurs. Prerequisite: Senior or graduate standing.

ENG MGT 327 Legal Environment (LEC 3.0)
Study of the effect of the legal environment on the decisions which the engineering manager must make. The course investigates the social forces that produced this environment and the responsibilities incumbent upon the engineer.
ENG MGT 344 Interdisciplinary Problems In Manufacturing Automation (LEC 1.0 and LAB 2.0)
Introduction to basic techniques and skills for concurrent engineering, manufacturing strategies, product design, process planning, manufacturing data management and communication are the topics covered. Students experiment the design process through team projects and structured manufacturing laboratory work. (Co-listed with Mech Eng 344, Chem Eng 384).

ENG MGT 345 Energy and Sustainability Management Engineering (LEC 3.0)
This course explores strategic processes and partnership required for the management of sustainable energy infrastructures and innovation in energy systems. Topics relate to renewable energy, energy efficiencies, energy conversion, energy technology, and economic efficiency of energy sources. Prerequisite: Senior or Graduate Standing.

ENG MGT 350 Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Chem Eng 350).

ENG MGT 351 Industrial Marketing Systems Analysis (LEC 3.0)
An analysis of the factors of engineered products, customers, communication, promotion, personal selling, persuasion and management within a dynamic industrial sales environment.

ENG MGT 354 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as “customer” needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Eng Mgt 253 or Mech Eng 253. (Co-listed with Mech Eng 357).

ENG MGT 356 Industrial System Simulation (LEC 3.0)
Simulation modeling of manufacturing and service operations through the use of computer software for operational analysis and decision making. Prerequisite: Stat 215 or Stat 217.

ENG MGT 357 Advanced Facilities Planning & Design (LAB 1.0 and LEC 2.0)
An integrated approach to the planning and design of facilities; examination of advanced techniques and tools for facility location, space allocation, facility layout materials handling system design, work place design; e.g. mathematical programming and simulation modeling. Prerequisite: Eng Mgt 257 or instructor’s permission.

ENG MGT 358 Integrated Product Development (LEC 1.0 and LAB 2.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Mech Eng 358).

ENG MGT 359 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Chem Eng 385).

ENG MGT 360 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env Eng 382, Comp Eng 382, Elec Eng 382, Civ Eng 382).

ENG MGT 361 Project Management (LEC 3.0)
Organization structure and staffing; motivation, authority and influence; conflict management; project planning; network systems; pricing, estimating, and cost control; proposal preparation; project information systems; international project management. Prerequisite: Graduate Standing.

ENG MGT 364 Value Analysis (LEC 3.0)
An organized effort at analyzing the function of goods or services for the purpose of achieving the basic functions at the lowest overall cost, consistent with achieving the essential characteristics. Covers the basic philosophy, function analysis, FAST diagramming, creativity techniques, evaluation of alternatives, criteria analysis, and value stream mapping. Prerequisite: Senior or graduate standing.

ENG MGT 366 Supply Chain Management Systems (LEC 3.0)
This course focuses on the development of logistics management skills related to global supply chains. Particular attention will be given to supply chain systems management as part of the firm’s strategic positioning, cultural interactions and transportation sourcing decisions. Prerequisite: Stat 215 or Stat 217.

ENG MGT 368 Intelligent Investing (LEC 3.0)
In this course we examine methods and tools, which support building a personal portfolio that leads to long-term wealth for the owner. The approach is based on the teachings of Benjamin Graham and Warren Buffet.
ENG MGT 374 Engineering Design Optimization (LEC 3.0)
This course is an introduction to the theory and practice of optimal design as an element of the engineering design process. The use of optimization as a tool in the various stages of product realization and management of engineering and manufacturing activities is stressed. The course stresses the application of nonlinear programming methods. Prerequisite: Math 204 or 229.

ENG MGT 375 Total Quality Management (LEC 3.0)
Examination of various quality assurance concepts and their integration into a comprehensive quality management system: statistical techniques, FMEA’s, design reviews, reliability, vendor qualification, quality audits, customer relations, information systems, organizational relationships, motivation. Prerequisite: Senior or graduate standing.

ENG MGT 376 Introduction To Quality Engineering (LEC 3.0)
This course is an introduction to the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in-depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Other contributions in the field are also considered. Prerequisite: Eng Mgt 375.

ENG MGT 377 Introduction To Intelligent Systems (LEC 3.0)
Introduction to the design of intelligent systems. Topics include: definitions of intelligence, rule-based expert systems, uncertainty management, fuzzy logic, fuzzy expert systems, artificial neural networks, genetic algorithms and evolutionary computation, hybrid systems, and data mining. Prerequisite: Graduate or senior standing.

ENG MGT 381 Management And Methods In Reliability (LEC 3.0)
Study of basic concepts in reliability as they apply to the efficient operation of industrial systems. Prerequisite: Stat 215, 217, or 343.

ENG MGT 382 Introduction To Operations Research (LEC 3.0)
Mathematical methods for modeling and analyzing industrial systems, topics including linear programming, transportation models, and network models. Prerequisite: Stat 215 or Stat 217.

ENG MGT 383 Packaging Management (LEC 3.0)
Provides a comprehensive background in the field of packaging and its place in productive systems. Emphasizes the design or economics of the system. Analyzes the management of the packaging function and interrelationship with other functions of an enterprise.

ENG MGT 385 Statistical Process Control (LEC 3.0)
The theoretical basis of statistical process control procedures is studied. Quantitative aspects of SPC implementation are introduced in context along with a review of Deming’s principles of quality improvement and a brief introduction to sampling inspection. Prerequisite: Stat 215, or Stat 217.

ENG MGT 386 Safety Engineering Management (LEC 3.0)
This course is an introduction to the principles of safety engineering applied to industrial situations. Job safety analysis, reduction of accident rates, protective equipment, safety rules and regulations, environmental hazards, health hazards, and ergonomic hazards are covered. Prerequisite: Senior or graduate standing.

ENG MGT 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Consent of instructor required.

English (ENGLISH)

ENGLISH 1 IEP Basic ESL Skills (LEC 0.0)
Focuses on basic reading comprehension with basic vocabulary development, and on listening comprehension. The primary focus of this course is on the development of functional proficiency. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 2 IEP Grammar Through Writing (LEC 0.0)
Introduces basic writing applications. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 3 IEP Core ESL Skills (LEC 0.0)
Focuses on reading comprehension including vocabulary development, and on listening comprehension through basic academic applications. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 4 IEP Writing & Grammar (LEC 0.0)
Introduces more complex writing applications, focusing on basic academic requirements. Focuses on more complex aspects of English grammar. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 5 IEP Academic ESL Skills (LEC 0.0)
Focuses on reading comprehension using academic reading materials, on development of academic vocabulary, and on listening comprehension using academic-level lectures. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 6 IEP ESL Writing Workshop (LEC 0.0)
Focuses on developing academic writing applications. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 7 IEP American English Articulation (LEC 0.0)
Students who need specific instruction and practice in pronunciation receive heavy drills and activities to improve their articulation of American English. For non-native speakers of English. Prerequisites: By approval; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 8 IEP ESL Conversation, Discussion, Presentation (LEC 0.0)
Students who need intense practice in verbal activities participate in numerous varied activities to further develop their verbal skills. For non-native speakers of English. Prerequisites: By approval; accepted student to Missouri S&T. The IEP Program will assess fees for this course.

ENGLISH 10 English As A Second Language-I (IND 0.0-6.0)
Elementary English for non-English speakers. Conversation and reading. A study of English recommended for international students during their first semester in the United States.

ENGLISH 20 Exposition And Argumentation (LEC 3.0)
Practice in college level essay writing.
ENGLISH 60 Writing And Research (LEC 3.0)
Practice in techniques of analytical writing and in methods of research. Prerequisite: English 20.

ENGLISH 65 Introduction to Technical Communication (LEC 3.0)
Introduction to the role of the professional technical communicator in business and industry and practice in methods of developing technical documents. Prerequisite: English 20. (Co-listed with TCH COM 65).

ENGLISH 70 Creative Writing (LEC 3.0)
Practice in forms and techniques of poetry and prose fiction, with special attention to narrative development. Prerequisite: English 20.

ENGLISH 75 British Literature I: The Beginnings To 1800 (LEC 3.0)
A survey of works and authors that explores the way these works represent the chronological period and express the individual concerns and techniques of those authors.

ENGLISH 80 British Literature II 1800 To Present (LEC 3.0)
A survey of works and authors that explores the way these works represent the chronological period and express the individual concerns and techniques of those authors.

ENGLISH 100 Special Problems And Readings (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENGLISH 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENGLISH 102 World Literature I: From The Beginnings To The Renaissance (LEC 3.0)
A survey of representative works and authors from the world’s cultures. (Excludes British and American works).

ENGLISH 105 American Literature: 1600 To 1865 (LEC 3.0)
A chronological survey that explores the ways the literature represents the concerns of individual authors as well as the history of literature.

ENGLISH 106 American Literature: 1865 To Present (LEC 3.0)
A chronological survey that explores the ways the literature represents the concerns of individual authors as well as the history of literature.

ENGLISH 160 Technical Writing (LEC 3.0)
The theory and practice of writing technical papers and reports in the professions. Prerequisites: English 20 and second-semester junior standing.

ENGLISH 177 Literature And Film (LEC 3.0)
This course will examine intertextual connections between literature and film, in terms of such things as adaptations, narrative technique and theory, genre, theme, and ideological movements. Prerequisite: English 20.

ENGLISH 178 Introduction To American Studies (LEC 3.0)
Introduces the core subjects as well as the methods and theories that constitute the field of American Studies.

ENGLISH 200 Special Problems And Readings (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENGLISH 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENGLISH 202 Critical Approaches To Literature (LEC 3.0)
Study and application of the terminology and critical approaches used in understanding literary forms and genres.

ENGLISH 205 Fiction Writing (LEC 3.0)
This course introduces students to concepts of craft in fiction writing and the critical tools writers bring to revision. Students will write and present their own fully-developed stories and examine the stories of others in a workshop format. Prerequisite: English 20 or equivalent.

ENGLISH 208 Creative Nonfiction Writing (LEC 3.0)
Students will write creative nonfiction essays about their experiences and the experiences of others. The course will emphasize the revision process, focusing on both sentence-level and global issues. Additionally, this course will introduce students to published writers rhetorical choices. Prerequisite: English 20 or equivalent.

ENGLISH 210 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisites: English 20 and a semester of college literature.

ENGLISH 212 Children’s Literature (LEC 3.0)
Introduction to the study and teaching of children’s literature. Emphasis on historical developments, multi-cultural issues and works. Computer intensive. Prerequisites: English 20 and one semester of college literature. (Co-listed with Education 212).

ENGLISH 213 Literature For Adolescents (LEC 3.0)
Primarily intended for teacher certification students. Selection and organization of materials for teaching literature to adolescents. Emphasizes literature written for adolescents and includes a unit of literature of American ethnic groups. Prerequisites: English 20 and a semester of college literature.

ENGLISH 215 Literature By Women (LEC 3.0)
A study of writings by women, emphasizing major writers and the development of a female literary tradition. Prerequisites: English 20 and a semester of college literature.

ENGLISH 225 Science Fiction And Fantasy Literature (LEC 3.0)
A study of short stories, poems, or novels which represent the development and the techniques of the science fiction-fantasy genre. Prerequisites: English 20 and a semester of college literature.

ENGLISH 227 Fantasy Literature (LEC 3.0)
A study of the development of fantasy literature in the nineteenth and twentieth centuries. The primary focus will be on novels, especially the work of J.R.R. Tolkien. Prerequisites: English 20 and a semester of college literature.

ENGLISH 230 African American Literature (LEC 3.0)
The history and development of African American literature, with special emphasis upon contemporary achievements. Prerequisites: English 20 and a semester of college literature.

ENGLISH 240 Layout And Design (LEC 3.0)
Theory and practice of layout and design for print and electronic media. Prerequisite: English 65 or TCH COM 65. (Co-listed with TCH COM 240).

ENGLISH 244 The Bible As Literature (LEC 3.0)
Deals with the Old Testament, the Apocryphal/Deuterocanonical books, and the New Testament. Class lectures and discussions focus on literary forms and patterns, use of symbolism, narrative methods, and characterization. The basic approach is literary rather than theological or historical. Prerequisites: English 20 and a semester of college literature.

ENGLISH 245 American Crime And Detective Fiction (LEC 3.0)
An introduction survey of American crime literature emphasizing the works of Hammett, Chandler, and James M. Cain to the more recent "true crime" tradition beginning with Capote’s In Cold Blood. Prerequisites: English 20 and a semester of college literature.
ENGLISH 260 Practicum in Technical Communication (LEC 3.0)
Practice in writing, editing, and designing layouts of technical publications using the personal computer for desktop publication. Prerequisite: English 65 or TCH COM 65. (Co-listed with TCH COM 260).

ENGLISH 278 Thematic Studies in Literature and Film (LEC 3.0)
Topics examine different thematic relationships between literature and film (e.g., Poe and Hitchcock, Shakespeare on film, etc.) announced at time of registration. Prerequisites: English 20 and semester of college literature, or English 177.

ENGLISH 281 Theory of Written Communication (LEC 3.0)
Major critical and conceptual approaches to written communication theory; includes semantics, history of print media, visible language, grammars, discourse theory, socio-linguistic reception theory, stylistics. Prerequisites: English 20 and a semester of college literature.

ENGLISH 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENGLISH 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENGLISH 302 Advanced Composition (LEC 3.0)
Instruction and practice in writing expository essays of substantial content and skill, with particular emphasis on the rhetorical applications of recent findings in language research. Papers required will include critical analyses of literary works, and library research. Prerequisite: English 60 or 160.

ENGLISH 303 Internship (LEC 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Senior status; must have completed 24 hours in the major.

ENGLISH 305 History and Structure of the English Language (LEC 3.0)
An introduction to the study of the English language and its history through Old English, Middle English, and Modern English. Prerequisite: English 20.

ENGLISH 306 A Linguistic Study of Modern English (LEC 3.0)
A descriptive analysis of Modern English—its phonology, grammar, and vocabulary. Prerequisite: English 20.

ENGLISH 310 Seminar (RSD 3.0)
Discussion of current topics. Prerequisites: English 20 and a semester of college literature.

ENGLISH 311 Teaching and Supervising Writing (LEC 3.0)
Students will study contemporary and traditional approaches to writing instruction. The course will give students practice in applying composition theory and research to development of teaching methods, including course syllabi and assignments. Prerequisite: 6 hours of college level writing courses.

ENGLISH 312 Survey of Old and Middle English Literature (LEC 3.0)
Survey of Old English poetry in translation and Middle English literature (excluding Chaucer) through Malory. Special emphasis on culture and language with some attention given to modern reinterpretation of medieval works. Prerequisites: English 20 and a semester of college literature.

ENGLISH 315 Chaucer (LEC 3.0)
A study of Chaucer as a narrative poet by an intensive examination of The Canterbury Tales and Troilus and Criseyde. Prerequisites: English 20 and a semester of college literature.

ENGLISH 330 Sixteenth Century English Literature (LEC 3.0)
A survey of the poetry and prose of England from 1500 to 1600. Prerequisites: English 20 and a semester of college literature.

ENGLISH 331 Seventeenth Century English Literature (LEC 3.0)
A study of major authors (excluding Milton) of prose and poetry in England from 1600 to 1660. Special attention will be paid to John Donne and the metaphysical poets, to Ben Jonson and the Cavalier poets, and to major prose writers such as Francis Bacon, Sir Thomas Browne, and others. Prerequisites: English 20 and a semester of college literature.

ENGLISH 337 The Plays of William Shakespeare (LEC 3.0)
Selected comedies, tragedies, histories, and romances from early middle, and late periods of William Shakespeare’s life. Prerequisites: English 20 and a semester of college literature.

ENGLISH 345 The Restoration & Eighteenth Century (LEC 3.0)
The history, development, and cultural contexts of British literature from 1660 to 1798. Prerequisites: English 20 and a semester of college literature.

ENGLISH 350 Texts and Contexts (LEC 3.0)
Examines the relationships between selected texts written or published in a given year and the context of events of that time. Also explores current critical approaches to such texts and contexts. Writing intensive and Computer intensive. Prerequisites: English 20 and a semester of college literature.

ENGLISH 353 British Romantic Literature (LEC 3.0)
A study of the prose and poetry of the British Romantic period, 1775 to 1832. Prerequisite: English 20 and a semester of college literature.

ENGLISH 355 Victorian Literature (LEC 3.0)
A study of British prose and poetry from 1832 to 1900. Prerequisites: English 20 and a semester of college literature.

ENGLISH 361 The British Novel I (LEC 3.0)
The history, development, and cultural contexts of the British novel from the late seventeenth to the early nineteenth century. Prerequisite: English 20 and a semester of college literature.

ENGLISH 362 The English Novel II (LEC 3.0)
A study of the development of the novel with major attention given to the Victorian and 20th century novelists. Prerequisites: English 20 and a semester of college literature.

ENGLISH 368 Early American Literature (LEC 3.0)
This course will follow the development of American literature from its Colonial beginnings (1614) to the rise of Romanticism (1836). The course will pay particular attention to how American writers used literature in defining and even creating the New World. Prerequisites: English 20 and a semester of college literature.

ENGLISH 370 American Poetry I (LEC 3.0)
A study of significant selected poets of, primarily, the 19th century, with special attention to theme, diction, and form, and to poetry as a compressed image of the human condition. Prerequisites: English 20 and a semester of college literature.

ENGLISH 371 The American Renaissance (LEC 3.0)
A study of American literature from Poe to Whitman. Prerequisites: English 20 and a semester of college literature.
Environmental Engineering (ENV ENG)

ENV ENG 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 210 Senior Seminar: Engineering In A Global Society (RSD 1.0)
Discussion of contemporary issues: public safety, health, and welfare; the principles of sustainable development; lifelong learning; impact of engineering solutions in a global and societal and political context; relationships with owners, contractors, and the public; public service; the Code of Ethics; and the Missouri licensing Statutes and Board Rules. Prerequisite: Senior standing. (Co-listed with Civ and Arch Eng 210).

ENV ENG 261 Fundamentals of Environmental Engineering and Science (LAB 1.0 and LEC 2.0)
Course discusses fundamental chemical, physical, and biological principles in environmental engineering and science. Topics include environmental phenomena, aquatic pollution, management, air pollution and control, radiological health, and water and wastewater treatment systems. (Co-listed with Civ Eng 261).

ENV ENG 262 Biological Fundamentals Of Environmental Engineering (LEC 3.0)
Introduction to the function of organisms related to environmental engineering. The course focuses on both the application of organisms to removing contaminants and the effects of contaminants on organisms. Prerequisites: Bio Sci 110 and preceded or accompanied by Civ/Env Eng 261. (Co-listed with Civ Eng 262).

ENV ENG 263 Chemical Fundamentals Of Environmental Engineering (LEC 2.0 and LAB 1.0)
Introduction to the key chemical and physical concepts integral to environmental systems and processes. This course provides a fundamental background in those chemical and environmental engineering principles that are common to all environmental engineering disciplines. Prerequisites: Chem 3 or Geology 275; Physics 23, Math 22.

ENV ENG 265 Water And Wastewater Engineering (LEC 3.0)
A study of the engineering design principles dealing with the quantity, quality and treatment of water, and the quantity, characteristics, treatment and disposal of wastewater. Prerequisites: Civ Eng 230 with grade of "C" or better, Civ Eng 261. (Co-listed with Civ Eng 265).

ENV ENG 269 Research in Environmental Engineering (LEC 1.0)
Students will investigate cutting edge research in the environmental engineering field including experimental studies, current environmental policy changes, and international environmental issues. Investigation to include live research seminars, reading current literature, and/or laboratory experimentation. Prerequisite: Env Eng or Civ Eng 265.

ENV ENG 298 Senior Design Project (LEC 3.0)
Open-ended design projects involving one or more areas of engineering. Planning design projects, philosophy of design, and application of engineering principles to design problems. Prerequisite: Civ Eng 248 or Arch Eng 248. (Co-listed with Arch Eng 298 and Civ Eng 298).

ENV ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
ENV ENG 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 360 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting, Safe Drinking Water Act, OSGA, TSCA, RCRA, and CERCLA. Case studies will be emphasized. (Co-listed with Civ Eng 360).

ENV ENG 361 Remediation Of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 265, Geo Eng 337 or Graduate Standing. (Co-listed with Civ Eng 361).

ENV ENG 362 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 261 with grade of "C" or better. (Co-listed with Civ Eng 362).

ENV ENG 363 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 261 with grade of "C" or better; or graduate standing. (Co-listed with Civ Eng 363).

ENV ENG 364 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 261, Env Eng/Civ Eng 262 and Env Eng/ Civ Eng 263; or Graduate standing. (Co-listed with Civ Eng 364).

ENV ENG 365 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 365 and Arch Eng 365).

ENV ENG 366 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 261 or Mech Eng 371 or Graduate Status. (Co-listed with Civ Eng 366 and Arch Eng 366).

ENV ENG 367 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 230 or equivalent; or graduate standing. (Co-listed with Civ Eng 367).

ENV ENG 368 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 230 or equivalent; or graduate standing. (Co-listed with Civ Eng 368).

ENV ENG 369 Environmental Engineering Design (LAB 1.0 and LEC 2.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 265 or Env Eng 265. (Co-listed with Civ Eng 369).

ENV ENG 380 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 233, 235, 265. (Co-listed with Civ Eng 380).

ENV ENG 382 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env Mgt 370, Comp Eng 382, Elec Eng 382, Civ Eng 382).

ENV ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Enterprise Resource Planning (ERP)

ERP 246 Introduction to Enterprise Resource Planning (LEC 3.0)
Fundamentals of enterprise resource planning (ERP) systems concepts, and the importance of integrated information systems in an organization. The focus of this course is on illustrating procurement, production, and sales business processes using ERP software. Use of SAP as an example ERP system. Prerequisite: IS&T 50.

ERP 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ERP 341 Enterprise Portal and Mobile Application Development (LEC 3.0)
This course provides conceptual foundation and hands on experience in web based applications development deployed through an Enterprise Portal and Mobile platform. SAP Netweaver Enterprise Portal and tools including Visual Composer, Web Dynpro, and Sybase Unwired Platform will be used for apps. Prerequisite: Programming knowledge and either ERP 246 or preceded or accompanied by ERP 346.
ERP 342 Customer Relationship Management in ERP Environment (LEC 3.0)
The course emphasizes identification (targeting), acquisition, retention, and development (expansion) of (profitable) customers, as well as effective and efficient management of customers, using information technology. SAP CRM, SAS BI tools, and Sybase mobile application development are used. Prerequisite: ERP 246 or preceded or accompanied by ERP 346.

ERP 345 Use of Business Intelligence (LEC 3.0)
This course introduces data-oriented techniques for business intelligence. Topics include Business Intelligence architecture, Business Analytics, and Enterprise Reporting. SAP Business Information Warehouse, Business Objects, or similar tools will be used to access and present data, generate reports, and perform analysis. Prerequisites: IS&T 223 or equivalent; ERP 246 or preceded or accompanied by ERP 346.

ERP 346 Enterprise Resource Planning Systems Design and Implementation (LEC 3.0)
This course provides a technical overview of Enterprise Resource Planning Systems and their impact on organizations. SAP is introduced to illustrate the concepts, fundamentals, framework, general information technology context, the technological infrastructure, and integration of business enterprise-wide applications. Prerequisite: IS&T 50.

ERP 347 Supply Chain Management Systems in an ERP Environment (LEC 3.0)
The course studies the need for supply chain integration and the challenges of managing complex interfaces using the systems approach for the planning, analysis, design, development, and evaluation of supply chain. SAP’s ERP ECC, SCM, BW, and Sybase Unwired Platform are used to deploy SCM apps. Prerequisite: ERP 246 or preceded or accompanied by ERP 346.

ERP 348 Performance Dashboard, Scorecard and Data Visualization (LEC 3.0)
This course will study different performance management systems including dashboards, management cockpit, scorecards, and strategy maps in an organization. SAP’s BW, Business Objects Xcelsius, Crystal Reports, Sybase Unwired Platform will be used to develop the applications. Prerequisite: ERP 246 or preceded or accompanied by ERP 346.

ERP 349 ERP System Administration (LEC 3.0)
System administration and performance monitoring practices for an Enterprise Resource Planning (ERP) system will be studied. Students will install an instance of an ERP system and establish user management attributes and system security. Prerequisite: ERP 346.

Etymology (ETYM)

ETYM 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of instructor.

ETYM 306 Introduction To Etymology (LEC 3.0)
Introduction to etymology in its broadest sense: origin of words, idioms, writing systems, etc. Prerequisite: Any foreign language course or English 20.

Explosives Engineering (EXP ENG)

EXP ENG 301 Special Topics (LEC 1.0 and LAB 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EXP ENG 305 Explosives Handling And Safety (LEC 3.0)
Basic handling & safety for explosives, explosive devices and ordnance related to laboratory handling, testing, manufacturing & storage, for both civil and defense applications.

EXP ENG 307 Principles Of Explosives Engineering (LAB 1.0 and LEC 2.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 151; accompanied or preceded by Civ Eng 215 or Geology 220 or Geology 125; Successful background check. (Co-listed with Min Eng 307).

EXP ENG 309 Commercial Pyrotechnics Operations (LEC 2.0 and LAB 1.0)
Provide participants with training preparing for Missouri Licensed Display Operator (Outdoor) License and advanced lead pyrotechnic operator training. Class work will be complemented by practical training in laboratory sessions, culminating in a full pyrotechnic show, from start to finish. Prerequisites: Both Chem 1 and Chem 2 or their equivalent; US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.

EXP ENG 313 Stage Pyrotechnics and Special Effects (LEC 1.0 and LAB 2.0)
Use of energetic materials in close proximity to audiences. Provide participants with training preparing for Missouri Pyrotechnics Display Operators License. Covers: close proximity indoor and outdoor pyrotechnics and special effects. Working with stage crews and talent, safety and permitting. Prerequisites: Both Chem 1 and Chem 2 or their equivalent; US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.

EXP ENG 350 Blasting Design And Technology (LEC 2.0 and LAB 1.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 307. Student must be at least 21 years of age. Successful background check. (Co-listed with Min Eng 350).

EXP ENG 351 Demolition of Buildings and Structures (LEC 2.0 and LAB 1.0)
Provide participants with basics and solid grounding in the equipment, techniques and processes required for the demolition and remediation of mine plant and processing equipment sites and non-mining structures such as buildings, factories, bridges, etc. Field trip required. Prerequisites: Preceded or accompanied by Civ Eng 50 or IDE 140; US citizen or permanent resident; Successful background check.

Finance (FINANCE)

FINANCE 200 Special Problems (IND 0.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

FINANCE 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
FINANCE 250 Corporate Finance I (LEC 3.0)
This course studies the need for funds in business and the techniques of analysis used to determine how effectively these funds are invested within the firm. Topics include the institutions, instruments, and markets concerned with raising funds. Prerequisites: Bus 120 or Eng Mgt 147; Econ 121 or Econ 122.

FINANCE 300 Special Problems (IND 0.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

FINANCE 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

FINANCE 305 Finance Essentials (LEC 1.5)
This course is an introduction to the essentials of corporate finance for running a business. This course is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, Information Sciences and Technology. Prerequisites: Senior or Junior Standing; 3.0 GPA required.

FINANCE 350 Corporate Finance II (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. Prerequisite: Finance 250 or Eng Mgt 147 or Eng Mgt 252.

FINANCE 360 Investments I (LEC 3.0)
Introduction to fundamental elements of investment analysis. Students learn financial tools and gain necessary knowledge to select among alternative financial assets. Real world experience includes stock analysis, portfolio simulations and interactions with professionals in the securities industry. Field trip required. Prerequisite: Finance 250 or Eng Mgt 147 or Eng Mgt 252.

FINANCE 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed towards graduation credit. Subject and credit to be arranged with the instructor.

Freshman Engineering (FR ENG)

FR ENG 10 Study And Careers In Engineering (LEC 1.0)
Examination of engineering degree programs available at Missouri S&T and career opportunities in engineering. Introduction to non-engineering majors and minors at Missouri S&T. Academic, professional and ethical expectations of the student and engineering professional. Introduction to campus facilities and resources for assisting in student success.

French (FRENCH)

FRENCH 1 Elementary French I (LEC 4.0)
Introduction to reading, conversation, and grammar. Laboratory optional. Prerequisite: Entrance requirements.

FRENCH 2 Elementary French II (LEC 4.0)
A continuation of French 1. Prerequisite: French 1.

FRENCH 80 French Readings And Composition (LEC 4.0)
Readings in French narrative literature and composition. Prerequisite: French 2.

FRENCH 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

FRENCH 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

FRENCH 110 Basic French Conversation (LEC 2.0)
French conversation and oral practice. Prerequisite: French 2.

FRENCH 170 Masterpieces Of French Literature (LEC 3.0)
Selected major works and movements in French literature. Prerequisite: French 80.

FRENCH 180 Basic French Composition (LEC 3.0)
Composition and translations from English. Prerequisite: French 2.

FRENCH 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

FRENCH 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

FRENCH 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

FRENCH 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

FRENCH 310 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

FRENCH 311 Advanced French Conversation (LEC 2.0)
Advanced conversation and oral practice. Prerequisite: French 110.

FRENCH 360 French Culture And Civilization (LEC 3.0)
A survey of French culture and civilization of the past 2,000 years, including art, architecture, music, literature, geography and politics. Prerequisite: French 170.

FRENCH 370 Survey Of French Literature I(Early Period) (LEC 3.0)
The history and development of French literature from Les Chansons De Geste through the important philosophers of the 18th century to Beaumarchais. Assigned readings are in French, and lectures are largely in French. Prerequisite: French 170.

FRENCH 375 Survey Of French Literature II(Modern Period) (LEC 3.0)
19th and 20th century French literature. Prerequisite: French 170.

Geological Engineering (GEO ENG)

GEO ENG 50 Introduction to Physical Geology (LEC 2.0 and LAB 1.0)
A study of Earth materials, surface features, internal structures and processes. Particular attention is paid to Earth resources, geological hazards, engineering and environmental problems. Prerequisite: Entrance requirements. (Co-listed with Geology 50).
GEO ENG 75 Geological Engineering in Popular Media (LAB 2.0 and LEC 1.0)
Examination of the issues and topics related to geological engineering as presented in movies, television programs, and other communications media.

GEO ENG 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 105 Mathematical Concepts for Military Engineers (LEC 2.0)
Review of fundamental concepts in Algebra, Trigonometry and Calculus for students in Geological Engineering. Designed as a bridging course for Military Reserve officers enrolled in the On-Line Certificate in Military Geological Engineering. Prerequisite: Permission of instructor. This course was designed for military officers registered in either the GE DL MS Degree Program or the GE FLW MS Degree Program.

GEO ENG 110 Principles Of Geological Engineering (LEC 1.0)
Introduce GE students to the GE program. Topics include career paths, professional development, licensure, life long learning, engineering ethics, societal issues, engineering law, international engineering, and GE program outcomes and objectives. Discussion of the teaching and research of the faculty. Prerequisite: Sophomore standing in the GE program.

GEO ENG 123 Osha 40 Hr Hazwopper Course (LAB 1.0)
This course covers environmental health and safety considerations required by federal regulation to work with hazardous substances. The course meets training and performance standards for working at sites of uncontrolled hazardous waste and at sites requiring emergency response operations following the release of hazardous substances.

GEO ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEO ENG 201 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 202 Cooperative Work Training (IND 1.0-3.0)
On the job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisor’s evaluation.

GEO ENG 205 Statics and Mechanics of Geologic Materials (LEC 3.0)
Fundamental statics of rigid bodies and mechanics of deformable bodies for entering graduate students, focusing on behavior of rock and soil in engineering situations. Not for students intending to register as professional engineers. Prerequisite: Permission of instructor. This course was designed for military officers registered in either the GE DL MS Degree Program or the GE FLW MS Degree Program.

GEO ENG 207 Geology and Engineering of Ancient and Modern Peru (LEC 1.0)
A study of the geological engineering of the Cuzco-Machu Picchu corridor, including the interrelations of geology, climate, archeology, and history. A technical report and a week-long field trip to Peru during Spring Break are required.

GEO ENG 236 Basic Weather (LAB 1.0 and LEC 2.0)
A course to study basic concepts of atmospheric science such as air masses, frontal weather patterns and weather forecasting. The course also will include topics on climate and severe weather. Prerequisites: Physics 23, Geo Eng 50.

GEO ENG 248 Fundamentals Of Geographic Information Systems (LEC 2.0 and LAB 1.0)
Introduction to the fundamental concepts and components of Geographic Information Systems. Techniques for acquiring, manipulating and analyzing digital terrain data for geological and geotechnical applications. (Co-listed with Geology 248).

GEO ENG 249 Fundamentals Of Computer Applications In Geological Engineering (LEC 2.0 and LAB 1.0)
Applications of existing and available software packages utilizing a variety of hardware systems for geological engineering purposes. Emphasis on practical utilization of personal computers and network operations for graphical analysis of geologic data, mapping of surface and subsurface configurations and modeling of geologic processes. Prerequisites: Geo Eng 50, Comp Sci 73, 77.

GEO ENG 275 Geomorphology And Terrain Analysis (LEC 2.0 and LAB 1.0)
Study of geomorphic processes, landform development and surficial materials. Course content stresses the evaluation of the engineering properties of terrain factors for site selection and design of engineered structures. Prerequisite: Geo Eng 50.

GEO ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEO ENG 301 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 310 Seminar (RSD 0.50)
Discussion of current topics. (Course cannot be used for graduate credit). Prerequisite: Senior standing. (Co-listed with Geology 310, Pet Eng 310).

GEO ENG 311 Introduction to International Engineering and Design Lab (LAB 1.0)
The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 345.

GEO ENG 315 Geostatistical Methods in Engineering and Geology (LEC 3.0)
Study of statistical methods in engineering and geological applications including site investigations and environmental data analyses. Introduction to spatial correlation analysis and geostatistical techniques such as kriging for resource evaluation and estimation.

GEO ENG 331 Subsurface Hydrology (LEC 3.0)
Introduction to the theory and engineering concepts of the movement of subsurface fluids. Properties of water and other subsurface fluids. Hydraulic characteristics of earth materials. Engineering problems related to subsurface fluids. Prerequisites: Geo Eng 50, Math 204.

GEO ENG 333 Risk Assessment In Environmental Studies (LEC 3.0)
This course will present the concepts required to assess the human health and environmental risks resulting from contaminants in soil and groundwater. Course topics include evaluation of data sets, exposure calculation, chemical fate and transport, and development of conceptual site models.

GEO ENG 335 Environmental Geological Engineering (LEC 3.0)
Introduction to engineering geologic mapping for site selection for solid waste disposal facilities; landfill site selection, design, permitting, construction, operation, and closeout/reclamation. Prerequisites: Geo Eng 275, accompanied or preceded by Civ Eng 215.
GEO ENG 336 Geophysical Field Methods (LAB 1.0 and LEC 2.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geophysics 336).

GEO ENG 337 Geological Aspects Of Hazardous Waste Management (LEC 3.0)
Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geological characterization of facility sites; design of impoundments, storage and containment facilities; ground water monitoring and protection; site permitting and licensing planning. Prerequisite: Geo Eng 275.

GEO ENG 339 Groundwater Remediation (LEC 3.0)
A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physico-chemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Various computer programs developed to assist in preliminary selection and design of remediation technologies will be used. Prerequisite: Geo Eng 331.

GEO ENG 341 Engineering Geology And Geotehnics (LEC 3.0)
Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Geo Eng 275.

GEO ENG 342 Military Geology (LEC 3.0)
This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geology, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Geo Eng 275 or graduate standing.

GEO ENG 343 Subsurface Exploration (LAB 1.0 and LEC 2.0)
Lectures and field and laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Civ Eng 215 or Pet Eng 131.

GEO ENG 344 Remote Sensing Technology (LEC 2.0 and LAB 1.0)
Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Geo Eng 248. (Co-listed with Geology 344).

GEO ENG 346 Applications Of Geographic Information Systems (LAB 1.0 and LEC 2.0)
Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 275 or consent of instructor. (Co-listed with Geology 346).

GEO ENG 347 Introduction to International Engineering and Design (LEC 2.0)
A multi-disciplinary design course focused on sustainable design and technology transfer to developing countries. Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 311.

GEO ENG 350 Geological Engineering Design (LAB 1.0 and LEC 2.0)
Geological engineering design is an open-ended project course requiring the collection of data, analysis and synthesis of that data and design of a socially acceptable, economical solution to the selected problem. Oral and written reports are required. Prerequisite: To be taken in the semester before graduation.

GEO ENG 352 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Met Eng 352 and Cer Eng 352).

GEO ENG 353 Regional Geological Engineering Problems In North America (LEC 3.0)
A physiographic approach to engineering materials and problems. Course emphasizes the distribution and engineering characteristics of soil and rock to construction and site problems and includes aggregates, foundations, excavations, surface and ground water, slope stability and arctic conditions.

GEO ENG 356 Renewable Energy Systems (LEC 3.0)
Introduction to the theory and performance prediction of typical renewable energy systems such as, but not limited to, those based on energy from the sun, wind and water, and geothermal. The use of environmental data, including stochastic modeling, for renewable energy system (including wind turbine, photovoltaic, and geothermal) design is addressed. Prerequisites: Math 204, Physics 24, and preceded or accompanied by Stat 217 or Geo Eng 315. Junior or senior status is required.

GEO ENG 361 Transportation Applications of Geophysics (LAB 1.0 and LEC 2.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophysics 361 and Civ Eng 351).

GEO ENG 371 Rock Engineering (LEC 3.0)
Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Geo Eng 275.

GEO ENG 372 Soil Science In Engineering Practice (LEC 3.0)
A study of the ways in which soils and geologic conditions influence engineered projects. Soil formation, soil chemistry and properties to include composition, organic component, ion exchange and water relationships as well as erosion control and revegetation will be covered. Prerequisite: Geo Eng 275.

GEO ENG 373 Geologic Field Methods (LAB 3.0)
Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.
GEO ENG 374 Geological Engineering Field Methods (LAB 3.0)
Instruction in methods of field investigation required for geological engineering studies. Course will include procedures for qualitative and quantitative data collection for characterizing surficial geologic conditions, groundwater and surface water investigations, and other engineering activities. Written reports and field trip required.

GEO ENG 375 Aggregates And Quarrying (LEC 3.0)

GEO ENG 376 Environmental Aspects Of Mining (LEC 3.0)
Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation; drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Geo Eng 50; Min Eng 324 and 326 or prereq./coreq. Civ Eng 215. (Co-listed with Min Eng 376).

GEO ENG 381 Intermediate Subsurface Hydrology And Contaminant Transport Mech (LEC 3.0)
A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is put on waterrock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Civ Eng 230 & Geo Eng 331.

GEO ENG 382 Environmental And Engineering Geophysics (LAB 1.0 and LEC 2.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 22. (Co-listed with Geophysics 382).

GEO ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

German (GERMAN)

GERMAN 1 Elementary German I (LEC 4.0)
Introduction to grammar, reading, and conversation. Laboratory required. (One extra hour per week.) Prerequisite: Entrance requirements.

GERMAN 2 Elementary German II (LEC 4.0)
A continuation of German 1. Prerequisite: German 1.

GERMAN 80 Classical And Modern German Readings (LEC 4.0)
Readings in German narrative literature. Prerequisite: German 2.

GERMAN 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GERMAN 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GERMAN 110 Basic German Conversation (LEC 2.0)
Conversation and oral practice. Prerequisite: German 2.

GERMAN 170 Masterpieces Of German Literature (LEC 3.0)
A study of selected major works and movements in German literature. Prerequisite: German 70.

GERMAN 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GERMAN 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GERMAN 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GERMAN 301 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GERMAN 310 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

History (HISTORY)

HISTORY 10 Introduction to History (LEC 1.0)
This required course for history majors will introduce them to the study of history, the various fields of history, and the current faculty. The course will also introduce students to the research methods of historians.

HISTORY 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

HISTORY 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

HISTORY 110 World Regional Geography (LEC 3.0)
An introduction to the distinguishing cultural and physical characteristics of the major regions of the world. Emphasis on the political problems within the regions and the contemporary issues involved.

HISTORY 111 Early Western Civilization (LEC 3.0)
Growth and development of ideas and institutions of western culture from prehistoric man to the voyages of discovery.

HISTORY 112 Modern Western Civilization (LEC 3.0)
A continuation of History 111 to the present with special emphasis on the philosophical, political, social, and economic backgrounds of modern society.

HISTORY 175 American History To 1877 (LEC 3.0)
Survey of the history of the American colonies and United States from colonial times through Reconstruction.

HISTORY 176 American History Since 1877 (LEC 3.0)
Survey of the history of America since Reconstruction.

HISTORY 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

HISTORY 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

HISTORY 210 Seminar (IND 0.0-6.0)
Discussion of current topics.
HISTORY 220 Making Of Modern Britain (LEC 3.0)
A survey of modern Britain from the era of Restoration and Glorious Revolution (1660-1689) to the present. Major themes include the social, intellectual, cultural, political and economic aspects of modern and contemporary Britain. Prerequisite: History 112.

HISTORY 221 Making Of Modern Germany (LEC 3.0)
A survey of modern Germany from 1815 through the present. Major themes include social, intellectual, cultural, political, and economic aspects of modern and contemporary Germany, with emphasis on developments during the twentieth century. Prerequisite: History 112 or 176.

HISTORY 222 The Making Of Modern France (LEC 3.0)
A survey of modern France from the era of Louis XIV (1660-1715) to the present. Major themes include the social, intellectual, cultural, political and economic aspects of modern and contemporary France. Prerequisite: History 112.

HISTORY 224 Making Of Modern Russia (LEC 3.0)
A survey of modern Russia from the era of "Westernization" and Peter the Great (1660-1725) to the present. Major themes include the social, intellectual, cultural, political and economic aspects of modern and contemporary Russia, with emphasis on the Soviet period. Prerequisite: History 112.

HISTORY 225 European Diplomatic History 1814 - Present (LEC 3.0)
A survey of European Diplomatic History beginning with The Congress of Vienna to the present, including the Congress system, the Eastern Question, the shift to realpolitik, the diplomatic origins and concluding conferences of the World Wars and Cold War diplomacy. Prerequisite: History 112.

HISTORY 226 Modern East Asia (LEC 3.0)
An analysis of the history of East Asia in the nineteenth and twentieth centuries. Topics include: social, historical, and intellectual traditions; imperialism and its impact; and the effects of World War II on Modern East Asia. Prerequisite: History 112 or 175 or 176.

HISTORY 227 History of Japan (LEC 3.0)
This course covers the history of modern Japan from 1600 to the present and includes Japan's political, social, and cultural/intellectual history. Prerequisite: History 111 or History 112 or History 175 or History 176.

HISTORY 228 History of the American Pacific (LEC 3.0)
This course examines United States expansion into the Pacific as an extension of 19th century Manifest Destiny. Emphasizing American Pacific possessions, the course includes a historical, political, geographical, and cultural look at the islands from 1800 to the present. Prerequisite: History 175 or History 176 or History 112.

HISTORY 229 The American Presidency (LEC 3.0)
Technological achievements from prehistoric times to present; topics include agriculture, building and construction, communications, transportation, power sources, the Industrial Revolution, relationships between science and technology, factors in invention and innovation and sociocultural effects. Prerequisite: History 111 or 112 or 175 or 176.

HISTORY 270 History of Technology (LEC 3.0)
An investigation of technological achievements since 1900 and their effects on society. Topics include: education in a technological society, technology and the state, the individual and the environment, cybernation, agriculture, scientific and industrial research. Prerequisite: History 112 or 176.

HISTORY 271 Twentieth Century Technology And Society (LEC 3.0)
A survey of science from ancient times to the 20th century focusing on the leading conceptual developments within science, the scientific revolution, and science's role in society. Prerequisite: History 111 or 112 or 175 or 176.

HISTORY 275 History Of Science (LEC 3.0)
An analysis of the history of East Asia in the nineteenth and twentieth centuries. Topics include: social, historical, and intellectual traditions; imperialism and its impact; and the effects of World War II on Modern East Asia. Prerequisite: History 112 or 175 or 176 or Pol Sci 90.

HISTORY 299 Historiography (LEC 3.0)
Historical interpretation from Herodotus to the present. Emphasis will be placed on reading the works of prominent historians in analyzing the major developments in historical writing. Familiarization with historical source material will be another feature of this course. Serves as capstone course. Prerequisite: Sophomore standing.

HISTORY 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

HISTORY 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

HISTORY 302 Internship (IND 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisites: Senior status; must have completed 24 hours in major.

HISTORY 310 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

HISTORY 312 Tudor And Stuart England (LEC 3.0)
A study of England 1485 - 1689 covering the social, political, religious, and cultural developments. Prerequisite: History 111 or 220.

HISTORY 316 The American Presidency (LEC 3.0)
Historical development of the presidency; emphasis on the constitutional powers and limits of the office and the political contextual variables that influence presidential behaviors. Prerequisite: Pol Sci 90 or History 176. (Co-listed with Pol Sci 316).
HISTORY 321 Ancient Greece (LEC 3.0)
Aegean and Greek Civilization from Homeric times to the Roman Conquest of the Hellenic World. Designed for the student who wishes to understand the fundamental conditions of classical life and to comprehend the ideas that inspired action. Emphasis will be on social, intellectual, political and religious aspects of the classical world. Prerequisite: History 111.

HISTORY 322 Ancient Rome (LEC 3.0)
Rome 509 B.C. to 337 A.D. The Roman world from the founding of the Republic through the reign of Constantine. Special emphasis is on the transformation of classical culture during the Republic and Imperial age. Prerequisite: History 111.

HISTORY 323 Medieval History I (LEC 3.0)
The Early Middle Ages, 284 A.D.-753 A.D., transition from ancient to Medieval civilization. The fundamental differences between Roman and Medieval ideas, institutions and life. The triumph of Christianity, the conditions which made this triumph possible and its role in the development of Western Europe. Prerequisite: History 111.

HISTORY 324 Medieval History II (LEC 3.0)
Medieval Civilization, 11th-13th centuries. The transition from Medieval to Modern world, developments in the political, social and economic institutions of the Medieval world and their enduring effect on Western European Civilization, conflict of faith and reason during this period. Prerequisite: History 111.

HISTORY 325 History Of Renaissance Thought (LEC 3.0)
Concentrates on the political, religious, and social thought of the Renaissance. Particular emphasis on the revival of the classics, the spread of humanistic values, and reform efforts during the period with relationship to the material basis of society. Prerequisite: History 111 or 112.

HISTORY 326 The Reformation (LEC 3.0)
An examination of the backgrounds, events, ideas, and impact of the Reformation in Europe. Emphasis on the competing ideas of the reformers as well as on the Reformation's long-term social, cultural, and political impact. Prerequisite: History 111 or 112.

HISTORY 327 Europe In The Age Of The French Revolution And Napoleon (LEC 3.0)
An in-depth examination of the causes, courses and results of the French Revolution and the Napoleonic Era (1789-1815). The impact of the age of the French Imperium upon European economic, diplomatic, intellectual, political and social development. Prerequisite: History 112.

HISTORY 328 Foundations Of Contemporary Europe 1815-1914 (LEC 3.0)
Europe after Napoleon, development of democracy and nationalism, revolutionary movements and leaders, unification of Italy and Germany, national developments of the major powers and the road to the First World War are the bases of this course. Prerequisite: History 112.

HISTORY 329 Contemporary Europe (LEC 3.0)
First World War, the Versailles Peace Settlement and its aftermath, the Soviet, Fascist and Nazi revolutions and regimes, Western culture between the wars, the Second World War, the age of the atom and Cold War. Prerequisite: History 112.

HISTORY 330 European Migrations and Nationalism Formation (LEC 3.0)
Analyzes migration patterns into, out, within Europe in context of global population movements from Roman Empire through the present. Students will learn to analyze and synthesize factors involved in these movements and correlations to personal and national identity formations. Prerequisite: History 112.

HISTORY 331 Nazi Germany and the Holocaust (LEC 3.0)
This course focuses on the rise of Nazism and its consequences for politics, society, and culture in Europe. The period’s history will be examined from the perspective or perpetrators, victims, and bystanders with emphasis on the Holocaust and its legacy. Prerequisite: History 112.

HISTORY 332 Revolutionary America, 1754-1789 (LEC 3.0)
An examination of the causes and consequences of the American Revolution. Emphasis placed upon the social conditions in America which contributed to the both the Revolution and the writing of the 1787 Constitution. Prerequisite: History 175.

HISTORY 333 Age Of Jefferson And Jackson (LEC 3.0)
Economic, political, social and constitutional development of the early American republic; the Federalist and Jeffersonian periods, Jacksonian Democracy, rise of sectionalism. Emphasis placed on historical interpretation and historiography of the period. Prerequisite: History 175.

HISTORY 334 Civil War And Reconstruction (LEC 3.0)
Lecture, discussion and readings on the causes and consequences of the American Civil War. Focuses on the prewar North-South sectional rivalry: impact of the war on American society, government and politics. Reconstruction including the development of racial crisis in United States history. Prerequisite: History 175.

HISTORY 335 United States History (LEC 3.0)
Examines America's modern age including the New Era, the New Deal, Internationalism, post-war affluence, the post-industrial era as well as the cultural, intellectual, social and technological features of American society from 1920 to the present. Prerequisite: History 176 or 347.

HISTORY 336 American Intellectual History II (LEC 3.0)
The ideas of intellectuals and the thought of popular culture, and possible relationships between the two. Among the climates of opinion studied are the Gilded Age, Darwinism, Progressivism, the Twenties, the Great Depression, the Affluent Fifties, the Counter-Culture Sixties. Prerequisite: History 176 or 351.

HISTORY 337 History Of The Old South (LEC 3.0)
Analysis of the southern region of the United States between 1607-1861 with emphasis on economic, social, political, intellectual, and racial themes. Prerequisite: History 176.
HISTORY 357 History of the American West (LEC 3.0)
This class examines the American settlement of the Trans-Mississippi West. Areas to be considered include cattle, mining, exploring, women, and Native Americans. Traditional and contemporary views of the American West will be analyzed. Prerequisite: History 175 or History 176.

HISTORY 361 American Environmental History (LEC 3.0)
This class discusses the impact of human interactions with the physical environment and the natural world's influence on human civilizations with emphasis on the 19th and 20th centuries. Prerequisite: History 112 or History 175 or History 176.

HISTORY 370 History Of Baseball (LEC 3.0)
This course will survey and interpret the history of baseball from its earliest beginnings down to the present. Main focus will be on the evolution of the professional game in all of its facets. Prerequisite: History 175 or 176.

HISTORY 375 Architecture, Technology and Society; 1750 to Present (LEC 3.0)
This course investigates the relationships between architecture and technology and, as a consequence, architecture's impact on modern culture and society. A field trip to Chicago is an integral part of the course. Topics include: the industrial revolution, housing styles, new materials, Bauhaus and international style, and post-modern architecture. Prerequisites: History 111 or 112 or 175 or 176 or Pol Sci 90. Recommended: Junior or Senior Standing. Recommended for Arch Eng majors: Art 203 taken prior to course.

HISTORY 380 20Th Century Americans In Combat (LEC 3.0)
Through lectures, films, readings, exams, film reviews and discussions, this course examines the American military and combat experience throughout much of the twentieth century. The ultimate goal of the course is for students to understand the realities of warfare and its effect on ordinary Americans as well as American society. Prerequisite: History 175 or 176 or 112.

HISTORY 381 The United States In World War II (LEC 3.0)
Through lectures, readings and film this course will explore the American experience in World War II. The course will particularly focus on the war’s American major battles along with the war’s effect on Americans in combat and on the home front. Prerequisite: History 175 or 176.

HISTORY 382 The United States in Vietnam (LEC 3.0)
Through lecture, film and readings, this course examines the American experience in the Vietnam War. The course covers the causes and consequences of the war as well as its effect on those who fought and on American society as a whole. There is a special emphasis on the realities of combat and the war’s impact on individual Americans. Prerequisite: History 176.

HISTORY 383 U.S. Diplomatic History to World War II (LEC 3.0)
This course is a history of American foreign relations, broadly conceived, from the War for Independence to WWII. Among other things, it deals with the diplomacy of survival, of expansion and of economic and political hegemony. Prerequisites: History 175, 176 or Pol Sci 90. (Co-listed with Pol Sci 383).

HISTORY 384 American Diplomatic History Since World War II (LEC 3.0)
American Diplomatic History Since World War II will address the major issues in American foreign policy from WW II to the present. Its primary focus is on the Cold War and the post-Cold War problems the U.S. has faced. Prerequisite: History 176 or Pol Sci 90. (Co-listed with Pol Sci 384).

HISTORY 397 Senior Thesis (LEC 3.0)
History majors will complete an extended research paper under the supervision of a department faculty member. Prerequisite: History 299 and senior history majors only.

Interdisciplinary Engineering (IDE)

IDE 20 Introduction to Engineering Design (LEC 2.0 and LAB 1.0)
Introduction to a systematic approach to engineering design (problem clarification, concept generation, concept selection, prototyping methods, engineering ethics) and fundamental design communication techniques. Computer aided design tools are introduced to assist in design analysis.

IDE 140 Statics And Dynamics (LEC 3.0)
An introduction to the principles of mechanics pertaining to problems of equilibrium, motion, and acceleration in two dimensions. Particle and rigid body equilibrium and applications; general planar motion; force, mass, and acceleration; impulse/ momentum; work/energy. This course will not satisfy the prerequisite for Civ Eng 110. Prerequisites: Physics 23 or 21; prec. or acc. by Math 22.

IDE 150 Engineering Mechanics-Dynamics (LEC 2.0)
Application of the principles of mechanics to engineering problems of motion and acceleration. Topics include plane motion; force, mass and acceleration; work and energy; and impulse and momentum. Prerequisites: Civ Eng 50 and Math 22.

IDE 200 Special Problems (IND 1.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IDE 202 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through the student's advisor. Grades received depend on the quality of the reports submitted and work supervisor's evaluation.

IDE 214 System Modeling (LEC 3.0)
This course examines the modeling and simulation of dynamic systems. The use of bond graphs to represent the essential structure of system models leads to state space equations for performance analysis and design variable selection. Prerequisites: IDE 105, Math 204; IDE 150 or Mech Eng 160.

IDE 215 System Prototyping (LEC 1.0 and LAB 1.0)
Students use extensive mathematical and physical modeling to characterize a team-based interdisciplinary design project. A prototype is built and tested to determine the effectiveness of the various modeling techniques used. Prerequisite: IDE 214.

IDE 220 Engineering Design Methodology (LEC 3.0)
This course examines structured engineering design theory and techniques used. Prerequisite: IDE 214.

IDE 300 Special Problems (IND 0.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.
IDE 315 Interdisciplinary Design Project (LEC 2.0 and LAB 1.0)
Interdisciplinary design topics include team report writing, patent search and application, prototyping techniques, conflict resolution, critiquing methods, and presentation skills. Student teams will complete a design project for an external or internal sponsor, including a working prototype of the product. Prerequisites: IDE 215, IDE 220.

IDE 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructors.

Info Science & Technology (IS&T)

IS&T 50 Introduction to Management Information Systems (LAB 1.0 and LEC 2.0)
This course familiarizes the students with the fundamental concepts and principles of management information systems. Topics covered include the strategic role of IT, decision support systems, database and datawarehouse, enterprise applications, mobile applications, and social and ethical issues related to information systems.

IS&T 51 Implementing Information Systems: User Perspective (LEC 3.0)
Introduction to object-oriented programming in the context of developing and implementing the various components of an information system with particular attention given to system interface such as window and web forms. Class will include numerous projects covering foundational programming. Prerequisite: IS&T 50.

IS&T 101 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

IS&T 151 Implementing Information Systems: Data Perspective (LEC 3.0)
Continuation of object-oriented programming in the context of developing and implementing the various components of an information system with particular attention given to database incorporation. Class will include numerous projects covering intermediate topics. Prerequisite: IS&T 51 or Comp Sci 53 or Comp Sci 73 or Comp Sci 74.

IS&T 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IS&T 201 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

IS&T 202 Cooperative Training in Information Science & Technology (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry with credit arranged through departmental co-op advisor. Grade received depends on quality of reports submitted and work supervisors’s evaluation. Prerequisite: Completed 30 hours toward degree.

IS&T 223 Database Management (LEC 3.0)
The course introduces the concepts of database management systems. Issues in database architecture, design, administration, and implementation are covered. Prerequisites: IS&T 50; IS&T 151 or Comp Sci 153.

IS&T 231 Computing Internals And Operating Systems (LEC 3.0)
Design-oriented introduction to computer components and operation. Standard codes; number systems; base conversions; computer arithmetic; boolean algebra; operating system components including memory management, device management, and I/O management; and related issues are covered. Prerequisite: IS&T 151 or Comp Sci 153.

IS&T 233 Introduction To Telecommunications Networks (LEC 2.0 and LAB 1.0)
The course provides an intro to current and evolving telecommunications technologies, including voice, data and video. Concepts include network technologies, standards and protocols; network construction, operation and management; switching; routing; area networks; and mobile network infrastructure. Prerequisite: IS&T 151 or Comp Sci 153.

IS&T 241 Electronic and Mobile Commerce (LEC 3.0)
Introduction to fundamental concepts of management and application to IT and support of commerce. Examines the use of IT in business processes and the management issues of integrating IT into organization processes to gain a competitive advantage. Prerequisite: IS&T 50 and at least Sophomore standing.

IS&T 243 Systems Analysis (LEC 3.0)
Introduction to the processes by which business information systems are analyzed, designed, and introduced into the business environment. Topics include investigation of existing systems, requirements analysis, logical and physical design, database design, forms design, and report analysis. Prerequisite: IS&T 223.

IS&T 266 Web and Digital Media Development (LEC 3.0)
This course covers techniques and tools for design and development of web-based media, including text, graphics, animation, audio, and video. Prerequisite: IS&T 50.

IS&T 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IS&T 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

IS&T 321 Network Performance Design And Management (LEC 3.0)
This course provides analytical capabilities needed to effectively design, deploy, and manage computer networks and protocols. Prerequisites: IS&T 223, IS&T 233.

IS&T 335 Fundamentals of Mobile Technology for Business (LEC 3.0)
A broad overview of mobile technology use in business environments. Topics include the mobile industry; mobile network and wireless standards; mobile devices; mobile web design and app development; social and user experience issues; mobile marketing and commerce. Cannot take both IS&T 335 and IS&T 435. Prerequisites: IS&T 223 and IS&T 233.

IS&T 341 Advanced Electronic and Mobile Commerce (LEC 3.0)
Fundamental concepts of management and application to IT and support of commerce. Examines the use of IT in business processes and the management issues of integrating IT into organization processes to gain a competitive advantage. Includes a major end-of-semester project. Cannot receive credit for IS&T 241 and IS&T 341. Prerequisite: Knowledge of management information systems and Graduate standing.
IS&T 342 E-Commerce Architecture (LEC 3.0)
Course will cover the issues associated with computer architecture, as it relates specifically to e-commerce applications. Topics will include e-commerce systems and processes, specialized software, and databases. Prerequisite: IS&T 233 or IS&T 336.

IS&T 343 Database Applications in Business (LEC 3.0)
Design, development and implementation of application software typical to the modern business environment utilizing popular commercial database management systems such as Oracle and Access. Focus given to business case modeling, requirement analysis, database design, and implementation challenges. Project oriented. Prerequisite: IS&T 243.

IS&T 351 Technological Innovation Management and Leadership (LEC 3.0)
The course focuses on the knowledge and skills necessary for the development and implementation of effective strategies for the management of technology-based organizations. This involves: developing a general management perspective on technology and innovation, examining the problems of new product development, identifying distinctive technological competencies, licensing and marketing technologies, assessing the organizational and industrial context of technology. Prerequisite: Senior or Graduate Standing.

IS&T 352 Advanced Web Development (LEC 3.0)
Advanced Web development techniques to provide dynamic interaction; methods for extracting and delivering dynamic information to/from Web servers - a hands-on approach. Emphasis on interaction with servers; mobile software development; processing of graphics and web video. Project work is required. Prerequisites: IS&T 51 and IS&T 286.

IS&T 353 Modular Software Systems in Java (LEC 3.0)
Introduction to Software Life Cycle and characteristics of large modular software systems. Exploration of software support for such systems, using Java, including use of GUI interfaces, advanced I/O and String handling, Interfaces, Threads, and other modularity features. Program project included. Prerequisites: IS&T 151 and IS&T 231.

IS&T 354 Advanced Web and Digital Media Development (LEC 3.0)
This course covers advanced techniques and tools for the design and development of web-based media, including text, graphics, animation, audio, and video. This course is an advanced version of Web and Digital Media Development, with additional assignments. No credit for both IS&T 286 and IS&T 354. Prerequisite: Graduate standing.

IS&T 357 Network Economy (LEC 3.0)
Emerging Network/Internet economy, using traditional economic tools. Topics: production and reproduction cost of information, information as an "experience good," versions of products, switching cost, lock-in effects, market adoption dynamics, first-mover advantage, intellectual property rights. Prerequisite: Econ 121 or Econ 122. (Co-listed with Econ 357).

IS&T 361 Information Systems Project Management (LEC 3.0)
The course overview general project management principles and then focuses on information system application development. Topics include requirements analysis, project scheduling, risk management, quality assurance, testing, and team coordination. Prerequisite: Strong programming knowledge and Senior standing.

IS&T 368 Law and Ethics in E-Commerce (LEC 3.0)
Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. (Co-listed with Philos 368).

IS&T 380 Introduction to Web and New Media Studies (LEC 3.0)
The course covers web culture, including topics such as social media, citizen journalism, crowd intelligence, privacy, and copyright. Students cannot receive credit for both this course and IS&T 480 (Advanced Web and New Media Studies). Prerequisite: Junior or Senior standing.

IS&T 385 Human Computer Interaction (LEC 3.0)
Introduction to the field of Human-Computer Interaction (HCI). Students examine issues and challenges related to the interaction between people and technology. The class explores the social and cognitive characteristics of people who use information systems. Students learn techniques for understanding user needs, interface prototyping, and interface evaluation. Prerequisite: Psych 50.

IS&T 386 Human-Computer Interaction Prototyping (LAB 1.5 and LEC 1.5)
This course covers methods and tools for creating low and high fidelity prototypes of IT systems as well as design concepts, including best practices and guidelines for different form factors (e.g., desktop vs. mobile). Prerequisites: IS&T 286 or web design experience; preceded or accompanied by IS&T 385.

IS&T 387 Human-Computer Interaction Evaluation (LAB 1.5 and LEC 1.5)
This course covers research and analysis methods and tools for evaluation of the impact of information technology systems on humans and organizations. The focus will be on practical evaluation with the goal of providing recommendations for improving system functionality and usability. Prerequisite: Preceded or accompanied by IS&T 385.

IS&T 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Mathematics (MATH)

MATH 1 Introduction To Mathematics (LEC 1.0)
Introduction to the department, program of study, methods of study, and an introduction of the various areas of mathematics. Required of fall semester freshman mathematics majors.

MATH 2 College Algebra (LEC 5.0)
Contains the same topics as covered in Math 4, and preceded by a thorough review of the basic principles of algebra. Prerequisite: By placement examination.

MATH 3 Fundamentals Of Algebra (LEC 3.0)
Basic principles of algebra including the number line and an introduction to equations and inequalities, polynomials, rational expressions, exponents and radicals, the quadratic formula and functions. Prerequisite: Entrance requirements.

MATH 4 College Algebra (LEC 3.0)
A study of linear equations, rational functions, radicals, quadratic equations, inequalities, determinants, progressions, theory of equations, permutations, combinations, and the binomial theorem. Prerequisite: By placement examination.
MATH 6 Trigonometry (LEC 2.0)
A study of the trigonometric functions, radian measure, graphing trigonometric functions, identities, trigonometric equations and inverse trigonometric functions. Solutions of general triangles and trigonometric representation of complex numbers are included. Prerequisite: Math 2 or 4 with a grade of "C" or better; or by placement exam.

MATH 8 Calculus With Analytic Geometry I (LEC 5.0)
A study of limits, continuity, differentiation and integration of algebraic and trigonometric functions. Applications of these concepts in physics as well as mathematical settings are considered. Credit will only be given for one of Math 8 or Math 14. Prerequisites: Math 6; Math 2 or 4, both with a grade of "C"; or better; or by placement exam.

MATH 10 Introduction To Mathematical Ideas (LEC 3.0)
A course for non-science majors, including liberal arts and education majors. A study of the nature of mathematics and its relation to western culture, number systems, sets, functions, and selected topics from algebra, computer science and other areas of mathematics. Prerequisite: Two years high school mathematics.

MATH 12 Business Calculus (LEC 3.0 and LAB 1.0)
Calculus for Bus. & Mgt. Sys, Econ & Finance, or Info. Sci. & Tech; also possibly Bio. Sci, Soc. Sci. or Humanities. Derivatives, optimization, exponential and logarithmic functions, integration, multivariate functions, partial derivatives, Lagrange multipliers, applications. May not be used as a prerequisite for either Math 15 or Math 21. Prerequisite: Math 4 with a grade of "C" or better; or by placement exam.

MATH 14 Calculus For Engineers I (LEC 3.0 and LAB 1.0)
Introduction to limits, continuity, differentiation and integration of algebraic and elementary transcendental functions. Applications in physical science and engineering. Credit will be given for only one of Math 8 or Math 14. Prerequisites: Math 6; Math 2 or 4, both with a grade of "C"; or better; or by placement exam. Math 14 may be accompanied by Math 6 with advisor’s approval.

MATH 15 Calculus For Engineers II (LEC 3.0 and LAB 1.0)
Continuation of Math 14. Transcendental functions, techniques of integration, sequences, series including power series, polar coordinates, and parametric equations. Applications in physical science and engineering. Credit will be given for only one of Math 15 or Math 21. Prerequisites: Math 6 and either Math 8 or Math 14 both with a grade of "C" or better; or by placement exam.

MATH 21 Calculus With Analytic Geometry II (LEC 5.0)
A continuation of Math 8; differentiation and integration of elementary transcendental functions, integration techniques, improper integrals, conic sections, polar coordinates, introduction to sequences and series. Credit will only be given for one of Math 21 or Math 15. Prerequisites: Math 6 and either Math 8 or Math 14 both with a grade of "C" or better; or by placement exam.

MATH 22 Calculus With Analytic Geometry III (LEC 4.0)
An introduction to multivariable calculus. Vector valued functions, curves and surfaces in two and three dimensions, partial differentiation, multiple integration, line and surface integrals, the major theorems of vector calculus, and applications of these ideas are studied. Prerequisite: Math 15 or Math 21 with a grade of "C" or better.

MATH 100 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 200 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 202 Cooperative Work Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry. Variable credit arranged with the advisor. P/F grading option is required and maximum credit per semester is 3 hrs., maximum for entire program is 6 hrs.

MATH 203 Matrix Algebra (LEC 3.0)
Matrix algebra is introduced by means of systems of linear algebraic equations. Gaussian elimination, least squares solutions, orthogonalization, determinants, eigenvalues and an introduction to vector spaces are discussed. Credit will not be given for both Math 203 and 208. Prerequisite: Math 22 with a grade of "C" or better.

MATH 204 Elementary Differential Equations (LEC 3.0)
First order differential equations and linear differential equations of higher order are studied. The Laplace transform and systems of linear equations as well as selected physical applications are covered. Credit will not be given for both Math 229 and Math 204. Prerequisite: Math 22 with a grade of "C" or better.

MATH 208 Linear Algebra I (LEC 3.0)
Systems of linear equations, matrices, vector spaces, inner products, linear transformations, determinants, and eigenvalues are studied. Prerequisite: Math 15 or 21 or 22 with a grade of "C" or better.

MATH 209 Foundations Of Mathematics (LEC 3.0)
Introduction to mathematical reasoning through an axiomatic development of mathematical systems. Strong emphasis is placed on learning to understand what constitutes a sound mathematical argument. Communication, both written and spoken, is emphasized. Prerequisite: Math 15 or 21 with a grade of "C" or better.

MATH 210 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 221 Teaching Math In Elementary And Middle Schools (LEC 3.0)
The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Educ 221).

MATH 222 Geometric Concepts For Elementary Teachers (LEC 3.0)
The course covers methods of teaching the study of points, lines, polygons, similarity, congruence, constructions, and proof in Euclidean Plane Geometry. Transformational geometry and trigonometry are introduced to elementary teachers. Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Educ 222).

MATH 229 Elementary Differential Equations And Matrix Algebra (LEC 3.0)
This course is a combination of selected topics from Math 203 and 204. Solutions of linear differential equations and systems of linear algebraic equations are emphasized. Credit will not be given for both 204 and 229. Prerequisite: Math 22 with a grade of "C" or better.
MATH 240 Mathematical Software Applications In The Classroom (LEC 3.0)
Students will be introduced to a variety of Mathematical Software applications, both PC and calculator based which will aid teachers in presenting concepts and in classroom management. Specific topics covered will be selected based on student interest. Prerequisites: Math 22 and admission to the MST program.

MATH 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 302 Intermediate Differential Equations (LEC 3.0)
Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 204 or Math 229.

MATH 303 Methods of Applied Mathematics (LEC 3.0)
Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 204 or 229 with a grade of "C" or better, programming competency.

MATH 305 Modern Algebra I (LEC 3.0)
Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange's Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 209 or graduate standing; preceded or accompanied by Math 208.

MATH 306 Modern Algebra II (LEC 3.0)
This course is a continuation of Math 305. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 305.

MATH 307 Combinatorics And Graph Theory (LEC 3.0)
Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/ exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Comp Sci 128 or Math 209.

MATH 308 Linear Algebra II (LEC 3.0)
Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 208.

MATH 309 Advanced Calculus I (LEC 3.0)
Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 22 and Math 209, or a 300-level mathematics course, or graduate standing.

MATH 310 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 311 Advanced Calculus II (LEC 3.0)
Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 309.

MATH 315 Introduction To Real Analysis (LEC 3.0)
Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 309.

MATH 322 Vector And Tensor Analysis (LEC 3.0)
Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 22; Math 203 or Math 208.

MATH 325 Partial Differential Equations (LEC 3.0)
Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 204 with a grade of "C" or better.

MATH 330 Topics In Geometry (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Prerequisite: Math 208.

MATH 337 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 15 or Math 21, Econ 221 or Econ 222 or Econ 250 or Econ 321, Stat 211 or Stat 213 or Stat 215 or Stat 217 or Stat 343. (Co-listed with Econ 337).

MATH 340 Mathematical Analysis For Secondary Teachers (LEC 3.0)
Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 22 or equivalent.

MATH 341 Mathematical Analysis For Secondary Teachers Practicum (LEC 1.0)
An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 208.

MATH 351 Introduction To Complex Variables (LEC 3.0)
The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 204.

MATH 354 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Eng 354, Comp Sci 354 and Philos 354).
MATH 361 Problem Solving In Pure Mathematics *(LEC 1.0)*
Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student’s entire mathematics background. Prerequisites: Corequisite Math 309 and Senior standing.

MATH 371 Problem Solving In Applied Mathematics *(LEC 1.0)*
Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 209 and Senior standing.

MATH 381 Great Theorems In Mathematics *(LEC 1.0)*
A study of some of the great theorems which have shaped the development of mathematics and human civilization. History, the changing nature of mathematics, and the mathematical content of the theorems themselves, will all be addressed. Sources as close to the originals as possible will be used. Prerequisites: Math 209 and Senior standing.

MATH 383 Operational Calculus *(LEC 3.0)*
The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 204.

MATH 385 Introduction To Topology *(LEC 3.0)*
Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 309.

MATH 390 Undergraduate Research *(IND 0.0-6.0)*
This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

Mechanical Engineering (MECH ENG)

MECH ENG 101 Special Topics *(IND 0.0-6.0)*
This course is designed to give the department an opportunity to test a new course. Variable title.

MECH ENG 153 Introduction To Manufacturing Processes *(LEC 2.0 and LAB 1.0)*
Introduction into the fundamentals of manufacturing processes. Welding, joining, casting, forming, powder metallurgy and material removal are covered. The material is presented in a descriptive fashion with emphasis on the fundamental working of the processes, their capabilities, applications, advantages and limitations. Prerequisite: IDE 20.

MECH ENG 160 Dynamics *(LEC 3.0)*
The principles of mechanics are used to model engineering systems. Kinematics of particle motion, kinematics of plane- and three-dimensional motions of rigid bodies. Kinetics of particles and of rigid bodies. Energy and momentum methods. Prerequisite: Grade of "C" or better in each of Civ Eng 50, Math 22. (Co-listed with Aero Eng 160).

MECH ENG 161 Introduction To Design *(LAB 1.0 and LEC 2.0)*
Introduces the process of design with emphasis on creativity and design visualization. Solid modeling is presented as a design tool. The solid modeling environment will also be used to reinforce the concepts of tolerancing, dimensioning, and multiview representation. Concurrent engineering will be introduced in a group design project. Prerequisites: IDE 20, Mech Eng 153, preceded or accompanied by Civ Eng 50; a grade of "C" or better in each of Math 14 (or 8), Physics 23.

MECH ENG 201 Special Topics *(LAB 0.0 and LEC 0.0)*
This course is designed to give the department an opportunity to test a new course. Variable title.

MECH ENG 202 Cooperative Engineering Training *(IND 0.0-6.0)*
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisor’s evaluation.

MECH ENG 208 Machine Design I *(LEC 3.0)*
Analysis of machine elements such as shafts, springs, screws, belts, bearings, and gears; analytical methods for the study of fatigue; comprehensive treatment of failure, safety, and reliability. Introduction to finite element methods in mechanical design. Prerequisites: Mech Eng 153, accompanied or preceded by Mech Eng 161, and a grade of "C" or better in each of Civ Eng 110, Met Eng 121.

MECH ENG 209 Machine Design II *(LEC 3.0)*
A continuation of the study of machine elements; bearings, spur, bevel, worm, and helical gearing, and indeterminate machine elements; impact and shrink stresses. Prerequisite: Mech Eng 208.

MECH ENG 210 Seminar *(LEC 1.0)*
Discussion of current topics.

MECH ENG 211 Modeling and Analysis of Dynamic Systems *(LEC 3.0)*
Concepts of modeling mechanical systems as linear systems are studied and applied to hydraulic, pneumatic, and electromechanical systems. Analysis techniques described include matrix formulations, Laplace transforms, and time domain response methods. Prerequisites: A grade of "C" or better in each of Comp Sci 53 or 73 or 74, Mech Eng 160 (or Aero Eng 160), Math 14 (or 8), 15 (or 21), 22, 204, Physics 23, 24.

MECH ENG 213 Machine Dynamics *(LEC 3.0)*
Motion analysis using vector methods is considered for machine elements including linkages, cams, and gears. Dynamic force analysis methods are applied to balancing, flywheels, and single and multicylinder engines. Prerequisites: A grade of "C" or better in each of Comp Sci 53 or 73 or 74, Mech Eng 160 (or Aero Eng 160), Math 14 (or 8), 15 (or 21), 22, and Physics 23.

MECH ENG 219 Thermodynamics *(LEC 3.0)*
Energy transformations and the relation of energy to the status of matter. Fundamental laws, concepts, and modes of analysis which underlie all applications of energy conversion in engineering. Prerequisites: A grade of "C" or better in each of Comp Sci 53 or 73 or 74, Math 14 (or 8), 15 (or 21), 22, and Physics 23.

MECH ENG 221 Applied Thermodynamics *(LEC 3.0)*
Extended study of the laws and concepts of thermodynamics with emphasis on applications to power and refrigeration cycles, gas mixtures, psychrometrics, behavior of real gases and combustion processes. Prerequisite: A grade of "C" or better in Mech Eng 219.
MECH ENG 225 Heat Transfer (LEC 3.0)
Fundamental principles of heat transmission by radiation, conduction and convection; application of these principles to the solution of engineering problems. Prerequisites: A grade of "C" or better each of Comp Sci 53 or 73 or 74, Math 204, Mech Eng 219.

MECH ENG 227 Thermal Analysis (LEC 3.0)
Basic principles of thermodynamics and heat transfer. First and second laws of thermodynamics and applications to engineering systems. Fundamentals of heat transfer by conduction, convection, and radiation with applications. Not for mechanical engineering majors. Prerequisites: Math 15 (or 21), Physics 23.

MECH ENG 231 Thermofluid Mechanics I (LEC 3.0)
Principles of viscous and inviscid flow in ducts, nozzles, diffusers, blade passages and application to design; dimensional analysis and laws of similarity; external flows; compressible flows. Prerequisite: A grade of "C" or better in Mech Eng 219.

MECH ENG 235 Fluid Machinery (LEC 3.0)
Fundamental investigation of positive displacement and turbomachinery including pumps, fans, compressors, turbines, and oil hydraulic systems. Operating characteristics, selection, and comparison of types are studied. Prerequisite: Mech Eng 231 or Aero Eng 231.

MECH ENG 240 Mechanical Instrumentation (LAB 2.0)
A basic course in the theory and application of instrumentation to typical measurement problems in mechanical and aerospace engineering. Experiments employing basic devices to measure quantities such as strain, pressure, force, temperature, motion, flow, sound level are performed. Accepted procedures for recording, interpretation, and presentation of experimental results are illustrated. Prerequisites: A grade of "C" or better each of Math 204, Mech Eng 219, Physics 24.

MECH ENG 242 Mechanical Engineering Systems (LAB 2.0)
A laboratory course focusing on experimental design and evaluation of complete mechanical engineering systems. Analysis of both mechanical and thermodynamic systems is included. Emphasis is on evaluating system performance and improving student written and oral communication skills. Prerequisites: Mech Eng 240, 221, 231, 225, 213.

MECH ENG 253 Manufacturing (LEC 3.0)
Advanced analytical study of metal forming and machining processes such as forging, rolling, extrusion, wire drawing and deep drawing; mechanics of metal cutting - orthogonal, turning, milling, cutting temperature, cutting tool materials, tool wear and tool life, and abrasive processes. Prerequisites: Mech Eng 153, and a grade of "C" or better in Civ Eng 110.

MECH ENG 256 Materials Handling And Plant Layout (LEC 2.0 and LAB 1.0)
The design and objectives of materials handling equipment including diversity of application in industry from the viewpoint of efficient movement of materials and products from the receiving areas to the shipping areas. The layout of a plant to include materials handling equipment is considered throughout. Cost comparison of various systems will be made. (Co-listed with Eng Mgt 257).

MECH ENG 261 Engineering Design (LEC 1.0 and LAB 2.0)
Real-life design projects emphasize problem definition, conceptualization, modeling, approximation techniques and optimization. Teamwork, communication, leadership and group discussions are encouraged. Student group and professional expert presentations bring awareness to diverse design issues and methodology, and professional engineering practice. Prerequisites: Preceded or accompanied each of Mech Eng 208, 225, 231, 279.

MECH ENG 279 Automatic Control Of Dynamic Systems (LEC 3.0)
Use of classical control methods to analyze mechanical systems. Topics include root locus, Bode plots, and Nyquist diagrams. Applications to design situations are examined. Prerequisite: A grade of "C" or better in Mech Eng 211.

MECH ENG 280 Control System Laboratory (LAB 1.0)
Experiments dealing with data acquisition, manipulation, and control of systems with particular emphasis on computer data acquisition and control applied to mechanical engineering systems. Microcomputer systems are used as measurement and control devices. Prerequisites: Preceded or accompanied by Mech Eng 279.

MECH ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MECH ENG 301 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MECH ENG 302 Synthesis Of Mechanisms (LEC 3.0)
Synthesis of planar mechanisms for function generation, path generation, and motion generation. Emphasis is on analytical methods for synthesis. Prerequisite: Mech Eng 213.

MECH ENG 304 Compliant Mechanism Design (LEC 3.0)
Introduction to compliant mechanisms; review of rigid-body mechanism analysis and synthesis methods; synthesis of planar mechanisms with force/energy constraints using graphical and analytical methods; pseudo-rigid-body models; force-deflection relationships; compliant mechanism synthesis methods; and special topics, e.g. bistable mechanisms, constant-force mechanisms, parallel mechanisms, and chain algorithm in design. Emphasis will be on applying the assimilated knowledge through a project on compliant mechanisms design. Prerequisites: Mech Eng 213, Civ Eng 110.

MECH ENG 305 Lubrication (LEC 3.0)
Development of basic principles of bearing analysis including manufacture and properties of lubricants, hydrodynamics and hydrostatic lubrication, journal and thrust bearings, ball and roller bearings, boundary considerations, and bearing materials. Prerequisite: Mech Eng 231.

MECH ENG 306 Material Processing By High-Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques, and basic calculations. Application of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. Prerequisite: Mech Eng 231 or undergraduate fluids course. (Co-listed with Min Eng 306).

MECH ENG 307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems and multidegree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 211 and 213, or Aero Eng 213 and Math 204. (Co-listed with Aero Eng 307).

MECH ENG 308 Rapid Product Design And Optimization (LEC 3.0)
Product Life cycle design; Finding design solutions using optimization technique; Rapid product realization using rapid prototyping and virtual prototyping techniques. Prerequisite: Mech Eng 208.
MECH ENG 309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 211 and 213, or Aero Eng 213 and Math 204. (Co-listed with Aero Eng 309).

MECH ENG 311 Introduction To Continuum Mechanics (LEC 3.0)
Introductory cartesian tensor analysis to aid in the development of the theory of a continuum. Kinematics of deformation, stress tensor, equations of motion, equations of mass and energy balance. Examples from specific material theories in solid and fluid mechanics. Prerequisites: Civ Eng 110, Math 204.

MECH ENG 312 Introduction to Finite Element Analysis (LEC 3.0)
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisite: Mech Eng 208 or Aero Eng 253 or consent of instructor for majors that do not require either of these courses. (Co-listed with Aero Eng 352).

MECH ENG 313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mech Eng 213 or Aero Eng 213. (Co-listed with Aero Eng 313).

MECH ENG 314 Applications Of Numerical Methods To Mechanics Problems (LEC 3.0)
Numerical solutions of statics, vibrations, and stability problems. Direct stiffness formulations are developed and user-oriented computer codes are used to solve practical structures problems. Computer graphics techniques are utilized to prepare data and display results. Prerequisites: Civ Eng 110; Mech Eng 160 or Aero Eng 160.

MECH ENG 315 Concurrent Engineering I (LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 213 or Aero Eng 231, and Civ Eng 110. (Co-listed with Aero Eng 315).

MECH ENG 316 Concurrent Engineering II (LAB 3.0)
Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Aero Eng 315 or Mech Eng 315. (Co-listed with Aero Eng 316).

MECH ENG 317 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 219. (Co-listed with Aero Eng 319).

MECH ENG 320 Advanced Mechanics of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 110, Math 204. (Co-listed with Aero Eng 320).

MECH ENG 322 Introduction To Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Eng Mech 311. (Co-listed with Aero Eng 322).

MECH ENG 323 Transport Phenomena In Manufacturing Processes (LEC 3.0)
A study of the important role that transport phenomena (heat and mass transfer and fluid flow) play during various manufacturing processes including metal casting, joining and welding extrusion, forging, crystal growth, chemical deposition, and thermal spray deposition. Prerequisites: Mech Eng 225 and 231.

MECH ENG 325 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 225. (Co-listed with Aero Eng 325).

MECH ENG 327 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochromy, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 221. (Co-listed with Aero Eng 327).

MECH ENG 329 Smart Materials And Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Aero Eng 329, Elec Eng 329 and Civ Eng 318).

MECH ENG 330 Applied Computational Methods (LEC 3.0)
Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 53 or 73 or 78; Math 204. (Co-listed with Aero Eng 330).

MECH ENG 331 Intermediate Thermofluid Mechanics (LEC 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 231 or Aero Eng 231. (Co-listed with Aero Eng 331).
MECH ENG 333 Internal Combustion Engines (LEC 3.0)
A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels, and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mech Eng 221.

MECH ENG 334 Stability Of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Aero Eng 334).

MECH ENG 335 Applied Energy Conversion (LEC 3.0)
The study of the principles of energy conversion. Specific applications include fuel cells and other direct energy conversion devices used in plug-in hybrid electric vehicles. Prerequisite: Mech Eng 221.

MECH ENG 336 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concepts of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 336).

MECH ENG 337 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints, components and structures, design to prevent fatigue. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 344).

MECH ENG 338 Computational Fluid Dynamics (LEC 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 53 or 73 or 74; one course in fluid mechanics. (Co-listed with Aero Eng 339).

MECH ENG 342 Experimental Stress Analysis II (LAB 1.0 and LEC 2.0)
Acquaints the student with some techniques of experimental stress analysis. Topics include principal stresses, strain to stress conversion, transmission and reflection photoelastic methods, Moire fringe methods, and analogies. Prerequisites: Civ Eng 110, Eng Mech 321. (Co-listed with Mech Eng 342, Aero Eng 343).

MECH ENG 344 Interdisciplinary Problems In Manufacturing Automation (LEC 2.0 and LAB 1.0)
The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Chem Eng 384, Eng Mgt 344).

MECH ENG 349 Robotic Manipulators And Mechanisms (LEC 2.0 and LAB 1.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Comp Sci 73, Mech Eng 213. (Co-listed with Aero Eng 349).

MECH ENG 353 Computer Numerical Control Of Manufacturing Processes (LAB 1.0 and LEC 2.0)
Fundamental theory and application of computer numerical controlled machine tools from the viewpoint of design principles, machine structural elements, control systems, and programming. Projects include manual and computer assisted part programming and machining. Prerequisite: Mech Eng 253.

MECH ENG 354 Variational Formulations Of Mechanics Problems (LEC 3.0)
Introduction and study of variational problems in classical dynamics and solid mechanics emphasizing the concepts of virtual work, minimum potential energy, and complementary energy. Variational inequalities. Prerequisites: Civ Eng 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Eng Mech 354).

MECH ENG 355 Manufacturing Equipment Automation (LAB 1.0 and LEC 2.0)
Manufacturing automation at the equipment level. Topics include sensors, actuators, and computer interfacing for manufacturing equipment, dynamic modeling and control of manufacturing equipment, interpolation, coordinated motion control, kinematic and geometric error modeling, and runout. Prerequisite: Mech Eng 279.

MECH ENG 356 Design For Manufacture (LEC 3.0)
Course covers the approach of concurrent product and process design. Topics includes: principle of DFM, New product design process, process capabilities and limitations, Taguchi method, tolerancing and system design, design for assembly and AI techniques for DFM. Prerequisites: Mech Eng 208, Mech Eng 253.

MECH ENG 357 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as “customer” needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Eng Mgt 253 or Mech Eng 253. (Co-listed with Eng Mgt 354).

MECH ENG 358 Integrated Product Development (LAB 2.0 and LEC 1.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Eng Mgt 358).

MECH ENG 360 Probabilistic Engineering Design (LEC 3.0)
The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Aero Eng 360).
MECH ENG 361 Engineering Design Methodology (LEC 3.0)
This course examines structured engineering design theory and methodologies for conceptual design and redesign of products. Topical coverage includes customer needs gathering, functional modeling, engineering specifications creation (OFD), concept generation, selection and design embodiment. Team work/hands-on projects emphasized. Prerequisite: At least Senior standing in engineering. (Co-listed with IDE 230).

MECH ENG 363 Principles And Practice Of Computer Aided Design (LEC 2.0 and LAB 1.0)
This course introduces the fundamentals of computer-aided design with emphasis on mathematical representations of curves and surfaces, modeling of solids, and graphic displays. Students will also practice with commercial CAD/CAM packages to gain experiences and to help grasp fundamentals. Prerequisites: Comp Sci 53 or 73 or 74; Mech Eng 161; at least Junior standing.

MECH ENG 364 Introduction to Decision Analysis (LEC 3.0)
This course is an introduction to decision analysis, a decision-making method under uncertainty. The course topics include probability theory, influence diagram, decision tree, subjective probability, sensitivity analysis, value of information, risk attitude, and utility models. Prerequisite: Stat 211 or Stat 213 or Stat 215 or Stat 217.

MECH ENG 366 Solar Energy Technology (LEC 3.0)
Introduction to the nature of solar radiation and associated thermal energy transfers. Methods of collecting and storing solar energy. Analysis and design of systems for utilizing solar energy, including heating and cooling. Prerequisite: Mech Eng 225, or consent of instructor for non-Mech Eng majors.

MECH ENG 367 Heat Pump And Refrigeration Systems (LEC 3.0)
The various methods used in the thermal design and analysis of both refrigeration and heat pumps systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, and thermoelectric systems. Prerequisites: Mech Eng 221, 225.

MECH ENG 370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Nuc Eng 370, Photos 370).

MECH ENG 371 Environmental Controls (LEC 3.0)
Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 221 and accompanied or preceded by Mech Eng 225; or Mech Eng 227 and Civ Eng 230. (Co-listed with Arch Eng 371).

MECH ENG 375 Mechanical Systems For Environmental Control (LEC 3.0)
Analysis of refrigeration, heating, and air-distribution systems. Synthesis of environmental control systems. Prerequisites: Mech Eng 221 and 225; or Mech Eng 227 and Civ Eng 230.

MECH ENG 378 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Aero Eng 378, Elec Eng 378 and Comp Eng 378).

MECH ENG 381 Mechanical And Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 279 or Aero Eng 361. (Co-listed with Aero Eng 381).

MECH ENG 382 Introduction To Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 311).

MECH ENG 383 Industrial Applications Of Composite Materials Technology (LEC 3.0)

MECH ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Metallurgical Engineering (MET ENG)

MET ENG 1 Introduction To Metallurgical Engineering (LEC 1.0)
Introduction to the field of metallurgical engineering with specific reference to the emphasis areas of extractive, manufacturing and physical metallurgy. The course will include lectures, videos and field trips to local industry.

MET ENG 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 121 Metallurgy For Engineers (LEC 3.0)
Introduction to the structure and properties of metals and alloys and to processes used to modify the structure and properties of metallic materials, including alloying, deformation and heat treating. Prerequisite: Preceded or accompanied by Chem 1, prior or concurrent.

MET ENG 125 Chemistry Of Materials (LEC 3.0)
Basic Inorganic Chemistry of Materials. Topics will include chemical properties, structure and bonding of solids, energy, enthalpy, entropy, thermochemistry, kinetics and rate processes. Application of chemistry principles to materials engineering through flowsheeting, reactor design, materials/metal processing and the environment. Prerequisite: Chem 1.
MET ENG 126 Computer Application In Metallurgical Engineering (LAB 1.0 and LEC 2.0)
Introduction to the use of microcomputers for simulation, data analysis including statistics, data acquisition from laboratory instruments, and automatic process control systems. The course will provide instruction in programming and software usage, and the laboratory will enable students to fully utilize the potential of microcomputer in later courses.

MET ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 201 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 202 Extractive Metallurgy Laboratory (LAB 1.0)
A series of laboratory experiments designed to illustrate the principles of pyrometallurgy, hydrometallurgy, and electrometallurgy. Prerequisites: Preceded or accompanied by Met Eng 203; preceded or accompanied by Chem 4 or an equivalent training program approved by S&T.

MET ENG 203 Introduction To Extractive Metallurgy (LEC 3.0)
Production and refining of metals by pyrometallurgy, hydrometallurgy, and electrometallurgy. Emphasis on heat and mass balance calculations for the unit processes of metals extraction. Introduction to the principles of combustion, heat utilization and recovery. Prerequisite: Met Eng 281 or Cer Eng 259 or Chem Eng 143.

MET ENG 204 Transport Phenomena In Metallurgy (LEC 3.0)
The application of the principles of fluid flow and heat transfer to the solution of practical problems in metallurgical engineering. Prerequisite: Civ Eng 50.

MET ENG 212 Cooperative Training (IND 1.0-2.0)
On-the-job experience gained through cooperative education in the field of metallurgical engineering with credit arranged through department cooperative advisor. A pass/fail grade will be given based on the quality of reports submitted and work supervisor’s evaluation.

MET ENG 215 Fundamentals Of Materials Behavior (LEC 3.0)
An introduction to crystal defects and deformation; mechanical testing; creep; fracture mechanics and fatigue. Prerequisites: Met Eng 121 and Civ Eng 110.

MET ENG 216 Mechanical Testing of Materials (LAB 1.0)
Deformation of materials and mechanical testing of materials; tensile testing, creep; impact testing; fracture mechanics and fatigue. Prerequisites: Met Eng 121, accompanied by Met Eng 215.

MET ENG 217 Metals Microstructural Development (LEC 3.0)
Fundamentals of microstructural developments as relating to solid solutions, solidification and transformations; phase diagrams; case studies. Prerequisite: Met Eng 121.

MET ENG 218 Microstructural Development Laboratory (LAB 1.0)
Investigation of the relationships between microstructures, and processing for various materials. Prerequisites: Met Eng 121, accompanied by Met Eng 217.

MET ENG 221 Principles Of Materials Processing (LEC 3.0)
An introduction to various methods of processing of metals and influences of processing on design. Includes: casting, welding, shaping, inspection and testing. Prerequisite: Met Eng 121.

MET ENG 222 Metals Processing (LAB 1.0)
Laboratory study of the methods of processing of metals. Prerequisite: Accompanied or preceded by Met Eng 221.

MET ENG 261 Materials Senior Design I (LAB 1.0)
Students working in groups will be assigned a capstone design project related to a specific materials technology. This course will focus on project plan and all aspects of product and process design. Prerequisite: Senior standing. (Co-listed with Cer Eng 261).

MET ENG 262 Materials Senior Design II (LAB 2.0)
A continuation of the Materials Senior Design I. Students working in groups will complete a capstone design project including process and product simulation and/or fabrication, safety aspects, environmental impact and capital and operating economics. Prerequisite: Cer Eng 261 or Met Eng 261. (Co-listed with Cer Eng 262).

MET ENG 263 Physics Of Metallurgy (LEC 3.0)
Thermodynamic laws and thermodynamic functions and their relation to problems of metallurgical interest, thermochemistry, thermophysics, and chemical or phase equilibria. Prerequisite: Met Eng 125 or Chem 3.

MET ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 303 Metals Refining and Recycling of Materials (LEC 3.0)
Survey of selected modern processes for the production of metals, the treatment of wastes, and recycling of metal values. Processes are studied with respect to raw materials, chemical reactions, energy consumption, process intensity, yield and environmental impact. Prerequisite: Cer Eng 259.

MET ENG 305 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 24 or 25. (Co-listed with Elec Eng 375).

MET ENG 306 Nondestructive Testing Laboratory (LAB 1.0)
Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of materials and manufactured parts. Prerequisite: Accompanied or preceded by Met Eng 305.

MET ENG 307 Metals Casting (LEC 3.0)
An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 221 or Mech Eng 153.

MET ENG 308 Metals Casting Laboratory (LAB 1.0)
An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, highquality castings. Prerequisite: Accompanied or preceded by Met Eng 307.

MET ENG 310 Seminar (IND 0.0-3.0)
Discussion of current topics.

MET ENG 311 Metals Joining (LEC 2.0)
Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Met Eng 121 or 221.
MET ENG 313 Scanning Electron Microscopy (LAB 1.0 and LEC 2.0)
A course in the theory and application of scanning electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Met Eng 217 and 218 or course in optical microscopy - consent of instructor required.

MET ENG 315 Metallurgical Process Design Principles (LEC 2.0)
Application of mass, component and energy balances for metallurgical design. The fundamentals of engineering economic analysis will be examined and experimental design techniques will be introduced. Students will be prepared for the selection and planning of the subsequent design project. Prerequisite: Senior standing in Met Eng.

MET ENG 316 Metallurgical Design Project (LAB 2.0)
Student groups will undertake selected projects, which will represent a capstone design experience utilizing skills, understanding and data from previous courses. The faculty supervised open-ended design projects will involve a variety of tasks appropriate to the metallurgical engineer. Prerequisite: Met Eng 215; Met Eng 217 or equivalent.

MET ENG 318 Principles for Microstructural Design (LEC 2.0)
This course will introduce the basics of microstructural principles that can be used to design advanced materials. It will help students learn about the basic principles and microstructural design approaches. Prerequisites: At least junior standing, Met Eng 215; Met Eng 217 or equivalent.

MET ENG 321 Metal Deformation Processes (LEC 3.0)
An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Met Eng 221.

MET ENG 329 Material Selection, Fabrication, And Failure (LEC 3.0)
Factors governing the selection of materials for specific needs, fabrication, heat treatment, surface treatment, and other aspects in the production of a satisfactory component. Failure analysis and remedies. Lecture plus assigned problems. Prerequisites: Met Eng 217, 218, 221.

MET ENG 331 Steels And Their Treatment (LEC 3.0)
Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisites: Met Eng 217 and Met Eng 218.

MET ENG 332 Metals Treatment Laboratory (LAB 1.0)
The students plan and perform experiments that illustrate heat treating processes and their effects on the properties and structure of commercial alloys. Prerequisite: Accompanied or preceded by Met Eng 331.

MET ENG 333 Nonferrous Alloys (LEC 3.0)
Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. Prerequisites: Met Eng 217 or Met Eng 217.

MET ENG 340 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Chem Eng 340).

MET ENG 341 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 110; Nuc Eng 205; Nuc Eng 223; Met Eng 121. (Co-listed with Nuc Eng 341).

MET ENG 343 Nuclear Materials II (LEC 3.0)
Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFBR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Met Eng 341.

MET ENG 350 Composites (LEC 3.0)
An introduction to the structure, properties and fabrication of fiber and particulate composites. Prerequisites: Met Eng 215 & 211 or Cer Eng 102 & 242.

MET ENG 352 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Cer Eng 352).

MET ENG 353 Mineral Processing II (Mechanics and Design) (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 241. (Co-listed with Min Eng 353).

MET ENG 354 Electrical Systems and Controls for Materials (LAB 1.0 and LEC 2.0)
This course will cover analysis of alternating and direct current circuits as experienced in the materials industry. Current, voltage, and power relationships in single and three-phase electrical power systems. Introduction to continuous and batch instrumentation including programmable logic controllers (PLCs) and computer interfacing for materials applications. Prerequisite: Physics 24.

MET ENG 355 Process Metallurgy Applications (LEC 3.0)
Application of thermodynamics to process metallurgy. Equilibrium calculations with stoichiometry and heat balance restrictions, phase transformations, and solution thermodynamics. Use of thermodynamic software to solve complex equilibria in metallurgical applications. Prerequisite: Cer Eng 259.

MET ENG 358 Steelmaking (LEC 3.0)
Introduction to the fundamentals and unit processes used to turn impure iron and scrap into steel. Includes desulfurization, BOF and electric furnace operations, ladle metallurgy, casting, and stainless steel manufacture. Prerequisite: Cer Eng 259.

MET ENG 359 Environmental Aspects Of Metals Manufacturing (LEC 3.0)
Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.
MET ENG 361 Alloying Principles (LEC 3.0)
Basis for alloy design and property control. Predictions of phase stability, alloy properties and metastable phase possibilities; interfaces in solids and their role in phase transformations. Prerequisites: Met Eng 217, 218.

MET ENG 363 Metal Coating Processes (LEC 3.0)
Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisite: Senior or Graduate Standing.

MET ENG 365 Microfabrication Materials And Processes (LEC 3.0)
An overview course on the materials and processes used to fabricate integrated circuits, microelectromechanical systems (MEMS), interconnect substrates and other microelectronic components from starting material to final product. The emphasis will be on the influence of structure and processing on the electrical, mechanical, thermal, and optical properties. Prerequisites: Chem 1 or equivalent; Senior or Graduate Standing.

MET ENG 367 Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 121.

MET ENG 375 Metallurgical Failure Analysis (LEC 3.0)
Application of the principles of manufacturing and mechanical metallurgy for the analysis of failed components. Analytical techniques such as Scanning Electron Microscopy, Optical Metallography, and High Resolution Photography are used to characterize microstructure and fractographic features. In addition, appropriate methods to gather data, assimilate it, and draw conclusions from the data such that it will stand up in a court of law will be addressed. Prerequisite: Senior or Graduate Student standing.

MET ENG 377 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 377, Chem Eng 347, Physics 377, Cer Eng 377).

MET ENG 381 Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Cer Eng 259. (Co-listed with Chem Eng 381).

MET ENG 385 Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 215, 216, Civ Eng 110.

MET ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Military Science - Air Force (MIL AIR)

MIL AIR 150 Foundations Of The U.S. Air Force I (LAB 0.50 and LEC 0.50)
This survey course is designed to introduce students to the USAF and AFROTC. Topics include: military customs and courtesies, uniform wear, officer qualities, professionalism, AF core values, equal opportunity and treatment, AF officer benefits and opportunities and an introduction to communication skills. Leadership Lab is mandatory for cadets planning on a career in the AF.

MIL AIR 151 Foundations Of The U.S. Air Force II (LAB 0.50 and LEC 0.50)
This survey course is a continuation of Arosp St 150. Covered topics include: origin of the AF, mission and organization of the AF, organization of a standard AF base, and further communication skills development. Leadership Lab is also mandatory for cadets.

MIL AIR 200 Leadership Laboratory (LAB 0.50 and LEC 0.50)
The course involves a study of Air Force customs and courtesies, drill and ceremonies, career opportunities in the Air Force and the life and work of an Air Force junior officer. Students develop their leadership potential in a practical supervised training laboratory, which typically includes field trips to Air Force installations throughout the United States.

MIL AIR 250 The Evolution Of USAF Air And Space Power I (LAB 0.50 and LEC 0.50)
This course is designed to examine the general aspects of air and space power through a historical perspective...covering a time period from the first balloons to the beginning of the space age. It provides students with a knowledge level understanding of the general elements and employment of air and space power from an institutional doctrinal and historical perspective. Examples of the importance of AF core values in historical events and in past AF leaders are pointed out. Continued development of communication skills is also emphasized. Leadership Lab is mandatory for cadets planning on a career in the AF.

MIL AIR 251 The Evolution Of USAF Air And Space Power II (LAB 0.50 and LEC 0.50)
This course is a continuation of Arosp St 250. It covers a time period in AF history from the beginning of our space age in the early 1960's to the present...with a continued emphasis on recognizing how past leaders and events have shaped our current AF organization and doctrine. Communication skills exercises are continued. Leadership Lab is also mandatory for cadets.

MIL AIR 350 Air Force Leadership Studies I (LAB 0.50 and LEC 2.5)
This course introduces students to the leadership and management skills required of an Air Force junior officer. Special topics include leadership ethics, the Air Force personnel and evaluation systems, and management fundamentals. Through the use of classroom tools that include case studies, Air Force leadership and management situations are examined and practical applications of studies concepts are exercised. The principles and theories of ethical behavior as well as the complete understanding of the individual responsibility and authority of an Air Force officer are stressed. This course includes a Leadership Lab that provides the students the opportunity to apply leadership and management principles.
MIL AIR 351 Air Force Leadership Studies II (LAB 0.50 and LEC 2.5)
This course is a continuation of Arosp St 350. Emphasis is placed on professional knowledge, communication skills, and ethical behavior. Varied Air Force-peculiar formats and situations are offered to apply learned listening, writing, and speaking skills. This course includes a Leadership Lab that provides the students the opportunity to apply leadership and management principles.

MIL AIR 380 National Security Affairs/Preparation For Active Duty I (LEC 2.5 and LAB 0.50)
This course examines national security policies, processes, and issues along with Air Force strategy and doctrine. Special topics include Air Force roles and missions, the roles of various federal government departments, military organizations and functions, and the concept of joint operations. Within this structure, continued emphasis is given to refining communication skills. This course includes a Leadership Laboratory that provides advanced leadership experiences, giving students the opportunity to apply the leadership and management principles of this course.

MIL AIR 381 National Security Affairs/Preparation For Active Duty II (LAB 0.50 and LEC 2.5)
Continuation of Arosp St 380. This final course of the Air Force ROTC curriculum examines officership, advanced leadership ethics, military law, current Air Force issues, regional studies, core values, and preparation for active duty. This course includes a Leadership Laboratory that provides leadership experiences, giving students the opportunity to apply the leadership and management principles of this course.

Military Science - Army (MIL ARMY)

MIL ARMY 10 Ranger Operations (LEC 1.0)
Learn about one of the world’s most elite fighting forces - the U. S. Army Rangers. Get some hands-on training with actual army equipment. Learn rappelling, land navigation, orienteering and combat patrolling.

MIL ARMY 15 Leadership and Personal Development (LEC 1.0)
Introduces cadets to the personal challenges and competencies that are critical for effective leadership. Cadets learn how the personal development of life skills such as critical thinking, goal setting, time management, physical fitness, and stress management relate to leadership, officership, and the Army profession.

MIL ARMY 20 Rifle Marksmanship (LEC 1.0)
The course teaches basic rifle marksmanship and firearm safety. Students will be required to learn common rules of firearms safety and fire airguns using standard firing positions. Targets will be scored. Students will also become familiar with military marksmanship techniques and weapons.

MIL ARMY 25 Introduction to Tactical Leadership (LEC 1.0)
Overviews leadership fundamentals such as setting direction, problem-solving, listening, presenting briefs, providing feedback, and using effective writing skills. Cadets explore dimensions of leadership values, attributes, skills, and actions in the context of practical, hands-on, and interactive exercises.

MIL ARMY 30 Wilderness Survival And Life-Saving Techniques (LEC 1.0)
Basic life-saving techniques that will enable the student to assist an injured person or himself in an emergency, and survival techniques that will help the student survive in the wilderness.

MIL ARMY 35 Innovative Team Leadership (LEC 3.0)
Develop knowledge of self, self-confidence and individual leadership techniques through problem solving and critical thinking skills. Apply communication, feedback, and conflict resolution skills.

MIL ARMY 40 Foundations of Tactical Leadership (LEC 3.0)
Examines the challenges of leading tactical teams in the complex contemporary operating environment (COE). The course highlights dimensions of terrain analysis, patrolling, and operation orders. Further study of the theoretical basis of the Army leadership framework explores the dynamics of adaptive leadership in the context of military operations.

MIL ARMY 50 Army Physical Readiness Program (LAB 1.0)
Course instruction includes planning, implementing and managing the Army physical fitness program; the conducting of an Army physical fitness test; physical fitness training to include conditioning, calisthenics, and cross-country running. Fundamentals of drills and ceremony will also be taught.

MIL ARMY 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course.

MIL ARMY 102 Basic Leadership Laboratory (LAB 1.0)
Hands-on experience in basic military leadership skills, supplementing, but not duplicating classroom instruction in MSI and MSII courses. Training is conducted at squad (8 person group) level with emphasis on leadership development at that level. Topics include oral communication and presentations, decision making, drill and ceremonies, squad tactics, land nav, and the tactical bivouac. Prerequisite: To accompany Mil Army 40.

MIL ARMY 105 Adaptive Tactical Leadership (LAB 1.0 and LEC 2.0)
Challenges cadets to study, practice, and evaluate adaptive leadership skills as they are presented with scenarios related to squad operations. Cadets receive systematic and specific feedback on their leadership attributes and actions. Based on such feedback and self-evaluations, cadets continue to develop their leadership and critical thinking abilities. Prerequisites: Mil Army 15, 25, 35, 40 - Exceptions to be made by Dept Chair Only In Accordance with Army (Cadet Command) Policies.

MIL ARMY 106 Leadership in Changing Environments (LAB 1.0 and LEC 2.0)
Uses increasingly intense situational leadership challenges to build cadet awareness and skills in leading tactical operations up to platoon level. Cadets review aspects of combat, stability, and support operations. They also conduct military briefings and develop proficiency in garrison operation orders. Prerequisites: Mil Army 105 - Exceptions to be made by Department Chair Only In Accordance With Army (Cadet Command) Policies.

MIL ARMY 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required. Prerequisites: Mil Army 207 and 208 - Exceptions to be made by Dept Chair Only in accordance with Army (Cadet Command) policies.

MIL ARMY 207 Developing Adaptive Leaders (LAB 1.0 and LEC 2.0)
Develops cadet proficiency in planning, executing, and assessing operations, functioning as a member of a staff, and providing performance feedback to subordinates. Cadets assess risk, make ethical decisions, and lead fellow ROTC cadets. Lessons on military justice and personnel processes prepare cadets to make the transition to Army officers. Prerequisites: Mil Army 105 and 106 - Exceptions to be made by Dept Chair Only in accordance with Army (Cadet Command) policies.
MIL ARMY 208 Leadership in a Complex World (LAB 1.0 and LEC 2.0)
Explores the dynamics of leading current military operations in the contemporary operating environment. Cadets examine differences in customs, military law, principles of war, and rules of engagement in terrorism. They also explore aspects of interacting with non-government organizations, civilians on the battlefield, and host nation support.
Prerequisite: Mil Army 207 - Exceptions to be made by Department Chair Only In Accordance With Army (Cadet Command) Policies.

Mining Engineering (MIN ENG)

MIN ENG 3 Principles Of Mining Engineering (LEC 1.0)
Principles and definitions related to mining engineering including one or more field trips to familiarize the student with current mining practices.

MIN ENG 50 Computing In Mining Engineering (LAB 1.0)
Basic software needed by mining engineers for computer applications in various phases of mine planning, development, and operations will be covered. The overarching goal is developing early familiarity with relevant software so it can be integrated across mining engineering courses.

MIN ENG 110 Surveying For Mineral Engineers (LAB 2.0)
Principles of surface and underground survey practice utilizing total station, engineer's level and GPS. Traversing and details, note taking and computations, balancing surveys and error analysis, staking-out new points, and map construction with AutoCAD. Prerequisite: Math 6, accompanied or preceded by Min Eng 3.

MIN ENG 151 Introduction To Mining Safety (LAB 1.0)
Instruction in the safety aspects of mining accordance with the MSHA Training Program required for all new miners. Subjects include self-rescue and respiratory protection, ground control, hazard recognition, mine gases, and legal aspects associated with mining. Prerequisite: Accompanied or preceded by Min Eng 3.

MIN ENG 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MIN ENG 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 202 Mine Rescue (LEC 2.0 and LAB 1.0)
Utilization of the principles of mine safety concerning mine gases, ventilation, explosives, fires, and first aid in the organization of mine rescue personnel and techniques. Training in the use of current mine rescue equipment, recognition and control of common recovery hazards, handling of survivors. Prerequisite: Min Eng 151.

MIN ENG 215 Materials Handling In Mines (LEC 2.0 and LAB 1.0)
Mining applications of material transport and handling. Truck haulage and haulroads. Conveyors: belt, armored, and others; feeders; bins and bunkers; material stockpiling and homogenization; rail transport; water transport; slurry transport; mine hoists and hoisting. Prerequisite: Min Eng 3.

MIN ENG 221 Mining Exploration (LEC 3.0)

MIN ENG 225 Surface Mine Design (LEC 1.0 and LAB 2.0)

MIN ENG 232 Statics And Mechanics Of Rock Materials (LAB 1.0 and LEC 2.0)
Application of the principles of mechanics to engineering problems of equilibrium, strength, and stiffness concerning rock materials and mine support structures. This course extends the study of statics to rock materials in mines and covers rock-related and support structure-related mechanics of materials. The course is complemented by rock mechanics laboratory. Prerequisites: IDE 140; or IDE 50 and 150.

MIN ENG 235 Underground Mine Design (LAB 2.0 and LEC 1.0)

MIN ENG 241 Principles Of Mineral Processing (LAB 1.0 and LEC 2.0)
Introduction to the principles of mineral processing including mineral resources; particle comminution, classification, separation and dewatering; flowsheet and equipment design.

MIN ENG 270 Mining Industry Economics (LEC 3.0)
Importance of the mineral industry to national economy, uses, distribution, and trade of economic minerals, time value of money, mineral taxation, economic evaluation utilizing depreciation, depletion, and discounted cashflow concepts, social and economical significance of mineral resources. Prerequisite: Econ 121 or 122. (Co-listed with Econ 270).

MIN ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MIN ENG 301 Special Topics (LAB 1.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 302 Computer Aided Mine Design (LEC 2.0 and LAB 1.0)
Project-based mine planning and design course. Engineering design process applied to computer-aided mine planning and design. Mine layouts, production planning, and materials scheduling optimization. Prerequisite: Min Eng 225 or graduate standing.

MIN ENG 303 Aggregate Materials Sizing and Characterization (LEC 2.0 and LAB 1.0)
Geological formation of aggregates; aggregate properties and their measurements; aggregates for specific end-user applications; specifications and standards; processing (crushing, screening, classification, and washing); plant design and flow sheet analysis; quality control and assurance. Prerequisite: Min Eng 241.

MIN ENG 304 Advanced Aggregate and Quarrying (LEC 3.0)
Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 215, co-requisite: Civ Eng 216.
MIN ENG 306 Material Processing By High-Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mech Eng 306).

MIN ENG 307 Principles Of Explosives Engineering (LEC 2.0 and LAB 1.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 151; accompanied or preceded by Civ Eng 215 or Geology 220 or Geology 125; Successful background check. (Co-listed with Exp Eng 307).

MIN ENG 311 Mine Plant Management (LEC 2.0)
Optimization of mine plant and equipment performance. Availability, utilization and reliability of equipment; matching equipment and plant to minesite specific conditions; maintenance planning, scheduling and control; parts and materials supply systems; mine information and management systems. Basics of mine automation and robotics. Prerequisite: Senior standing or consent of instructor.

MIN ENG 312 Ore Reserve Analysis And Geostatistics (LEC 2.0 and LAB 1.0)
An introduction to principles of geostatistics, theory of spatially correlated random variables, variance and co-variances and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 204, Stat 213.

MIN ENG 315 Advanced Mine Health and Safety (LEC 3.0)
A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 331.

MIN ENG 316 Coal Mining (LEC 2.0 and LAB 1.0)
An in-depth study of all aspects of coal mining, including an overview of coal industry, reserves and geology, planning and development of coal mines, surface and underground mechanized methods of face preparation, equipment, coal extraction, handling and preparation as practiced in the United States. Prerequisite: Accompanied or preceded by Min Eng 217.

MIN ENG 317 Mining Plant and Equipment Management (LEC 2.0 and LAB 1.0)
Applications of the fundamental principles of mechanics to engineering problems of equilibrium, strength and stiffness of rock materials. Review of in-situ stresses, laboratory and field instrumentation, rock and rockmass properties, pillar design, roof span design, rock reinforcement, surface subsidence, slope stability, and violent failures. Field trip required. Prerequisites: Min Eng 215; Min Eng 225; Min Eng 270; coreq. Min Eng 331.

MIN ENG 318 Mine Atmosphere Control (LAB 1.0 and LEC 2.0)
Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Civ Eng 230.

MIN ENG 322 Mine Management (LEC 2.0)
Theory and practice of mine management, including basic managerial functions, management theories, communication skills, motivation, leadership, organization, maintenance management, managerial decision making, cost control, labor relations, government relations, ethics, with emphasis in presentation skills. Prerequisite: Completion of 100 credits in Mining Engineering curriculum.
MIN ENG 350 Blasting Design And Technology (LAB 1.0 and LEC 2.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research.
Examination of field applications. Prerequisites: Min Eng 307. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 350).

MIN ENG 352 Mineral Processing I (Flotation and Hydrometallurgy) (LAB 1.0 and LEC 2.0)
Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisite: Min Eng 241.

MIN ENG 353 Mineral Processing II (Mechanics and Design) (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 241. (Co-listed with Met Eng 353).

MIN ENG 355 Energy Economics (LEC 3.0)
Market structure. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. Prerequisite: Econ 221. (Co-listed with Econ 355).

MIN ENG 376 Environmental Aspects Of Mining (LEC 3.0)
Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Geo Eng 50; Min Eng 324 and 326 or prereq/coreq. Civ Eng 215. (Co-listed with Geo Eng 376).

MIN ENG 383 Tunneling & Underground Construction Techniques (LEC 2.0 and LAB 1.0)
Cover both mechanical excavation and conventional excavation techniques to underground tunneling and construction. The emphasis will be on equipment selection and prediction of performance expected of the equipment. Ground control systems will be covered as technology emerges. Excavation methods and support of large caverns, often found in civil structures, will also be discussed. A limited focus will be on underground construction specifications and underground advance rate and cost estimation techniques. Prerequisites: Min Eng 331, Min Eng 324 or Civ Eng 215, Civ Eng 216 or Geo Eng 371.

MIN ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

MIN ENG 392 Mine Design Project I (LAB 1.0)
Formation of mine design project teams and acquisition of project data from industry. Geostatistical methods for ore reserves estimation. Develop complete project schedule and milestones for executing the project tasks in Min Eng 393 (Mine Design Project II). Set up database for Min Eng 393 and interact with selected mine design software packages.

MIN ENG 393 Mine Design Project II (LAB 3.0 and LEC 1.0)
Capstone project with written and oral presentations. Includes mine design and optimization, production plan, equipment and flowsheet design based on geology, resources/reserves, geotechnics, hydrology and hydro-geology. Project also incorporates markets, environmental and permitting, mine-mill organization, support facilities, economic and risk analyses. Prerequisite: Min Eng 392 and completion of 110 hours in the Mining Engineering Curriculum.

Marketing (MKT)

MKT 200 Special Problems (IND 0.0-6.0)
(Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MKT 201 Special Topics (LEC 0.0-6.0)
(Variable) This is designed to give the department an opportunity to test a new course. Variable title.

MKT 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in marketing. Prerequisite: Consent of instructor required.

MKT 301 Special Topics (LEC 0.0-6.0)
This is designed to give the department and opportunity to test a new course. Variable title.

MKT 307 Marketing and Strategy Essentials (LEC 1.5)
The course is an introduction to the essentials of marketing and strategy for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Prerequisite: Bachelor Degree.

MKT 311 Marketing (LEC 3.0)
The course examines the distribution, product, price, and promotion policies that underlie the activities of marketing institutions and the managerial, economic, and societal implications of such policies.

MKT 321 Consumer Behavior (LEC 3.0)
Introduces and applies important concepts, principles, and theories to understand consumer decision-making processes in the purchase, usage and disposal of goods and services. Examines the influence of cultural, social, and psychological factors on consumer behavior. Prerequisite: MKT 311.

MKT 331 Digital Marketing and Promotions (LEC 3.0)
A managerial examination of integrated marketing communication (IMC) and creativity, with a focus on digital media and new marketing concepts. Specifically, we will look at innovative marketing techniques such as viral marketing, brand communities, experiential marketing and guerilla tactics. Prerequisite: Psych 50.

MKT 350 Customer Focus and Satisfaction (LEC 3.0)
Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. A semester long HoQ project will be done. Prerequisites: MKT 311 or MKT 307 or Eng Mgt 251. (Co-listed with Bus 350).
MKT 380 Marketing Strategy (LEC 3.0)
Identification and analysis of strategic managerial marketing issues. Integration of marketing concepts through theoretical overview and practical analysis, including extensive use of simulation. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

MKT 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Consent of instructor required.

Materials Science & Eng (MS&E)

MS&E 301 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MS&E 325 Materials Selection in Mechanical Design (LEC 3.0)
This course will introduce the basics of materials selection in mechanical design. It will also introduce the benefits of computational materials and process selection. The students will also learn to use a commercially available materials selection software. This course will be offered as Distance Ed. Prerequisite: Met Eng 121.

MS&E 341 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with Bio Sci 341).

MS&E 348 Energy Materials (LEC 3.0)
The objectives of the course are to understand how the rational design and improvement of chemical and physical properties of materials can lead to energy alternatives that can compete with existing technologies. Discussions on the present and future energy needs from a view point of multidisciplinary scientific and technological approaches. Prerequisite: Senior standing.

MS&E 351 Advanced Phase Equilibria (LEC 3.0)
Advanced aspects of unary, binary and ternary organic, phase equilibria. Includes practical examples of the applications of phase diagrams to solve engineering problems. Prerequisite: Graduate standing.

Music (MUSIC)

MUSIC 11 Individual Music Instruction I (LAB 1.0-2.0)
Individual music instruction in student's concentration area. Consent of instructor required.

MUSIC 21 Individual Music Instruction II (LAB 1.0-2.0)
Individual music instruction in student's concentration area. Prerequisite: Consent of instructor.

MUSIC 30 University Band (LAB 2.0)
Open to all students who play a band instrument. This ensemble is both the "Miner" Marching Band and the UMR Symphonic Band. Students assigned to the ensemble after satisfactory audition.

MUSIC 32 University Orchestra (LAB 2.0)
Open to all students who play stringed, wind, percussion or keyboard instruments used in the symphony orchestra. Students assigned to the orchestra after satisfactory audition.

MUSIC 33 Highland Pipe Band (LAB 1.0)
A musical unit of bagpipes and drums for performance at campus, military, and other functions. An elective not to satisfy humanities elective. Consent of instructor required.

MUSIC 34 Instrumental Chamber Ensemble-Strings (LAB 1.0)
Open to all students who play violin, viola, cello or double bass. Students assigned to the ensemble after satisfactory audition.

MUSIC 35 Wind And Percussion Ensemble (LAB 1.0)
Open to all students who play wind or percussion instruments.

MUSIC 36 Jazz Ensemble (LAB 1.0)
A study of the various instrumental jazz forms. Students are assigned by audition to a jazz ensemble. Prerequisite: Consent of instructor.

MUSIC 40 University Choir (LAB 1.0)
Open to any student of the university. Students assigned after satisfactory audition.

MUSIC 41 Chamber Vocal Ensembles (LAB 1.0)
The members are selected by audition and organized into interest groups-madrigal, pops ensemble, and chamber choir.

MUSIC 42 Collegium Musicum - King's Musick (LAB 1.0)
Study and performance of renaissance and early Baroque instrumental music using historical reproductions of period instruments and appropriate performance techniques. Performances on and off campus each semester. A skills course, not a humanities elective. Prerequisite: Consent of instructor and audition.

MUSIC 43 Collegium Musicum - Madrigal Singers (LAB 1.0)
Study and performance of renaissance and early Baroque vocal music using performance techniques appropriate to the period. Performances on and off campus each semester. A skills course, not a humanities elective. Prerequisite: Consent of instructor and audition.

MUSIC 50 Music Understanding And Appreciation (LEC 3.0)
A study of the development of music with emphasis on understanding music forms and the role music has played in the various historical periods.

MUSIC 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MUSIC 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MUSIC 111 Individual Music Instruction III (LAB 1.0-2.0)
Individual music instruction in student's concentration area. Prerequisite: Consent of instructor.

MUSIC 121 Individual Music Instruction IV (LAB 1.0-2.0)
Individual music instruction in student's concentration area. Prerequisite: Consent of instructor.

MUSIC 161 Theory Of Music I (LAB 1.0 and LEC 3.0)
Basic musicianship. Notation, rhythm, meter, scales, intervals, triads, nonharmonic tones, major-minor seventh, modulations of common practice period. Strong emphasis on aural perception, sight-singing, and key-board performance of these materials. Applications of these materials in original composition and analysis of melodies and elementary homophonic form.
MUSIC 162 Theory Of Music II (LAB 1.0 and LEC 3.0)
A continuation of the requisite theory and fundamentals of music I.
Prerequisite: Music 161.

MUSIC 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

MUSIC 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MUSIC 210 Seminar (IND 0.0-6.0)
Discussion of current topics.

MUSIC 251 History And Analysis Of Music I (LEC 3.0)
General survey of history of music from Greek period to 18th century.
Score reading required. Prerequisite: Music 251.

MUSIC 252 History And Analysis Of Music II (LEC 3.0)
General survey of history of music from the 18th century to the present.
Score reading required. Prerequisite: Music 251.

MUSIC 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

MUSIC 301 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MUSIC 310 Symphonic Bands (LAB 1.0)
An auditioned ensemble. Students perform music for wind ensemble and large bands. Music from 1400-present is performed in a concert setting.
Prerequisite: Consent of instructor - audition only.

Nuclear Engineering (NUC ENG)

NUC ENG 205 Fundamentals Of Nuclear Engineering (LEC 3.0)
An introduction to the principles and equations used in nuclear fission reactor technology, including reactor types; neutron physics and reactor theory; reactor kinetics and control; radiation protection; reactor safety and licensing; and environmental aspects of nuclear power. Prerequisite: Physics 107 or Nuc Eng 203; Math 204.

NUC ENG 206 Reactor Operations I (LAB 1.0)
A first course in reactor operations training and practical approach to nuclear reactor concepts. Students will receive hands-on training and are encouraged to take the NRC Reactor Operator’s Exam. Prerequisites: Math 14 or Math 8; preceded or accompanied by Nuc Eng 25.

NUC ENG 221 Reactor Fluid Mechanics (LEC 3.0)
A study of the fundamental principles of incompressible viscous and inviscid flows in ducts, nozzles, tube bundles and applications to nuclear engineering; fluid statics; dimensional analysis and similitude; boundary layer theory. Prerequisites: Math 204, Junior standing.

NUC ENG 223 Reactor Heat Transfer (LEC 3.0)
A study of the fundamental principles of conduction, convection and thermal radiation with volumetric source terms for nuclear engineering applications; empirical correlations; finite difference methods; analysis of nuclear reactor cores. Prerequisite: Nuc Eng 221.

NUC ENG 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

NUC ENG 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

NUC ENG 303 Reactor Physics I (LEC 3.0)
Study of neutron interactions, fission, chain reactions, neutron diffusion and neutron slowing down; criticality of a bare thermal homogeneous reactor. Prerequisite: Nuc Eng 205.

NUC ENG 304 Reactor Laboratory I (LAB 1.0 and LEC 1.0)
Acquaints the student with neutron flux measurement, reactor operation, control rod calibration, reactor power measurement and neutron activation experiments. Experiments with the thermal column and neutron beam port are also demonstrated. Prerequisites: Nuc Eng 204, 205.

NUC ENG 306 Reactor Operation II (LAB 1.0)
The operation of the training reactor. The program is similar to that required for the NRC Reactor Operator’s license. Students from other disciplines will also benefit from the course. Prerequisite: Nuc Eng 105, 206.

NUC ENG 307 Nuclear Fuel Cycle (LEC 3.0)
Nuclear fuel reserves and resources; milling, conversion, and enrichment; fuel fabrication; in-and-out-of core fuel management; transportation, storage, and disposal of nuclear fuel; low level and high level waste management, economics of the nuclear fuel cycle. Prerequisite: Nuc Eng 205.

NUC ENG 308 Reactor Laboratory II (LEC 1.0 and LAB 1.0)
A continuation of Nuclear Engineering 304 with experiments of a more advanced nature. Prerequisite: Nuc Eng 304.

NUC ENG 309 Licensing Of Nuclear Power Plants (LEC 2.0)
The pertinent sections of the Code of Federal Regulations, the Nuclear Regulatory Commission’s Regulatory Guides and Staff Position Papers, and other regulatory requirements are reviewed. Safety analysis reports and environmental reports for specific plants are studied.

NUC ENG 310 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.
NUC ENG 311 Reactor Physics II (LEC 3.0)
Analytic and computer based methods of solving problems of reactor physics. Prerequisites: Nuc Eng 303, Comp Sci 228.

NUC ENG 312 Nuclear Radiation Measurements and Spectroscopy (LAB 1.0 and LEC 2.0)
Contemporary radiation detection theory and experiments with high resolution gamma-ray spectroscopy, solid state detectors, neutron detection and conventional gas filled detectors. Neutron activation analysis of unknown material, statistical aspects of nuclear measurements. Prerequisite: Nuc Eng 205.

NUC ENG 315 Space Nuclear Power And Propulsion (LEC 3.0)
A study of the design, operation and application of radioisotope power generators and nuclear reactors for space power and propulsion systems used on both manned and unmanned missions. Prerequisites: Nuc Eng 303 and Nuc Eng 319.

NUC ENG 317 Two-phase Flow in Energy Systems - I (LEC 3.0)
It is an introductory course for both undergraduate or graduate students who are interested in the application of two-phase flow in energy systems. It will acquaint students with governing equations for both single-phase and two-phase fluid flow, state-of-the-art analytical methods and various two-phase flow phenomena related to energy systems. Prerequisite: Nuc Eng 221 or Chem Eng 231 or Mech Eng 231.

NUC ENG 319 Nuclear Power Plant Systems (LEC 3.0)
A study of current nuclear power plant concepts and the environmental economics and safety considerations affecting their design. Includes such topics as: thermodynamics, thermal hydraulics, and mechanical and electrical aspects of nuclear power facilities. Prerequisites: Nuc Eng 205 and accompanied or preceded by Nuc Eng 223.

NUC ENG 322 Nuclear System Design I (LEC 1.0)
A preliminary design of a nuclear system (e.g. a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisites: Nuc Eng 223, 303, 319, preceded or accompanied by Nuc Eng 341.

NUC ENG 323 Nuclear System Design II (LEC 3.0)
A complete design of a nuclear system (e.g. a fusion or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisite: Nuc Eng 322.

NUC ENG 327 Radiological Engineering (LEC 3.0)

NUC ENG 333 Applied Health Physics (LEC 3.0)
Radiation sources; external and internal dosimetry; biological effects of radiation; radiation protection principles; regulatory guides; radioactive and nuclear materials management. Prerequisite: Nuc Eng 203 or Physics 107.

NUC ENG 335 Radiation Protection Engineering (LEC 3.0)

NUC ENG 341 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications, design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 110; Nuc Eng 223; Met Eng 121. (Co-listed with Met Eng 341).

NUC ENG 345 Radioactive Waste Management And Remediation (LEC 3.0)
Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues, history of disposal actions, and conduct of remedial actions and clean up. Prerequisite: Math 204. (Co-listed with Geology 345).

NUC ENG 351 Reactor Kinetics (LEC 3.0)
Derivation and solutions to elementary kinetics models. Application of the point kinetics model in fast, thermal reactor dynamics, internal and external feedback mechanism. Rigorous derivation and solutions of the space dependent kinetics model fission product and fuel isotope changes during reactor operation. Prerequisite: Nuc Eng 205.

NUC ENG 361 Fusion Fundamentals (LEC 3.0)
Introduction to the plasma state, single particle motion, kinetic theory, plasma waves, fusion, power generation, radiation mechanisms, inertial confinement and fusion devices, including conceptual fusion power plant designs. Prerequisite: Preceded or accompanied by Math 204.

NUC ENG 370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Mech Eng 370, Physics 370).

NUC ENG 381 Probabilistic Risk Assessment I (LEC 3.0)
A study of the techniques for qualitative and quantitative assessment of reliability, safety and risk associated with complex systems such as those encountered in the nuclear power industry. Emphasis is placed on fault tree analysis. Prerequisite: Nuc Eng 205.

NUC ENG 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Petroleum Engineering (PET ENG)

PET ENG 121 Introduction to Petroleum Engineering (LEC 1.0)
Introduction to and overview of petroleum engineering topics and fundamental areas including drilling, production, reservoir engineering, and mechanical earth modeling. Prerequisite: Entrance requirements.

PET ENG 200 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
PET ENG 201 Special Topics (IND 1.0-3.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 232 Well Logging I (LAB 1.0 and LEC 2.0)
An introduction to the electrical, nuclear, and acoustic properties of rocks: theory and interpretation of conventional well logs. Prerequisites: Physics 24 or 25; Pet Eng 241.

PET ENG 240 Properties Of Hydrocarbon Fluids (LEC 3.0)
Physical properties of petroleum fluids; chemical components of petroleum fluids. Elementary phase behavior; calculations of the physical properties of gases, liquids, and gas-liquid mixtures in equilibrium. Prerequisite: Chem 1.

PET ENG 241 Petroleum Reservoir Engineering (LEC 3.0)
Properties of reservoir formations and fluids; reservoir volumetrics, reservoir statics, reservoir dynamics. Darcy’s law and the mechanics of single and multiphase fluid flow through reservoir rock, capillary phenomena, material balance, reservoir drive mechanisms. Prerequisite: Accompanied or preceded by Pet Eng 240.

PET ENG 242 Petroleum Reservoir Laboratory (LAB 1.0)
Core analysis determination of intensive properties of crude oil and its products; equipment and methods used to obtain petroleum reservoir information. Prerequisite: Accompanied or preceded by Pet Eng 241.

PET ENG 271 Fundamental Digital Applications In Petroleum Engineering (LEC 3.0)
Applications of Windows-based Visual Basic solutions to engineering problems including selected topics in fluid flow, PVT behavior, matrices in engineering solutions, translating curves to computer solutions, predictor-corrector material balance solutions, and graphical display of results. Prerequisite: Junior Standing.

PET ENG 300 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PET ENG 301 Special Topics (LEC 1.0-3.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 302 Offshore Petroleum Technology (LEC 3.0)
An introduction to the development of oil and gas fields offshore, including offshore leasing, drilling, well completions, production facilities, pipelines, and servicing. Subsea systems, and deepwater developments are also included. This course is suitable for mechanical, electrical and civil engineering students interested in ultimately working offshore.

PET ENG 303 Environmental Petroleum Applications (LEC 3.0)
This course is a study of environmental protection and regulatory compliance in the oil and gas industry. The impact of various environmental laws on drilling and production operations will be covered. Oilfield and related wastes and their handling are described. Federal, state and local regulatory agencies are introduced, and their role in permitting and compliance monitoring is presented. Legal and ethical responsibilities are discussed. Prerequisite: Chem 1.

PET ENG 308 Applied Reservoir Simulation (LEC 3.0)
Simulation of actual reservoir problems using both field and individual well models to determine well spacing, production effects of secondary and enhanced recovery processes, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Prerequisite: Pet Eng 241.

PET ENG 310 Seminar (RSD 1.0)
Discussion of current topics. (Course cannot be used for graduate credit). Prerequisite: Senior standing in Pet Eng. (Co-listed with Geology 310, Geo Eng 310).

PET ENG 313 Drilling and Well Design (LAB 1.0 and LEC 2.0)
This course covers drilling fluids, including mixing and analysis of rheological properties; pressure loss calculations; casing design; well cementing; pore pressure and geomechanical considerations in drilling; completion equipment; and completion design. Prerequisite: Preceded or accompanied by Civ Eng 230.

PET ENG 314 Advanced Drilling Technology (LEC 3.0)
In-depth study of directional well planning and drilling. The course covers the bottom hole assemblies and operational techniques used in drill directional drilling as well as the limiting factors and hole problems related to horizontal wells. Prerequisite: Pet Eng 313.

PET ENG 316 Well Performance and Production Systems (LEC 2.0 and LAB 1.0)
Introduction to the producing wellbore system; inflow performance relationships, effect of formation damage on well flow, nodal systems analysis; perforating methods and their effect on inflow; stimulation treatments to enhance well performance. Introduction to well completions, diagnostics and well servicing. Overview of production systems. Prerequisite: Preceded or accompanied by Pet Eng 241.

PET ENG 318 Well Stimulation (LEC 3.0)
This course reviews fundamentals of hydraulic fracturing and builds on the basic theory through the use of STIMPLAN software and hands on industry examples. The course teaches the methods used to plan, execute and evaluate hydraulic fracturing treatments. Students may not earn credit for both Pet Eng 318 and Pet Eng 418. Prerequisites: Pet Eng 241 and Pet Eng 232.

PET ENG 320 Fundamentals Of Petroleum Reservoir Simulation (LEC 3.0)

PET ENG 323 Artificial Lift (LEC 3.0)
This course is a study of artificial lift methods used to produce liquids (oil/water) from wellbores. Methods covered include sucker rod (piston) pumps, electric submersible pumps, gas lift, hydraulic lift and plunger lift. Prerequisite: Pet Eng 316.

PET ENG 325 Well Completion Design (LEC 3.0)
An overview of the hardware, fluids and processes employed in completing oil and gas wells. Examination of types of well completions and considerations in their design. Introduction to downhole mechanics and tubing movement and stress calculations. Prerequisite: Pet Eng 241.

PET ENG 329 Applied Petroleum Reservoir Engineering (LEC 3.0)
Quantitative study of oil production by natural forces, gas cap, water influx, solution gas, etc.; material balance equations, study of gas, non-retrograde gas condensate, and black oil reservoirs. Predictive calculations of oil recovery from different reservoir types. Prerequisites: Pet Eng 241 and 242.

PET ENG 333 Reservoir Characterization (LEC 3.0)
The integration and extrapolation of Geologic, Geophysical, and Petroleum Engineering data for flow model construction. Prerequisites: Pet Eng 241, Pet Eng 232; Geology 332 or Geology 340.
PET ENG 335 Secondary Recovery Of Petroleum (LEC 3.0)

PET ENG 338 Finite Element Analysis with Applications in Petroleum Engineering (LAB 1.0 and LEC 3.0)
This course introduces finite element analysis (FEA) methods and applications of FEA in subsurface engineering. The course is intended to provide a fundamental understanding of FEA software and experience in creating meshes for petroleum reservoirs or other subsurface features. Prerequisites: Pet Eng 241, Pet Eng 316, and senior standing.

PET ENG 341 Well Test Analysis (LEC 2.0 and LAB 1.0)
Causes of low well productivity; analysis of pressure buildup tests, drawdown tests, multi-rate tests, injection well fall off tests, and open flow potential tests; design of well testing procedures. Prerequisite: Pet Eng 241.

PET ENG 347 Petroleum Engineering Design (LEC 3.0)
Senior capstone design project(s) based on industry data. Application of reservoir engineering; drilling and production engineering principles to evaluate and solve an industry problem such as a new field development, evaluation of an existing reservoir asset, or analysis of field redevelopment. Prerequisites: Pet Eng 241, Pet Eng 316, and senior standing.

PET ENG 357 Petroleum Economics and Asset Valuation (LEC 3.0)
Uncertainty in the estimation of oil and gas reserves; tangible and intangible investment costs; depreciation; evaluation of producing properties; federal income tax considerations; chance factor and risk determination. Petroleum economic evaluation software is introduced. Prerequisites: Pet Eng 241, Econ 121 or Econ 122.

PET ENG 360 Natural Gas Engineering (LEC 3.0)
Gas reserves estimation, deliverability, and future production performance prediction. Deliverability testing of gas wells including isochronal, flow after flow, drawdown and buildup. Gasfield development and underground storage. Gas production metering gauging and transmission. Prerequisite: Preceded or accompanied by Pet Eng 241.

PET ENG 366 Mechanical Earth Modeling (LEC 3.0)
This course introduces the work process necessary to create the Mechanical Earth Model’s principle components, formation in-situ stress and strength. 1-D modelign methods are reviewed and extended to 3-D; and the integration of MEM with well design is shown. An MEM model will be created and compared to actual field results. Prerequisites: Pet Eng 232 and Geology 220.

Philosophy (PHILOS)

PHILOS 5 Introduction To Philosophy (LEC 3.0)
An historical survey of the major approaches to philosophical problems, especially those of the nature of reality, human nature, and conduct. Prerequisite: Entrance requirements.

PHILOS 10 Practical Reasoning (LEC 3.0)
An introduction to the study of non-formal reasoning. The course examines the subtle ways that the form in which information is presented can color the way that information is understood. Prerequisite: Entrance requirements.

PHILOS 15 Introduction To Logic (LEC 3.0)
A study of the basic rules of both formal and symbolic logic, including types of argumentation, methods of reasoning, valid reasoning, inductive and deductive reasoning as used in the sciences and in communication in general. Prerequisite: Entrance requirements.

PHILOS 223 Bioethics (LEC 3.0)
This course covers several areas of ethical interest in biotechnology, medicine, and medical care. Topics may include stem-cell research, cloning, genetic engineering, reproductive issues, pharmaceutical ethics, privacy, physician-assisted suicide, patient rights, human and animal experimentation, and resource allocation. Prerequisite: Introductory level (below 100) Philosophy course.

PHILOS 225 Engineering Ethics (LEC 3.0)
Engineering ethics, examines major ethical issues facing engineers in the practice of their profession: the problem of professionalism and a code of ethics; the process of ethical decision-making in different working environments; the rights, duties, and conflicting responsibilities of engineers. Prerequisite: An introductory (below 100) level philosophy course.

PHILOS 235 Business Ethics (LEC 3.0)
Develop ethical concepts relevant to deciding the moral issues that arise in business. Topics include: Economic systems, government regulations, relations to external groups and environment, advertising, product safety and liability, worker safety and rights, rights and responsibilities of business professionals. Prerequisite: An introductory (below 100) level philosophy course.

PHILOS 230 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHILOS 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHILOS 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHILOS 220 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHILOS 205 History Of Philosophy II (LEC 3.0)
A study of selected philosophical works from Descartes to Hegel to Kant emphasizing the problems of knowledge and reality. Prerequisite: An introductory (below 100) level Philosophy course.

PHILOS 230 Business Ethics (LEC 3.0)
Develop ethical concepts relevant to deciding the moral issues that arise in business. Topics include: Economic systems, government regulations, relations to external groups and environment, advertising, product safety and liability, worker safety and rights, rights and responsibilities of business professionals. Prerequisite: An introductory (below 100) level philosophy course.
PHILOS 320 Minds And Machines (LEC 3.0)
The course will be centered on the topic of artificial intelligence and the problems raised by contemporary attempts to simulate human thinking and perception in machines. Special emphasis will be placed on recent developments in psychology, physiology, cybernetics and computer technology. Prerequisite: Any introductory (below 100) level philosophy course.

PHILOS 333 American Philosophy (LEC 3.0)
A study of American philosophical development with emphasis upon the "Classical Age of American Philosophy", i.e., Pierce, James, Dewey, Royce, Santayana and Whitehead. Prerequisite: An introductory (below 100) level Philosophy course.

PHILOS 335 Philosophy Of Religion (LEC 3.0)
A consideration of the major presuppositions of western theism, such as the existence of god and the cognitive meaningfulness of religious language. Prerequisite: Any introductory (below 100) level philosophy course.

PHILOS 340 Social Ethics (LEC 3.0)
Discussion of ethical issues confronting society and the arguments offered for alternative laws and public policies. Topics might include: freedom of speech/action, government regulation, welfare, capital punishment, euthanasia, abortion, the environment, affirmative action, just wars, foreign aid, world hunger. Prerequisite: Any lower level ethics course.

PHILOS 345 Philosophy Of Science (LEC 3.0)
An examination of the fundamental methods and assumptions of the sciences, with emphasis on scientific reasoning and theories. Prerequisite: Any introductory (below 100) level philosophy course.

PHILOS 350 Environmental Ethics (LEC 3.0)
Study of the complex moral issues concerning our relationship to the environment and the ethical foundations of our environmental responsibilities. Discussion topics include: conservation, preservation, resource development, pollution, toxic substances, future generations, endangered species, regulation, zoning, takings, etc. Prerequisite: Any introductory (below 100) level philosophy course.

PHILOS 354 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Eng 354, Comp Sci 354 and Math 354).

PHILOS 360 Foundations Of Political Conflict (LEC 3.0)
This course is designed as a survey of the philosophical foundation of major political systems. For example, communism, fascism, democracy. Materials will be drawn from relevant historical and/or contemporary sources. Prerequisite: Any introductory (below 100) level Philosophy course.

PHILOS 368 Law and Ethics in E-Commerce (LEC 3.0)
Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. (Co-listed with IS&T 368).

Physical Education (PHYS ED)

PHYS ED 100 Special Problems (IND 0.0-6.0)
Problems of readings on specific subjects or projects in the department. Consent of instructor required.

PHYS ED 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYS ED 102 Fundamentals Of Golf (LAB 1.0)
To give the student the theory and practical application of the golf swing while at the same time developing increasing skills, and an interest in the history, rules, and etiquette of the game of golf.

PHYS ED 103 Fundamentals Of Tennis (LAB 1.0)
Lectures, demonstration, and supervised practice are designed to acquaint the student participants with theory and execution which govern the playing of sound and effective tennis.

PHYS ED 104 Beginning Aquatics (LAB 1.0)
The course will provide the student with basic swimming, diving, and elementary life saving skills to prepare the student for additional work in the field of aquatics.

PHYS ED 105 Aerobics (LAB 1.0)
The course intent is to improve the physical condition of the student through various mediums of exercise aimed at demanding more oxygen over an extended period of time to increase the efficiency of the cardiovascular system and improve muscle tone.

PHYS ED 108 Beginning Racquetball (LAB 1.0)
Course instruction familiarizes the student with the rules, playing strategy, and court etiquette of racquetball. Actual playing experience allows the opportunity for skill development in this leisure activity.

PHYS ED 109 Basketball/Volleyball (LAB 1.0)
The Basketball/Volleyball course will contribute to the mastery of fundamental skills in two of the world's leading participation sports. History, rules and strategy will be emphasized.

PHYS ED 110 Weight Training (LAB 1.0)
Course instruction emphasizes the cognitive aspects of weight lifting, covering such topics as motivation, common injuries, procedures for warm-up and cool down, and safety procedures.

PHYS ED 111 Swimming Fitness (LAB 1.0)
The Swimming Fitness course will provide an environment which will be conducive for the student to improve physical skills and conditioning through training in the water. Benefits of exercise, training principles and safety precautions will be emphasized.

PHYS ED 112 Fundamentals And Theory Of Coaching Basketball (LEC 2.0)
To make the student aware of skills, fundamentals, court situations, strategy, and administrative procedures for successful basketball coaching.

PHYS ED 113 Fundamentals And Theory Of Coaching Football (LEC 2.0)
To present materials that will provide the student with a working knowledge of coaching, administration, and appreciation of football.

PHYS ED 150 Administration Of Interscholastic Athletics (LEC 3.0)
To present materials that will provide the student with a working knowledge of the major administration and day to day problems that are associated with interscholastic athletics.

PHYS ED 151 Care And Prevention Of Athletic Injuries (LEC 3.0)
Technique, principles, and theory underlying the prevention and care of athletic injuries.
PHYS ED 152 Elements Of Health Education (LEC 2.0)
This course surveys various health topics and attempts to provide some answers related to them. Presents pertinent scientific and medical facts of current health concepts and their relation to the principles and theories of health education.

PHYS ED 153 Fundamentals And Theory Of Sports Officiating (LEC 2.0)
To prepare students with knowledge and skills so that they may both officiate competently and adequately critique officiating by others.

PHYS ED 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHYS ED 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYS ED 230 Methods In Physical Education K-4 (LEC 3.0)
The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the younger child. (Co-listed with Educ 230).

PHYS ED 231 Methods In Physical Education 5-9 (LEC 3.0)
The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the student in transition from childhood to young adulthood (5-9). (Co-listed with Educ 231).

Physics (PHYSICS)

PHYSICS 1 Introduction To Physics (LEC 1.0)
An introduction to the study of physics and its intellectual and professional opportunities. The student will be acquainted with the various areas of physics and with departmental and campus facilities useful to their future studies. Required of all freshman majors.

PHYSICS 6 Environmental Physics I (LEC 3.0)
A course for non-science majors which will consider, without mathematics, the production of energy and the environmental consequences of its use, and the physical problems associated with pollution.

PHYSICS 8 Laboratory For Environmental Physics (LAB 1.0)
A laboratory course to accompany the Environmental Physics lecture course as an option. A set of experiments will be performed related to environmental impacts studied in Environmental Physics 6. To be taken simultaneously with Environmental Physics 6. Prerequisite: Corequisite Physics 6.

PHYSICS 9 Introductory Astronomy (LEC 3.0)
An introductory course in basic astronomy designed primarily for students other than those in science and engineering. Topics include history, the sky, the solar system, stars, stellar evolution, galaxies and the origin and evolution of the universe. Credit will not be given for both Physics 9 and Physics 11.

PHYSICS 10 Astronomy Laboratory (LAB 1.0)
A science laboratory course in which the student analyzes and interprets astronomical data and makes observations with a telescope. Prerequisite: Preceded or accompanied by Physics 9 or 11.

PHYSICS 21 General Physics I (LEC 4.0)
An introduction to the fundamental ideas of physics, including mechanics, heat, and sound. Prerequisite: Preceded by Math 8 or Math 14.

PHYSICS 22 General Physics Laboratory (LAB 1.0)
Experiments related to topics studied in Physics 21. Prerequisite: Preceded or accompanied by Physics 21.

PHYSICS 23 Engineering Physics I (RSD 1.5 and LEC 1.5 and LAB 1.0)
An introduction to mechanics, with an emphasis on topics needed by engineering students, including kinematics, dynamics, statics, and energetics. Prerequisite: Math 8 or 14.

PHYSICS 24 Engineering Physics II (RSD 1.5 and LAB 1.0 and LEC 1.5)
An introduction to electricity, magnetism, and light, with emphasis on topics needed by engineering students. Prerequisites: Physics 23, Math 21 or 15.

PHYSICS 25 General Physics II (LEC 4.0)
An introduction to the fundamental ideas of physics including electricity, magnetism, and light. Prerequisites: Preceded by Physics 21 and preceded or accompanied by Math 21 or Math 15.

PHYSICS 26 General Physics Laboratory (LAB 1.0)
Experiments related to topics studied in Physics 25. Prerequisite: Preceded or accompanied by Physics 25.

PHYSICS 31 College Physics I (LEC 3.0)
An introduction to the ideas of physics, including mechanics, heat, and sound. Prerequisites: Math 6 and either of Math 2 or Math 4.

PHYSICS 35 College Physics II (LEC 3.0)
An introduction to the ideas of physics, including electricity, magnetism, and light. Prerequisites: Math 6, Physics 31.

PHYSICS 101 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 107 Introduction To Modern Physics (LEC 3.0)
An elementary survey of the modern concepts in physics and their applications; relativity, quantum mechanics, atomic physics, solid state physics, nuclear and particle physics. Prerequisites: Math 22 and Physics 24 or 25.

PHYSICS 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 207 Modern Physics I (LEC 3.0)
An introduction to quantum mechanics, atomic physics, and solid state physics. Topics include historically important experiments and interpretations. Prerequisites: Physics 24 or 25, preceded or accompanied by Math 204 or 229.

PHYSICS 208 Introduction To Theoretical Physics (LEC 3.0)
Fundamental physical concepts are elaborated in mathematical terms emphasizing the coherence and economy of Physics. Topics include elementary vector analysis, introduction to physical mechanics (motion of a point mass, conservation laws, relativity), Fourier series, and introduction to partial differential equations. Prerequisites: Math 204 corequisite; Physics 24 or 25.

PHYSICS 212 Intermediate Physics Laboratory (LEC 1.0 and LAB 2.0)
A laboratory study of the principles of instrumentation used in all modern branches of physics. Analog and digital methods of data gathering are surveyed. Laboratory practice evolves from elementary operations to the design and assembly of a simple instrument.
PHYSICS 221 Electricity And Magnetism I (LEC 3.0)
A study of electric and magnetic fields, leading to Maxwell’s equations. Topics covered include the electrostatic field, the electric potential, and the electrostatic field in matter. Prerequisite: Physics 208.

PHYSICS 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHYSICS 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 302 Physics For Elementary School Teachers (LEC 2.0 and LAB 1.0)
A nonmathematical review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, and light. Emphasis is placed on the development of hands-on activities. (For elementary school teachers or Master of Science for Teachers candidates only.).

PHYSICS 303 Physics For Secondary School Teachers (LEC 3.0)
A review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, and light with an emphasis on how mathematics can be used to help understand the underlying concepts. (For secondary teachers or Masters of Science Teachers candidates only.) Prerequisites: Math 22 and admission to the MST program.

PHYSICS 304 Science Education and Quantitative Literacy for Middle School Teachers (LEC 3.0)
An integrated science-mathematics course for middle school teachers. Course covers selected science/mathematics topics/skills specified in Missouri standards for grades 5-7. Inquiry based methods of teaching these topics in an integrated manner will be emphasized. Prerequisite: Current enrollment in a Teacher Education Program or a full or part-time teacher in a K-12 school. (Co-listed with Stat 304).

PHYSICS 305 Astrophysics (LEC 3.0)
The structure, physical characteristics and evolution of stars, binary systems, nebulae and galaxies. Prerequisite: Physics 107.

PHYSICS 306 Physics, Energy, and the Environment (LEC 3.0)
Applications of physics to the environment, including energy, its conservation and transformation, environmental consequences of energy use; world energy resources; atmospheric physics; sources of air, water, and land pollution, and the role physics plays in controlling those resources. May not be used as a 300-level elective for a B.S. in Physics. Prerequisite: Admissions to the MST program.

PHYSICS 307 Modern Physics II (LEC 3.0)
A continuation of Physics 207. An introduction to nuclear and particle physics. Topics include nuclear models, decays, and reactions, and elementary particles and fundamental forces. Prerequisites: Math 204 or 229, and either Physics 107 with consent of instructor or Physics 207.

PHYSICS 308 Physical Mechanics (LEC 3.0)
This course covers topics of rigid body motion in three dimensions, moving coordinate frames, two body collisions, conservation laws, small oscillations, generalized coordinates, and LaGrange's and Hamilton’s equations. Prerequisite: Physics 208.

PHYSICS 309 Astrophysical Concepts (LEC 3.0)
A comprehensive course in modern astrophysics. Topics include: Earth and sky, planetary science, stellar structure and evolution, galaxies, and structure and evolution of the universe. The course includes hands-on computer simulation and telescope use. (For secondary teachers or Master of Science for Teachers candidates.) Prerequisite: Math 22 or admission to the MST program.

PHYSICS 311 Thermal Physics (LEC 3.0)
A study of the equilibrium states of matter as governed by the first and second laws of thermodynamics. Emphasis is placed on the microscopic approach with an introduction to statistical mechanics. Topics include the kinetic theory of (uniform) gases, phase equilibria in pure systems, and an introduction to quantum statistics. Prerequisite: Physics 107 or 207.

PHYSICS 313 Introduction To General Relativity (LEC 3.0)
An introduction to the theory of general relativity. Topics covered include the formalism of general relativity, Einstein’s gravitational field equations, the Schwarzschild solution, black holes, and cosmological models of the universe. Prerequisite: Physics 208.

PHYSICS 321 Electricity And Magnetism II (LEC 3.0)
A continuation of Physics 221. Topics covered include the magnetostatic field, the magnetic vector potential, the magnetostatic field in matter, electrodynamics, and electromagnetic waves. Prerequisite: Physics 221.

PHYSICS 322 Advanced Physics Laboratory I (LAB 3.0)
A laboratory study of the principles of basic experiments in all major branches of physics. The experiments stress design of apparatus, and procedures and analysis in projects involving electronic, optical, mechanical, and vacuum techniques. Prerequisite: Physics 212.

PHYSICS 323 Classical Optics (LEC 3.0)
Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with Elec Eng 323).

PHYSICS 324 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Elec Eng 261 & 275 or Physics 208 & 321. (Co-listed with Elec Eng 324).

PHYSICS 326 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 275 or Physics 321. (Co-listed with Elec Eng 326).

PHYSICS 332 Advanced Physics Laboratory II (LAB 3.0)
A senior laboratory involving experimental design. The student must specify his objectives, assemble apparatus, take measurements, analyze the results, form conclusions, write a report, and deliver an oral presentation of the results. Prerequisite: Physics 212.

PHYSICS 351 Computational Physics (LAB 1.0 and LEC 3.0)
An introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 107 or Physics 207; Math 204; programming experience.
PHYSICS 355 Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0)
An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics covered include phase plane analysis, iterated maps, routes to chaos, Lyapunov exponents, strange attractors and pattern formation with applications to chaotic vibrations, population dynamics, chemical oscillations and lasers. Prerequisites: Math 204; Physics 24 or Physics 25.

PHYSICS 357 Subatomic Physics (LEC 3.0)
An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 307.

PHYSICS 361 Introduction To Quantum Mechanics (LEC 3.0)
The fundamental concepts, postulates and methods of quantum mechanics and their applications to physical systems. Topics include solutions of the Schrödinger equation for simple systems and operator methods. Prerequisites: Physics 107 or 207, 208.

PHYSICS 370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Mech Eng 370, Nuc Eng 370).

PHYSICS 371 Laser Physics (LEC 3.0)
The generation of coherent radiation by lasers and the interaction of laser radiation with matter. Topics include stimulated emission, population inversion, optical cavities, optical gain, properties of laser media and other applications. Prerequisite: Physics 107 or 207.

PHYSICS 377 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 377, Chem Eng 347, Met Eng 377, Cer Eng 377).

PHYSICS 381 Elementary Solid State Physics (LEC 3.0)
An introductory study of the structure and physical Properties of crystalline solids. Included are topics in crystal structure, x-ray diffraction, crystal binding, thermal properties of solids, free electron theory and elementary energy band theory. Prerequisites: Math 204 and Physics 107 or 207.

PHYSICS 390 Undergraduate Research (IND 0.0-6.0)
This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor.

Political Science (POL SCI)

POL SCI 90 American Government (LEC 3.0)
National, state and local government in the United States with special emphasis on political behavior and the institutions that determine and execute public policy. Topics include basic structure of American government, (i.e., democracy, the Constitution, the branches of government), as well as citizenship, parties, pressure groups and American economic policy. The course views government in its relation to its people, its services and protection.

POL SCI 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

POL SCI 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable credit.

POL SCI 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

POL SCI 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

POL SCI 210 Seminar (IND 0.0-6.0)
Discussion of current topics.

POL SCI 225 Comparative Politics (LEC 3.0)
A comparative study of states, institutional structures, ideologies, political culture, political parties, interest groups and forms of government. How these social forces are organized to articulate national or parochial interests within the framework of participatory or centralized political systems will be studied. Prerequisite: Pol Sci 90 or History 175.

POL SCI 226 International Relations (LEC 3.0)
A general introduction to the theoretical framework, pattern and personalities of international relations with special emphasis upon American foreign policy making. Problems of international economic development, resources, and armaments will also be examined. Prerequisite: Pol Sci 90 or History 175 or 176.

POL SCI 237 Contemporary Political Thought (LEC 3.0)
This course will explore the impact of ideas on American politics and history, including the relationship between technological change and public policy; this will be pursued through the study of American political history, social institutions, and intellectual history. Prerequisite: History 175 or 176 or Pol Sci 90. (Co-listed with History 237).

POL SCI 290 American Political Parties (LEC 3.0)
The origin and development of political parties in the United States, the two-party system, the functions, organizations and operation of parties. Prerequisite: Pol Sci 90.

POL SCI 300 Special Problems And Readings (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

POL SCI 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

POL SCI 302 Political Science Internship (IND 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Pol Sci 90 or Pol Sci 235.
POL SCI 310 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

POL SCI 315 Principles Of Public Policy (LEC 3.0)
This course presents a study of public policy in the United States. Students analyze the policy process, the resulting policy choices and the impact of the choices on the American people. Prerequisite: Pol Sci 90.

POL SCI 316 The American Presidency (LEC 3.0)
Historical development of the presidency; emphasis on the constitutional powers and limits of the office and the political contextual variables which influence presidential behavior. Prerequisite: Pol Sci 90 or History 176. (Co-listed with History 316).

POL SCI 317 Public Policy Analysis (LEC 3.0)
An advanced study of major U.S. national policies. A wide range of public policies, including education, economics, and health and welfare will be studied. Students will be introduced to the methods of policy analysis. Emphasis will be placed on the use of tools used by policy analysts to determine program effectiveness and impact. Prerequisite: Pol Sci 90.

POL SCI 350 The Politics Of The Third World (LEC 3.0)
This course explores the processes and problems of the developing nations of the world. It examines the internal political processes of third world nations, as well as the position of the third world in international affairs. Prerequisite: Pol Sci 90 or History 112 or 175 or 176.

POL SCI 383 U.S. Diplomatic History to World War II (LEC 3.0)
This course is a history of American foreign relations, broadly conceived, from the War for Independence to WWII. Among other things, it deals with the diplomacy of survival, of expansion and of economic and political hegemony. Prerequisites: History 175, 176 or Pol Sci 90. (Co-listed with History 383).

POL SCI 384 American Diplomatic History Since World War II (LEC 3.0)
American Diplomatic History Since World War II will address the major issues in American foreign policy from WWII to the present. Its primary focus is on the Cold War and the post-Cold War problems the U.S. has faced. Prerequisite: History 176 or Pol Sci 90. (Co-listed with History 384).

Pre-Medicine (PREMED)

PREMED 110 Introduction To Health Careers (LEC 1.0)
This course is for Pre-Medicine students or other interested in careers in the health care industry. Students will be introduced to different career options through invited speakers and independent research. Prerequisite: Admission Requirements.

PREMED 310 Communication Workshop for the Pre-Health Student (RSD 1.0)
This course is for Pre-Medicine students or others interested in careers in the health care industry or graduate studies. Students in this course will learn and develop writing and speaking skills necessary for success in health and science careers. Prerequisite: Junior Standing.

Psychology (PSYCH)

PSYCH 10 Introduction to Psychology (LEC 1.0)
An introduction to the study of psychology at S&T. Students will learn about personal and professional opportunities associated with the different areas of psychology and become acquainted with the psychology faculty and campus facilities.

PSYCH 200 Special Problems In Psychology (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PSYCH 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PSYCH 208 Psychological & Educational Development Of The Adolescent (LEC 3.0)
An examination of the biological, social, and cognitive transitions that occur during adolescence. Other topics include the role of families, the role of peers, the adolescent identity, sexuality, the impact of schools, the role of achievement, how adolescents spend their time (work, leisure), the role of the media, and problems encountered by the adolescent. Prerequisite: Psych 50.

PSYCH 210 Web Design And Development (LAB 1.5 and LEC 1.5)
This course students learn design principles for effectively structuring information for the World Wide Web; how to use tools to deploy this information; and methods for assessing Web usability. The course is project based with an emphasis on the application of design and usability assessment within the context of student projects. Prerequisite: IS&T 151.

PSYCH 240 Theories Of Learning (LEC 3.0)
An examination of basic learning processes and the behavioral phenomena that arise from them. Topics include non-associative learning, classical conditioning, operant conditioning, and vicarious learning. Prerequisite: Psych 50.

PSYCH 250 Developmental Psychology (LEC 3.0)
A study of human growth and development across the lifespan. The course emphasizes the interaction of physical, psychological, and social changes and their resulting impact on the developing person at all stages in life. Prerequisite: Psych 50.
PSYCH 290 History Of Psychology (LEC 3.0)
An examination of the origin of psychology within the framework of philosophy and science. Traces the major trends, schools, and individuals. Major scientific, cultural, philosophical and personal influences in the development of psychology. Prerequisite: Psych 50.

PSYCH 300 Special Problems And Readings In Psychology (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PSYCH 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PSYCH 302 Internship (IND 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisite: Junior or Senior Psychology major; consent of instructor; must have completed 9 hours in major.

PSYCH 305 Cognitive Psychology (LEC 3.0)
This course covers basic cognitive processes and their application. Theory and research are presented on attention, perception, memory, problem solving, decision making and language. Prerequisite: Psych 50.

PSYCH 307 Industrial Psychology (LEC 3.0)
An overview of the field of industrial psychology including topics such as criterion development, job analysis, selection, training, performance assessment, and some human factors concerns. Prerequisite: Psych 50.

PSYCH 308 Social Psychology (LEC 3.0)
An exploration of the phenomena involved in human social behavior and the theories that explain them. Topics typically include social thinking, attitudes and attitude change, conformity, persuasion, interpersonal attraction, and more. Prerequisite: Psych 50.

PSYCH 310 Seminar (RSD 0.0-6.0)
Prerequisite: Senior Standing.

PSYCH 311 Human Factors (LEC 3.0)
An examination of human-machine systems and the characteristics of people that affect system performance. Topics include applied research methods, systems analysis, and the perceptual, cognitive, physical and social strengths and limitations of human beings. The focus is on user-centered design of technology, particularly in manufacturing environments. Prerequisite: Psych 50. (Co-listed with Eng Mgt 311).

PSYCH 314 Human-Computer Interaction (LEC 3.0)
Research, theory, and practice from psychology and other social science disciplines have implications for the effective design and use of computers in organizations. This course introduces students to the psychological issues in software engineering, technology in the workplace, and organizational design. Prerequisite: Psych 50.

PSYCH 315 Environmental Psychology (LEC 3.0)
An examination of the psychological effects of various environmental designs and ways to design environments effectively. Topics include: environmental attitudes, perception, and cognition; environmental influences, crowding, and the application of environmental design principles to living, educational, work, and recreational settings. Prerequisite: Psych 50.

PSYCH 316 Psychology of Leadership in Organizations (LEC 3.0)
Examination of conceptual and empirical research on determinants of effective vs. ineffective leadership. Topics include leadership measurement, traits, skills, leader-member exchange, charismatic and transformational leadership, change management, team leadership, and ethical leadership. Practical guidelines for developing leadership skills are discussed. Prerequisite: General Psychology.

PSYCH 330 Neuroscience (LEC 3.0)
The neurophysiological bases of behavior and cognition are examined. Topics covered include neuroanatomy, neurotransmission, neuropharmacology, brain systems, learning and memory, emotion, attention and consciousness, and neurologic/psychological disorders. Prerequisite: Psych 50.

PSYCH 340 Sensation and Perception (LEC 3.0)
An in-depth examination of the human senses, with special emphasis on vision and hearing. Topics include the anatomy and physiology of the eye and ear, neural transduction, the organization and interpretation of sensory signals by the brain, selective attention, and the neural basis of the perception of color, form, space, depth, motion, music, and language. Prerequisite: Psych 50.

PSYCH 345 Evolutionary Psychology (LEC 3.0)
Fundamental principles of evolution, and their applicability to human behavior and psychological processes are examined. Topics include interpersonal attraction, sperm competition, altruism, aggression, and creationism/intelligent design. Prerequisite: Psych 50.

PSYCH 350 Psychology of Women (LEC 3.0)
A history of the psychology of women with a focus on the latest research and theories in the field (e.g., research methods, gender theories, biological and social factors, communication and leadership styles, nature of interpersonal relationships, and health and mental issues). Prerequisite: Psych 50.

PSYCH 354 Psychology Of The Exceptional Child (LEC 3.0)
Study of the psychology of children on both ends of the educational spectrum. The course presents the fundamentals of providing services as well as understanding the abilities and disabilities of children classified as exceptional. Includes coverage of various disabilities, and the implications of dealing with personal, family and classroom issues. Prerequisite: Psych 50. (Co-listed with Educ 354).

PSYCH 360 Personality Theory (LEC 3.0)
An examination of the ways in which personality traits develop and the sources of differences among people in the traits they exhibit. The emphasis is on major theories of personality development, as well as recent research in the field. Prerequisite: Psych 50.

PSYCH 362 Abnormal Psychology (LEC 3.0)
An introductory study of various forms of personality and behavioral disorders. Consideration will be given to neurosis, psychosis, mental deficiency and other deviations, with emphasis on etiology and treatment. Prerequisite: Psych 50.

PSYCH 364 Tests and Measurements (LEC 3.0)
Theoretical and statistical basis of psychological testing and measurement; test development and validation; examination of standardized tests of intelligence, aptitude, interest, personality, attitudes, and psychopathology; use of test and test batteries for diagnostics and prediction of criteria. Prerequisite: Psych 50.
PSYCH 368 Clinical Psychology (LEC 3.0)
Comprehensive survey of the field of clinical psychology. Course will cover a variety of assessment and treatment procedures relevant to psychology and other professionals who treat human adjustment problems; techniques based on experimental outcome research and psychological testing will be emphasized. Prerequisites: Psych 50 and Psych 362.

PSYCH 370 Advanced Social Psychology (LEC 3.0)
An advanced study of the behavior of individuals in interaction within groups. Consideration will also be given to the experimental literature dealing with the formal properties of groups, conformity and deviation, intergroup relations, and attitude formation and attitude change. Prerequisite: Psych 308.

PSYCH 372 Group Dynamics (LEC 3.0)
A review of the concepts and theories related to group dynamics. Topics include group goals, communication within groups, group structure, norms, leadership, decision making, controversy, conflict resolution, power, diversity issues, and team development. Prerequisite: Psych 50.

PSYCH 374 Organizational Psychology (LEC 3.0)
Analysis, comprehension, and prediction of human behavior in organizational settings through the scientific study of individual processes, group processes, and organizational structure and function. Prerequisite: Psych 50.

PSYCH 375 Health Psychology (LEC 3.0)
This course examines Health Psychology. Topics include basic behavioral pharmacology (involving alcohol and other drugs), illusions of invulnerability to risk, stress and coping, and the science of persuading people to protect their health. Students learn how to construct a public service announcement towards a societal problem as part of the course. Prerequisite: Psych 50.

PSYCH 377 Psychology in Media (LEC 3.0)
Examples drawn from the media (e.g., television, movies, newspapers) will be used as the basis for discussing a wide variety of psychological phenomena, principles, and theories, and their applicability to everyday life. Prerequisite: Psych 50.

PSYCH 378 Social Influence: Science and Practice (LEC 3.0)
Principles and procedures that affect the process of social influence, with consideration given to attitudinal, compliance inducing, and perceptual influences. Prerequisite: General Psychology.

PSYCH 380 Cross-Cultural Psychology (LEC 3.0)
Study of the impact of ethnic and national culture on psychological processes and behaviors. Topics include the effects of individualism and collectivism on patterns of socialization, personality, motivation, emotion and cognition; cultural differences in diagnosis and treatment of mental and physical health; and group and organizational behavior. Prerequisite: Psych 50.

PSYCH 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Instructor consent.

Russian (RUSSIAN)

RUSSIAN 1 Elementary Russian I (LEC 4.0)
Introduction to reading, conversation, and grammar. Laboratory required (one extra hour per week). Prerequisite: Entrance requirements.

RUSSIAN 2 Elementary Russian II (LEC 4.0)
Continuation of Russian I. Prerequisite: Russian 1.

RUSSIAN 80 Readings In Science And Literature (LEC 4.0)
Readings in scientific writings and literature for improving comprehension of Russian publications. Prerequisite: Russian 2.

RUSSIAN 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

RUSSIAN 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

RUSSIAN 110 Basic Russian Conversation (LEC 2.0)
Russian conversation and oral practice. Prerequisite: Russian 2.

RUSSIAN 170 Masterpieces Of Russian Literature (LEC 3.0)
Selected major works of Russian literature. Prerequisite: Russian 80.

RUSSIAN 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

RUSSIAN 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

RUSSIAN 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

RUSSIAN 301 Special Topics (LEC 2.0 and LAB 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

RUSSIAN 310 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

RUSSIAN 320 Russian Phonetics and Intonation (LAB 1.0 and LEC 2.0)
This course focuses on pronunciation improvement, development of basic transcription skills, comprehension of Russian speech at fast tempo, interactions of intonation and syntax. Lab work is required. Prerequisite: Russian 2.

RUSSIAN 330 Business Russian (LEC 2.0 and LAB 1.0)
The course addresses practical language skills and strategies for conducting business in Russian-speaking countries. Students will improve their knowledge of contemporary Russian culture and business etiquette. Readings, lectures, and discussions are in Russian. Lab work is required weekly. Prerequisite: Russian 80.

RUSSIAN 340 Business Russian (LEC 2.0 and LAB 1.0)
Introduction to Russian history and culture from the 9th to the 20th century exploring the interrelation between Russian society, its history and its cultural expression in painting, literature, music and architecture over the past thousand years. The periods covered include Kievan Russia, the birth of Christianity, the Mongol invasion, Ivan the Terrible, Peter the Great, Catherine the Great, and Imperial Russia. Prerequisite: Any 1xx level history course.

RUSSIAN 350 Survey Of Russian Literature I (Early Period) (LEC 3.0)
A study of the history and development of 16th, 17th, 18th, and 19th century Russian literature. Prerequisite: Russian 170.

RUSSIAN 355 Survey Of Russian Literature II (Modern Period) (LEC 3.0)
20th Century Russian Literature. Prerequisite: Russian 170.
Speech & Media Studies (Sp&M S)

SP&M S 85 Principles Of Speech (LEC 3.0)
A study of the arts of expression, oral communication, and listening (theory and practice); effective interaction of speech, speaker, listener, and occasion. Prerequisite: Entrance requirements.

SP&M S 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SP&M S 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SP&M S 181 Communication Theory (LEC 3.0)
Deals with the concerns addressed by communication theory: language, cybernetics, visual arts, general semantics, information theory, and electronic communications. The university's fairly extensive media and communications resources are made use of, both for their content and for a study of the impact of their forms upon the transfer of information.

SP&M S 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SP&M S 201 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SP&M S 210 Seminar (IND 0.0-6.0)
Discussion of current topics.

SP&M S 221 Introduction to Photography (LEC 3.0)
In this course the student will learn the basics of photographic composition and the use of the digital camera. A brief history of photography will provide context for the student's own development. Prerequisite: Sp&M S 85 or 181 (required for Speech minor credit); Art 80 or Art 85 (required for Art minor credit). (Co-listed with Art 221).

SP&M S 235 Intercultural Communication (LEC 3.0)
Examines the range of human differences as variables in the communication process; emphasis on broadening individual perspectives regarding the range of human experience. Particularly useful for students who will work and live in environments unlike those previously encountered. Prerequisite: Sp&M S 181.

SP&M S 250 Interpersonal Communication (LEC 3.0)
Explores the theoretical and practical dimensions of human communication in significant one-on-one relationships. Emphasis on theoretical approaches to identify and achieve particular outcomes desired in professional and personal interactions. Prerequisite: Sp&M S 181.

SP&M S 255 Discussion And Conference Methods (LEC 3.0)
Explores the theoretical and practical dimensions of human communication in task-oriented small groups with emphasis on producing desired outcomes. Particularly useful for students who wish to improve their ability to work in small group environments. Prerequisite: Sp&M S 181.

SP&M S 265 Leadership Communication (LEC 3.0)
This course explores various approaches to leadership with emphasis on the communication theories and behaviors associated with leadership in modern corporate and public contexts. Prerequisites: Sp&M S 181, 250.

SP&M S 270 Leadership Practices (LEC 3.0)
This course provides opportunities for students to do qualitative and quantitative research in leadership, small group, and organizational communication associated with activities in the Oral Communication Center. Prerequisite: Sp&M S 265 or permission of instructor.

SP&M S 275 Foundations of Media Communication (LEC 3.0)
The course explores the historical, social, and psychological impact of media through study and practice of academic and non-academic theories of effective media communication. The course supplies an integrated critical framework for application in student's day-to-day consumption of media. Prerequisite: Sp&M S 85.

SP&M S 283 Business And Professional Communication (LEC 3.0)
Examines culture and communication in the workplace from theoretical and practical perspectives. Topics include: group communication, interviewing, networking, planning and presenting material to technical and general audiences interpersonal communication and leadership in the workplace context. Prerequisites: Sp&M S 150, 181 or permission of instructor.

SP&M S 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SP&M S 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SP&M S 310 Seminar (IND 0.0-6.0)
Discussion of current topics. Prerequisite: Senior standing.

SP&M S 390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Consent of instructor.

Spanish (SPANISH)

SPANISH 1 Elementary Spanish I (LEC 4.0)
Introduction to Spanish. Oral drills, readings, grammar and composition. Laboratory required (one extra hour per week). Prerequisite: Entrance requirements.

SPANISH 2 Elementary Spanish II (LEC 4.0)
Continuation of Spanish I. Laboratory required (one extra hour per week). Prerequisite: Spanish 1.

SPANISH 80 Readings And Composition (LEC 4.0)
Intermediate readings in Spanish. Prerequisite: Spanish 2.

SPANISH 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SPANISH 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SPANISH 110 Basic Spanish Conversation (LEC 2.0)
Spanish conversation and oral practice. Prerequisite: Spanish 2.
SPANISH 160 Hispanic Culture (LEC 3.0)
An interdisciplinary course that examines the culture of the Hispanic world (with an emphasis on Latin America). The presentation is in Spanish, and social science concepts and methods are stressed. Topics include: bilingualism, multiculturalism, economic development, and political stability. Prerequisite: Spanish 80.

SPANISH 170 Masterpieces Of Hispanic Literature (LEC 3.0)
A study of the major works in Spanish and Spanish American literature. Prerequisite: Spanish 80.

SPANISH 180 Intermediate Spanish Composition (LEC 3.0)
Practice in writing Spanish: compositions and written translations. Prerequisite: Spanish 80.

SPANISH 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SPANISH 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SPANISH 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SPANISH 301 Special Topics (LAB 1.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SPANISH 302 Phonetics and Phonology of Spanish (LEC 3.0)
Theoretical and practical approach to the phonetics and phonology of Spanish from the dual perspective of the mental representation of the sound system and pronunciation within syllables, words and phrases. Practice in listening comprehension, and sound discrimination with transcription exercises. Prerequisite: Spanish 80.

SPANISH 310 Seminar (IND 1.0-3.0)
Discussion of current topics.

SPANISH 311 Advanced Spanish Conversation (LEC 2.0)
Advanced Spanish conversation and oral practice. Prerequisite: Spanish 110.

SPANISH 370 Survey Of Spanish Literature (LEC 3.0)
Survey of Spanish literature from Medieval to Modern Times, including the Renaissance, Siglo De Oro, Enlightenment, Romanticism, and the 20th century. Prerequisite: Spanish 170 or native ability.

SPANISH 377 Spanish-American Novel And Short Story (LEC 3.0)
A study of the development of narrative prose in Spanish America. Prerequisite: Spanish 170.

Statistics (STAT)

STAT 101 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 111 Business And Economic Statistics I (LEC 3.0)
This is an introductory course in business and economic statistics. Our main objective is to familiarize the student with elementary statistical concepts within the context of numerous applications in Business and Economics. We will highlight the primary use of statistics, that is, to glean information from an available sample regarding the underlying population. Prerequisite: Math 2 or Math 4 with a grade of "C" or better. (Co-listed with Econ 111).

STAT 115 Statistics For The Social Sciences I (LEC 3.0)
A survey course in statistics for the social and behavioral sciences. Main emphasis is on inductive rather than traditional descriptive statistics. Attention given to the design of experiments, sampling procedures, basic probability distributions, tests of significance, linear regression and correlation, and analysis of variance. Not advised for engineering or science curricula.

STAT 116 Statistics For The Social Sciences II (LEC 3.0)
A course on statistical methodology for the social and behavioral sciences. Regression, analysis of variance, forecasting, and use of statistical computer packages. Prerequisite: Stat 115 with a grade of "C" or better.

STAT 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 211 Statistical Tools For Decision Making (LEC 2.0 and LAB 1.0)
An introduction to statistical techniques commonly used in management decision making. Topics include statistical inference of population parameters, linear regression, basics of experimental design and analysis, analysis of categorical data, and the use of statistical software. Credit will be given for only one of Stat 211, 213, 215 or 217. Prerequisite: Math 8 or 12 or 14 with a grade of "C" or better.

STAT 213 Applied Engineering Statistics (LEC 3.0)
An introduction to applied statistical methods in engineering dealing with basic probability, estimation, tests of hypotheses, regression, design of experiments and control charts. Statistical computer packages will be used in connection with some of the material studies. Credit will be given for only one of Stat 211, 213, 215 or 217. Prerequisite: Math 15 or 21 with a grade of "C" or better.

STAT 215 Engineering Statistics (LEC 3.0)
An introduction to statistical methods in engineering and the physical sciences dealing with basic probability, distribution theory, confidence intervals, significance tests, and sampling. Credit will be given for only one of Stat 211, 213, 215 or 217. Prerequisite: Math 15 or 21 with a grade of "C" or better.

STAT 217 Introduction To Probability And Statistics (LEC 3.0)
Introduction to probability, distribution theory, statistical inference, with applications to physical and engineering sciences. Probability, probability and joint distributions, functions of random variables, system reliability, point and interval estimation, testing hypotheses, regression analysis. Credit will be given for only one of Stat 211, 213, 215, or 217. Prerequisite: Math 22 with a grade of "C" or better.

STAT 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

STAT 300 Special Problems (LEC 3.0 and LAB 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 304 Science Education and Quantitative Literacy for Middle School Teachers (LEC 3.0)
An integrated science-mathematics course for middle school teachers. Course covers selected science/mathematics topics/skills specified in Missouri standards for grades 5-7. Inquiry based methods of teaching these topics in an integrated manner will be emphasized. Prerequisite: Current enrollment in a Teacher Education Program or a full or part-time teacher in a K-12 school. (Co-listed with Physics 304).
STAT 305 Making Sense Of Data For Elementary School Teachers
(LEC 3.0)
An activity based course that is intended to provide elementary school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint. Prerequisite: Graduate Standing.

STAT 306 Making Sense Of Data For Middle School Teachers
(LEC 3.0)
An activity based course that is intended to provide middle school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

STAT 307 Making Sense Of Data For High School Teachers
(LEC 3.0)
An activity based course that is intended to provide high school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

STAT 314 Applied Time Series Analysis
(LEC 3.0)
Introduction to time series modeling of empirical data observed over time. Topics include stationary processes, autocovariance functions, moving average, autoregressive, ARIMA, and GARCH models, spectral analysis, confidence intervals, forecasting, and forecast error. Prerequisites: One of Stat 213, 215, 217, and one of Math 203, 208, or 308.

STAT 320 Statistical Methods
(LEC 3.0)
A continuation of Stat 215 with emphasis on statistical methods. Topics would include further work on regression analysis, control charts, acceptance sampling, nonparametric statistics, goodness of fit tests, reliability and life-testing, analysis of experimental designs. Prerequisite: Stat 215.

STAT 325 Introduction to Biostatistics
(LEC 3.0 and LAB 1.0)
Introduction to common biostatistical methods for designing research studies, collecting and analyzing data, with application to problems originating from the biological, environmental, and health sciences. Topics include randomization, means comparisons, ANOVA, regression, and analysis of count data. Prerequisite: Math 4 or equivalent.

STAT 343 Probability And Statistics
(LEC 3.0)
Introduction to the theory of probability and its applications, sample spaces, random variables, binomial, Poisson, normal distributions, derived distributions, and moment generating functions. Prerequisite: Math 22.

STAT 344 Mathematical Statistics
(LEC 3.0)
A continuation of Stat 343 with introduction to the theories of point estimation, hypothesis testing, and interval estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 343.

STAT 346 Regression Analysis
(LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Comp Sci 366).

STAT 353 Statistical Data Analysis
(LEC 3.0)
Introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 22 and one of Stat 115, 213, 215 and 217.

STAT 355 Statistical Models in Actuarial Science
(LEC 3.0)
This course covers the statistical foundation of actuarial models and their applications. Topics include survival and severity models, Kaplan-Meier and Nelson-Aalen estimators, aggregate and credibility models for insurance losses, discrete time Markov chains, ruin theory, and simulation. Prerequisite: Stat 343 and either Stat 344 or a 200-level Stat course. (Co-listed with Econ 360).

STAT 356 Statistical Models for Life Contingencies
(LEC 3.0)
The basic statistical theory of actuarial models for life uncertainties such as time of death. Multiple life and multiple decrement models, statistical models for life and contingent insurance; last survivor, disability, withdrawal, retirement and reserving models for life insurance. Prerequisite: Stat 343.

STAT 360 Statistical Data Analysis Using SAS
(LAB 1.0 and LEC 2.0)
This course will introduce the student to selected data analytic tools implemented in the Statistical Analysis System (SAS) and appropriate and effective use of these tools. Focus would be on both the use of SAS data analytic tools and the theoretical and methodological rationales that form the basis of such analyses. Prerequisites: One of Stat 213 or 215 or 217 or 343; and one of Stat 346 or 353 or 441 or 443 or 444 or 445.

STAT 390 Undergraduate Research
(IND 0.0-6.0)
This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

Systems Engineering (SYS ENG)

SYS ENG 300 Special Problems
(IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SYS ENG 301 Special Topics
(LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SYS ENG 348 Wireless Networks
(LAB 1.0 and LEC 2.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Elec Eng 348).

SYS ENG 367 Computational Intelligence
(LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Comp Sci 153 or programming competency. (Co-listed with Elec Eng 367 and Comp Eng 358).

SYS ENG 368 System Engineering and Analysis I
(LEC 3.0)
The concepts of Systems Engineering are introduced through a project. Students work in virtual teams. The topics covered are architecture development, basic system architectural design techniques, functional decomposition, design and technical review objectives, and initial specifications. Prerequisite: Graduate or senior standing.
Technical Communication (TCH COM)

TCH COM 65 Introduction to Technical Communication (LEC 3.0)
Introduction to the role of the professional technical communicator in business and industry and practice in methods of developing technical documents. Prerequisite: English 20. (Co-listed with English 65).

TCH COM 240 Layout and Design (LEC 3.0)
Theory and practice of layout and design for print and electronic media. Prerequisite: TCH COM 65 or English 65. (Co-listed with English 240).

TCH COM 260 Practicum in Technical Communication (LEC 3.0)
Practice in writing, editing, and designing layouts of technical publications using the personal computer for desktop publication. Prerequisite: English 65 or TCH COM 65 (Co-listed with English 260).

TCH COM 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

TCH COM 301 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

TCH COM 302 Research Methods in Technical Communication (LEC 3.0)
Students learn essential research methods in technical communication, including audience analysis, interviewing techniques, working with subject matter experts, and experimental research design. Prerequisites: TCH COM 65 AND TCH COM 240 or English 65 and English 240.

TCH COM 310 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisite: TCH COM 65 and TCH COM 240.

TCH COM 311 International Dimensions of Technical Communication (LEC 3.0)
Examines complexity of communication of technical information worldwide. Includes topics such as graphics, icons, symbols; user interface design; intercultural communication. Students may not earn credit for both TCH COM 311 and TCH COM 411. Prerequisite: TCH COM 65 or English 65, or equivalent.

TCH COM 325 Help Authoring (LEC 3.0)
Students will acquire the technological and rhetorical skills necessary for creating effective online help systems, including context-sensitive help for computer applications. Prerequisite: One semester of college writing or technical writing.

TCH COM 331 Technical Editing (LEC 3.0)
The principles and practices of technical editing, including usability, audience analysis, contextual editing, the conventions of scientific and technical communication, and the role of the editor in document development and publication. Students will also learn standard practices of copy editing and the use of style guides. Prerequisite: TCH COM 65 or English 65, or equivalent.

TCH COM 333 Proposal Writing (LEC 3.0)
Familiarizes students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers students opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Prerequisite: One semester of college composition or technical writing.

TCH COM 334 Usability Studies (LEC 3.0)
Students in this course will study and apply methods used by technical communicators to evaluate usability. Students will study methods used to evaluate human interaction with communication tools and how to make those products more suitable for human use. Prerequisite: One semester of college writing or technical writing.

TCH COM 340 Theory of Visual Technical Communication (LEC 3.0)
A study of the relationships between visual and conceptual elements of technical communication. Prerequisites: TCH COM 65 and TCH COM 240 or English 65 and English 240.

TCH COM 361 History of Technical Communication (LEC 3.0)
Introduction to the roles of the technical communicator and the technologies of communication from ancient cultures to the present. Prerequisite: TCH COM 65 or English 65, or equivalent.

TCH COM 380 Internship (IND 0.0-6.0)
Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisites: Senior status; must have completed 24 hours in the major core curriculum.

TCH COM 385 Theory and Practice of Technical Communication (LEC 3.0)
This capstone course enables the student to work on individual and group projects that put into play the theories and practices of technical communication. Students are expected to develop professional portfolios. Prerequisites: Senior Status and TCH COM 65 and TCH COM 240 or English 65 and English 240.

Theatre (THEATRE)

THEATRE 42 Stage Productions, Performers (LAB 1.0)
Performers; participants selected by audition. A skills course, not a humanities elective. Prerequisite: Participants selected by audition.

THEATRE 43 Stage Productions, Technicians (LAB 1.0)
Technicians and production assistants; participants selected by interview. A skills course, not a humanities elective.

THEATRE 90 Theatre via Video (LEC 3.0)
Provides knowledge and internal understanding of theatre and its processes via discussion after watching plays on video and live productions—works will include videos from Aristophones to Beckett to Sondheim. Field trip required.

THEATRE 100 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
THEATRE 101 Special Topics (LEC 2.0 and LAB 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

THEATRE 141 Acting I (LEC 3.0)
Covers basic techniques for comprehension of theory and practice of acting. Explores inner/outer techniques to create a role. Follows working steps to create performance of a fully realized characterization. Designed as an introductory course.

THEATRE 143 Stagecraft (LEC 1.0 and LAB 2.0)
Students will learn the fundamentals of theatrical construction, production, and organization.

THEATRE 200 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

THEATRE 201 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

THEATRE 220 Theatre Ensemble (LAB 1.0)
This course offers the opportunity for a student to develop imagination and performance abilities through improvisation, clowning, readers theatre, exercises, mime; emphasis varies. Members selected by interview/audition. A skills course, not a humanities elective.

THEATRE 241 Acting II (LAB 1.0 and LEC 2.0)
Continuation of Acting I, covering acting styles, more complicated, nuanced roles, and more detailed character analysis and performance—special emphasis on Shakespearean performance. Prerequisite: Theatre 141.

THEATRE 243 Entertainment Design (LAB 2.0 and LEC 1.0)
Students will learn the fundamentals of design for live theatre, film, theme parks, clubs, concerts, and dance events.

THEATRE 300 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

THEATRE 301 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

THEATRE 341 Directing (LEC 3.0)
This course studies the theories, technique, and approaches of directing for the stage, culminating in the preparation, rehearsal, and presentation of directing scenes. Prerequisite: Theatre 141.
Index

A
Academic Calendar ... 8
Academic Resources On Campus ... 9
Administrators .. 6
Admission Requirements ... 9
Aerospace Engineering .. 48
Aerospace Engineering (AERO ENG) ... 151
Aerospace Studies ... 51
Aerospace Studies (Air Force ROTC) 12
Architectural Engineering .. 51
Architectural Engineering (ARCH ENG) 154
Art ... 55
Art (ART) ... 156
Arts, Languages & Philosophy ... 56

B
Bioinformatics Minor Curriculum .. 56
Biological Sciences ... 56
Biological Sciences (BIO SCI) ... 157
Business (BUS) ... 160
Business and Management Systems ... 59

C
Career Opportunities and Employer Relations (COER) 13
Ceramic Engineering .. 62
Ceramic Engineering (CER ENG) ... 161
Certificates ... 47
Chemical & Biochemical Engineering 65
Chemical Engineering (CHEM ENG) 163
Chemistry .. 68
Chemistry (CHEM) .. 166
Civil Engineering .. 72
Civil Engineering (CIV ENG) .. 169
Computer Engineering .. 76
Computer Engineering (COMP ENG) 173
Computer Science ... 80
Computer Science (COMP SCI) ... 175
Cooperative Education Program (Co-op) 14
Counseling, Disability Support, and Student Wellness 15
Course List .. 151
Cultural Programs .. 17
Curtis Laws Wilson Library .. 17

D
Degree Programs ... 43
Degree Programs ... 48

E
Economics .. 82
Economics (ECON) ... 178
Education ... 85
Education (EDUC) ... 180
Educational Goals of Missouri S&T ... 5
Electrical Engineering .. 86
Electrical Engineering (ELEC ENG) .. 182
Engineering Management .. 91
Engineering Management (ENG MGT) 186
English ... 94
English (ENGLISH) .. 189
Enterprise Resource Planning ... 96
Enterprise Resource Planning (ERP) 193
Environmental Engineering .. 96
Environmental Engineering (ENV ENG) 192
Etymology .. 99
Etymology (ETYM) .. 194
Explosives Engineering .. 99
Explosives Engineering (EXP ENG) 194

F
Faculty ... 48
Finance ... 99
Finance (FINANCE) .. 194
Financial Assistance .. 20
Foreign Languages ... 99
French .. 99
French (FRENCH) ... 195
Freshman Engineering ... 195
Freshman Engineering Program ... 99

G
General Information ... 9
Geological Engineering .. 100
Geological Engineering (GEO ENG) 195
Geology and Geophysics ... 104
German .. 107
Nuclear Engineering ... 131
Nuclear Engineering (NUC ENG) ... 219
Nuclear Reactor ... 28
Oak Ridge Associated Universities (OAU) 28
Office of the Registrar ... 28
Other Possibilities .. 32
Petroleum Engineering ... 134
Petroleum Engineering (PET ENG) 220
Philosophy ... 136
Philosophy (PHILOS) .. 222
Physical Education (PHYS ED) ... 223
Physical Education and Recreation 137
Physics .. 137
Physics (PHYSICS) ... 224
Political Science ... 140
Political Science (POL SCI) .. 226
Pre-Medicine (PREMED) .. 227
Prehealth Professions .. 141
Prelaw .. 141
Psychology .. 141
Psychology (PSYCH) .. 227
Required Assessment Testing .. 33
Residential Life ... 34
Russian .. 147
RUSSIAN (RUSSIAN) .. 229
S&T Police Department .. 35
Spanish .. 147
Spanish (SPANISH) .. 230
Speech & Media Studies (SP&M S) 230
Speech and Media Studies .. 147
Statistics ... 148
Statistics (STAT) ... 231
Student Design and Experiential Learning Center (SDELC) ... 37
Student Diversity Programs (SDP) 38
Student Health Services .. 38
Student Organizations .. 39
Sustainability ... 148
Systems Engineering .. 148

German (GERMAN) .. 198
Global Learning .. 22
Global Studies ... 107
History .. 107
History (HISTORY) ... 198
Info Science & Technology (IS&T) 202
Information Science and Technology 110
Information Technology (IT) ... 22
Interdisciplinary Engineering .. 112
Interdisciplinary Engineering (IDE) 201
International Affairs .. 24
Introduction to Missouri University of Science and Technology 7
Latin ... 112
Marketing .. 112
Marketing (MKT) .. 217
Materials Science & Eng (MS&E) ... 218
Materials, Science, and Engineering 112
Mathematics ... 113
Mathematics (MATH) ... 203
Mechanical Engineering ... 117
Mechanical Engineering (MECH ENG) 206
Metallurgical Engineering .. 122
Metallurgical Engineering (MET ENG) 210
Military Science .. 124
Military Science (Army ROTC) ... 25
Military Science - Air Force (MIL AIR) 213
Military Science - Army (MIL ARMY) 214
Mining Engineering ... 125
Mining Engineering (MIN ENG) .. 215
Minors .. 46
Missouri Greece Program ... 26
Missouri London Program .. 27
Missouri S&T .. 5
Multiculturalism & Diversity .. 130
Music .. 131
Music (MUSIC) ... 218
New Student Programs ... 27

Other Possibilities .. 32
Political Science ... 140
Political Science (POL SCI) .. 226
Pre-Medicine (PREMED) .. 227
Prehealth Professions .. 141
Prelaw .. 141
Psychology .. 141
Psychology (PSYCH) .. 227

Residential Life ... 34
Russian .. 147
RUSSIAN (RUSSIAN) .. 229
S&T Police Department .. 35
Spanish .. 147
Spanish (SPANISH) .. 230
Speech & Media Studies (SP&M S) 230
Speech and Media Studies .. 147
Statistics ... 148
Statistics (STAT) ... 231
Student Design and Experiential Learning Center (SDELC) ... 37
Student Diversity Programs (SDP) 38
Student Health Services .. 38
Student Organizations .. 39
Sustainability ... 148
Systems Engineering .. 148

Global Learning .. 22
Global Studies ... 107
History .. 107
History (HISTORY) ... 198
Info Science & Technology (IS&T) 202
Information Science and Technology 110
Information Technology (IT) ... 22
Interdisciplinary Engineering .. 112
Interdisciplinary Engineering (IDE) 201
International Affairs .. 24
Introduction to Missouri University of Science and Technology 7
Latin ... 112
Marketing .. 112
Marketing (MKT) .. 217
Materials Science & Eng (MS&E) ... 218
Materials, Science, and Engineering 112
Mathematics ... 113
Mathematics (MATH) ... 203
Mechanical Engineering ... 117
Mechanical Engineering (MECH ENG) 206
Metallurgical Engineering .. 122
Metallurgical Engineering (MET ENG) 210
Military Science .. 124
Military Science (Army ROTC) ... 25
Military Science - Air Force (MIL AIR) 213
Military Science - Army (MIL ARMY) 214
Mining Engineering ... 125
Mining Engineering (MIN ENG) .. 215
Minors .. 46
Missouri Greece Program ... 26
Missouri London Program .. 27
Missouri S&T .. 5
Multiculturalism & Diversity .. 130
Music .. 131
Music (MUSIC) ... 218
New Student Programs ... 27

Nuclear Engineering ... 131
Nuclear Engineering (NUC ENG) ... 219
Nuclear Reactor ... 28
Oak Ridge Associated Universities (OAU) 28
Office of the Registrar ... 28
Other Possibilities .. 32
Petroleum Engineering ... 134
Petroleum Engineering (PET ENG) 220
Philosophy ... 136
Philosophy (PHILOS) .. 222
Physical Education (PHYS ED) ... 223
Physical Education and Recreation 137
Physics .. 137
Physics (PHYSICS) ... 224
Political Science ... 140
Political Science (POL SCI) .. 226
Pre-Medicine (PREMED) .. 227
Prehealth Professions .. 141
Prelaw .. 141
Psychology .. 141
Psychology (PSYCH) .. 227
Required Assessment Testing .. 33
Residential Life ... 34
Russian .. 147
RUSSIAN (RUSSIAN) .. 229
S&T Police Department .. 35
Spanish .. 147
Spanish (SPANISH) .. 230
Speech & Media Studies (SP&M S) 230
Speech and Media Studies .. 147
Statistics ... 148
Statistics (STAT) ... 231
Student Design and Experiential Learning Center (SDELC) ... 37
Student Diversity Programs (SDP) 38
Student Health Services .. 38
Student Organizations .. 39
Sustainability ... 148
Systems Engineering .. 148
Systems Engineering (SYS ENG) ...232

T
Teacher Education Program ..40
Technical Communication ..148
Technical Communication (TCH COM) ..233
The Honors Academy ...40
Theatre ..149
Theatre (THEATRE) ..233

W
Women's Leadership Institute (WLI) ...41
Writing Across the Curriculum ...41