MATHEMATICS (MATH)

MATH 1000 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 1001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 1101 Introduction To Mathematics (LEC 1.0)
Introduction to the department, program of study, methods of study, and an introduction of the various areas of mathematics. Required of fall semester freshman mathematics majors.

MATH 1103 Fundamentals Of Algebra (LEC 3.0)
Basic principles of algebra including the number line and an introduction to equations and inequalities, polynomials, rational expressions, exponents and radicals, the quadratic formula and functions. Prerequisite: Entrance requirements.

MATH 1110 Introduction To Mathematical Ideas (LEC 3.0)
A course for non-science majors, including liberal arts and education majors. A study of the nature of mathematics and its relation to western culture, number systems, sets, functions, and selected topics from algebra, computer science and other areas of mathematics. Prerequisite: Two years high school mathematics.

MATH 1120 College Algebra (LEC 5.0)
Contains the same topics as covered in Math 1140, and preceded by a thorough review of the basic principles of algebra. Prerequisite: By placement examination.

MATH 1140 College Algebra (LEC 3.0)
A study of linear equations, rational functions, radicals, quadratic equations, inequalities, determinants, progressions, theory of equations, permutations, combinations, and the binomial theorem. Prerequisite: By placement examination.

MATH 1160 Trigonometry (LEC 2.0)
A study of the trigonometric functions, radian measure, graphing trigonometric functions, identities, trigonometric equations and inverse trigonometric functions. Solutions of general triangles and trigonometric representation of complex numbers are included. Prerequisite: Math 1120 or 1140 with a grade of "C" or better; or by placement exam.

MATH 1208 Calculus With Analytic Geometry I (LEC 5.0)
A study of limits, continuity, differentiation and integration of algebraic and trigonometric functions. Applications of these concepts in physical as well as mathematical settings are considered. Credit will only be given for one of Math 1208 or Math 1214. Prerequisites: Math 1160; Math 1120 or 1140, both with a grade of "C"; or better; or by placement exam.

MATH 1212 Business Calculus (LAB 1.0 and LEC 3.0)
Calculus for Bus. & Mgt. Sys, Econ & Finance, or Info. Sci. & Tech; also possibly Bio. Sci. Soc. Sci. or Humanities. Derivatives, optimization, exponential and logarithmic functions, integration, multivariable functions, partial derivatives, Lagrange multipliers, applications. May not be used as a prerequisite for either Math 1215 or Math 1221. Prerequisite: A grade of "C" or better in either 1120 or Math 1140; or by placement exam.

MATH 1214 Calculus For Engineers I (LAB 1.0 and LEC 3.0)
Introduction to limits, continuity, differentiation and integration of algebraic and elementary transcendental functions. Applications in physical science and engineering. Credit will be given for only one of Math 1208 or Math 1214. Math 1214 may be accompanied by Math 1160 with Math department approval. Prerequisites: A grade of "C" or better in both Math 1160 and one of Math 1120 or Math 1140; or by placement exam.

MATH 1215 Calculus For Engineers II (LAB 1.0 and LEC 3.0)
Continuation of Math 014. Transcendental functions, techniques of integration, sequences, series including power series, polar coordinates, polar and parametric equations. Applications in physical science and engineering. Credit will be given for only one of Math 1215 or Math 1221. Prerequisites: Math 1160 and either Math 1208 or Math 1214 both with a grade of "C" or better; or by placement exam.

MATH 1216 Calculus With Analytic Geometry III (LEC 5.0)
A continuation of Math 014; differentiation and integration of elementary transcendental functions, integration techniques, improper integrals, conic sections, polar coordinates, introduction to sequences and series. Credit will only be given for one of Math 1221 or Math 1215. Prerequisites: Math 1160 and either Math 1208 or Math 1214 both with a grade of "C" or better; or by placement exam.

MATH 1221 Calculus With Analytic Geometry II (LEC 5.0)
Continuation of Math 014. Transcendental functions, techniques of integration, sequences, series including power series, polar coordinates, polar and parametric equations. Applications in physical science and engineering. Credit will be given for only one of Math 1221 or Math 1215. Prerequisites: Math 1160 and either Math 1208 or Math 1214 both with a grade of "C" or better; or by placement exam.

MATH 3000 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 3001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 3002 Cooperative Work Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry. Variable credit arranged with the advisor. P/F grading option is required and maximum credit per semester is 3 hrs., maximum for entire program is 6 hrs.

MATH 3008 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 3010 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 3103 Matrix Algebra (LEC 3.0)
Matrix algebra is introduced by means of systems of linear algebraic equations. Gaussian elimination, least squares solutions, orthogonalization, determinants, eigenvalues and an introduction to vector spaces are discussed. Credit will not be given for both Math 3103 and 3108. Prerequisite: Math 2222 with a grade of "C" or better.

MATH 3108 Linear Algebra I (LEC 3.0)
Systems of linear equations, matrices, vector spaces, inner products, linear transformations, determinants, and eigenvalues are studied. Prerequisite: Math 1215 or 1221 or 2222 with a grade of "C" or better.
MATH 3109 Foundations Of Mathematics (LEC 3.0)
Introduction to mathematical reasoning through an axiomatic development of mathematical systems. Strong emphasis is placed on learning to understand what constitutes a sound mathematical argument. Communication, both written and spoken, is emphasized. Prerequisite: Math 1215 or 1221 with a grade of "C" or better.

MATH 3304 Elementary Differential Equations (LEC 3.0)
First order differential equations and linear differential equations of higher order are studied. The Laplace transform and systems of linear equations as well as selected physical applications are covered. Credit will not be given for both Math 3329 and Math 3304. Prerequisite: Math 2222 with a grade of "C" or better.

MATH 3329 Elementary Differential Equations And Matrix Algebra (LEC 3.0)
This course is a combination of selected topics from Math 3103 and 3304. Solutions of linear differential equations and systems of linear algebraic equations are emphasized. Credit will not be given for both Math 3329. Prerequisite: Math 2222 with a grade of "C" or better.

MATH 3921 Teaching Math In Elementary And Middle Schools (LEC 3.0)
The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Educ 1140 or Math 1120 or 1140 (Co-listed with Educ 2221).

MATH 3922 Geometric Concepts For Elementary Teachers (LEC 3.0)
The course covers methods of teaching the study of points, lines, polygons, similarity, congruence, constructions, and proof in Euclidean Plane Geometry. Transformational geometry and trigonometry are introduced to elementary teachers. Prerequisite: Educ 1140 or Math 1120 or 1140. (Co-listed with Educ 2222).

MATH 3940 Mathematical Software Applications In The Classroom (LEC 3.0)
Students will be introduced to a variety of Mathematical Software applications, both PC and calculator based which will aid teachers in presenting concepts and in classroom management. Specific topics covered will be selected based on student interest. Prerequisites: Math 2222 and admission to the MST program.

MATH 4000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 4001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 4010 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 4096 Problem Solving In Pure Mathematics (LEC 1.0)
Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student's entire mathematics background. Prerequisites: Corequisite Math 4209 and Senior standing.

MATH 4097 Problem Solving In Applied Mathematics (LEC 1.0)
Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 3109 and Senior standing.

MATH 4098 Great Theorems In Mathematics (LEC 1.0)
A study of some of the great theorems which have shaped the development of mathematics and human civilization. History, the changing nature of mathematics, and the mathematical content of the theorems themselves, will all be addressed. Sources as close to the originals as possible will be used. Prerequisites: Math 3109 and Senior standing.

MATH 4099 Undergraduate Research (IND 0.0-6.0)
This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

MATH 4209 Advanced Calculus I (LEC 3.0)
Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 2222 and Math 3109, or a 4000-level or higher mathematics course, or graduate standing.

MATH 4211 Advanced Calculus II (LEC 3.0)
Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 4209.

MATH 4530 Topics In Geometry (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: MATH 3108.

MATH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 5010 Graduate Seminar (SEM 1.0)
Discussion of advanced or current topics.

MATH 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

MATH 5105 Modern Algebra I (LEC 3.0)
Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange’s Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 3109 or graduate standing; preceded or accompanied by Math 3108.
MATH 5106 Modern Algebra II (LEC 3.0)
This course is a continuation of Math 5105. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 5105.

MATH 5107 Combinatorics And Graph Theory (LEC 3.0)
Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Comp Sci 1200 or Math 3109.

MATH 5108 Linear Algebra II (LEC 3.0)
Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 3108.

MATH 5154 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 1115 with junior standing or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Eng 5803, Comp Sci 5203 and Philos 4354).

MATH 5215 Introduction To Real Analysis (LEC 3.0)
Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 4209.

MATH 5222 Vector And Tensor Analysis (LEC 3.0)
Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 2222; Math 3103 or Math 3108.

MATH 5302 Intermediate Differential Equations (LEC 3.0)
Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 3304 or Math 3329.

MATH 5325 Partial Differential Equations (LEC 3.0)
Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 3304 with a grade of "C" or better.

MATH 5351 Introduction To Complex Variables (LEC 3.0)
The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 3304.

MATH 5483 Operational Calculus (LEC 3.0)
The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 3304.

MATH 5530 Topics in Geometry - Graduate Option (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Students will demonstrate graduate-level mastery of the subject matter. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: Math 3108.

MATH 5585 Introduction To Topology (LEC 3.0)
Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 4209.

MATH 5603 Methods of Applied Mathematics (LEC 3.0)
Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 3304 or 3329 with a grade of "C" or better.

MATH 5604 Introduction to Numerical Methods for Differential Equations (LEC 3.0)
An introduction to finite difference methods for ordinary and partial differential equations, including (1) the derivation of the numerical methods, (2) implementation of the methods in Matlab, and (3) the mathematical accuracy and stability analysis of the methods. Prerequisites: Math 3304 and programming competency (preferably Matlab).

MATH 5537 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Finance 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Econ 5337).

MATH 5940 Mathematical Analysis For Secondary Teachers (LEC 3.0)
Designed to help teachers gain a deeper understanding of the fundamental ideas in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 2222 or equivalent.

MATH 5948 Mathematical Analysis For Secondary Teachers Practicum (LEC 1.0)
An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 5940.

MATH 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 6010 Graduate Seminar (RSD 1.0-3.0)
Discussion of topics of current interest. Prerequisite: Graduate standing.
MATH 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MATH 6099 Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

MATH 6105 Finite Fields And Applications (LEC 3.0)
After reviewing basic group theory and introducing basic properties of commutative rings, the main focus of the course will be on topics such as structure of finite fields, polynomials over finite fields, and applications such as coding theory and cryptography. Prerequisite: Math 5105.

MATH 6106 Introduction to Ring Theory (LEC 3.0)
Properties of rings with an emphasis on commutative rings. Ideals, factor rings, ring homomorphisms, polynomial rings; factorization, divisibility, and irreducibility. Introduction to extension fields and Galois theory. Applications may be chosen based on the interests of the students. Prerequisite: Math 5105.

MATH 6107 Group Theory (LEC 3.0)
Groups, subgroups, and factor groups; homomorphisms, isomorphisms, and associated theorems; abelian groups; Sylow theorems and p-groups; permutation groups; free groups and generators; representation theory; cohomology theory. Prerequisite: Math 5106.

MATH 6108 Applied Matrix Theory (LEC 3.0)
A second course in matrix theory directed toward applications. Linear spaces, linear operators, equivalence and similarity, spectral theorem, canonical forms, congruence, inertia theorem, quadratic forms, singular value decomposition and other factorizations, generalized inverses. Applications to optimization, differential equations, stability. Prerequisites: Math 3103, 3108, or 5302.

MATH 6215 Functions Of A Real Variable I (LEC 3.0)
Measure spaces, extensions of measures, probability spaces, measures and distributions in normed linear spaces, product measures, independence, integral and expectation, convergence theorems, Radon-Nikodym theorem and applications. Lp spaces, selected topics. Prerequisite: Math 5215.

MATH 6216 Functions Of A Real Variable II (LEC 3.0)
Abstract measures and integrals, the Daniell integration theory, integration on locally compact Hausdorff spaces, integration in function spaces, selected topics. Prerequisite: Must be preceded by Math 6215.

MATH 6330 Theory Of Differential Equations I (LEC 3.0)
Stability theory, Liapunov's direct method, periodic solutions, Poincare-Bendixson theory, applications. Prerequisite: Math 5302.

MATH 6331 Theory Of Differential Equations II (LEC 3.0)
Continuation of Math 6330. Nonlinear oscillations, solutions near singular points, asymptotic methods, differential equations on manifolds, boundary-value problems. Prerequisite: Math 5302.

MATH 6351 Functions Of A Complex Variable I (LEC 3.0)
Complex plane, complex function theory, elementary Riemann surfaces, conformal mapping, complex integration, infinite complex series and sequences, calculus of residues with applications. Prerequisite: Math 4211.

MATH 6352 Functions Of A Complex Variable II (LEC 3.0)
Argument principle and consequences; harmonic functions and Dirichlet's problem; infinite products; entire, meromorphic and rational functions; analytic continuation; symmetry principle; conformal mapping; functions of several complex variables. Prerequisite: Preceded by Math 6351.

MATH 6375 Theory Of Partial Differential Equations (LEC 3.0)
Classical wave, potential, and heat equations; classification into elliptic, parabolic, and hyperbolic types; existence and uniqueness proofs. Prerequisite: Math 4209.

MATH 6383 Special Functions (LEC 3.0)
Infinite products, gamma and beta functions, asymptotic series, the hypergeometric function, generalized hypergeometric functions, Bessel functions, generating functions; polynomials of Legendre, Hermite, Laguerre, and Jacobi; elliptic functions, theta functions, Jacobian elliptic functions. Prerequisites: Math 4209 and 5351.

MATH 6417 Functional Analysis I (LEC 3.0)
Spectral analysis of linear operators, spectral theorems, selected applications, an introduction to the theory of topological linear spaces, and papers from the recent literature. Prerequisites: Math 6215 and 6417.

MATH 6425 Hilbert Space Structures And Methods For Application (LEC 3.0)

MATH 6426 Green's Function Structures And Methods For Application (LEC 3.0)
Continuation of Math 64+D1271425. Theory of distributions (Dirac Delta function) and Green's functions. Applications in the solution of boundary value problems for linear partial differential equations arising in physical applications. Integral equations in several independent variables. Method of characteristics in solving partial differential equations. Prerequisite: Math 6425.

MATH 6435 Calculus Of Variations I (LEC 3.0)
Linear spaces, linear operators, and functionals, necessary conditions, transversality, corner conditions, HamiltonJacobi theory, direct methods, eigenvalue problems, isoperimetric problems, theory of the second variation, differential forms and n-dimensional manifolds, applications to differential equations, conservation laws, dynamic programming, and Pontryagin maximum principle, application in physics, engineering economics. Prerequisite: Math 4211.

MATH 6436 Calculus Of Variations II (LEC 3.0)
Continuation of Math 6435. Prerequisite: Must be preceded by Math 6435.
MATH 6461 Harmonic Analysis I (LEC 3.0)
Fourier series, norm and pointwise convergence of Fourier series, the conjugate and maximal functions, analytic functions in the unit disk and Hardy spaces, interpolation of linear operators and the Hausdorff-Young-Riesz Theorem, Sidon sets. Prerequisites: Math 5215 and Math 5351.

MATH 6462 Harmonic Analysis II (LEC 3.0)
Fourier integrals, almost-periodic functions on the real line, Banach algebras, Wiener's Tauberian Theorem and the prime number theorem, the Paley-Wiener Theorems, band-limited functions and Shannon's Theorem, the continuous wavelet transform, discrete wavelet transforms and frames, orthonormal bases of wavelets and multi-resolution analysis. Prerequisite: Must be preceded by Math 6461.

MATH 6540 Geometric Structures (LEC 3.0)
Selected topics in non-Euclidean, solid, projective, and fractal geometry. Prerequisite: Math 4530.

MATH 6548 Geometric Structures Practicum (LEC 1.0)
An instructional unit based on material learned in Math 6540 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 6540.

MATH 6585 Topology I (LEC 3.0)
Topological spaces, uniform and quasi-uniform spaces, product and quotient spaces, separation properties and connected spaces, compactness. Prerequisite: Math 5585.

MATH 6586 Topology II (LEC 3.0)
Metrizability conditions, the theory of convergence using both filters and nets, completions and compactifications, and papers from the recent literature. Prerequisite: Math 6585.

MATH 6601 Numerical Analysis (LEC 3.0)
A proof based course emphasizing theoretical analysis of convergence and accuracy of various numerical methods including approximate solutions of linear and nonlinear equations, numerical integration, and function approximation, with implementation to validate results and illustrate the methods. Prerequisites: Any 4000 or higher level MATH course, or any instructor approved 4000 or higher level course from another discipline with a significant computational component.

MATH 6602 Mathematical Foundation of Finite Element Methods (LEC 3.0)
Implementation and theoretical analysis of the finite element method for the approximate solution of partial differential equations. Implementation of finite element methods for elliptic and parabolic equations. Theoretical analysis of convergence, accuracy, and stability of approximate solutions. Prerequisites: Any 4000 or higher level Mathematics course, or any instructor approved 4000 or higher level course from another discipline with a significant computational component.

MATH 6665 Mathematical Programming (LEC 3.0)
An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 3113 or equivalent and (Eng Mgt 5414 or Math 3103 or Math 3108). (Co-listed with Eng Mgt 6412).

MATH 6737 Financial Mathematics II (LEC 3.0)
Continuation of Math 5737/Econ 5337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 5737 or Econ 5337. (Co-listed with Econ 6337).

MATH 6802 Mathematical Physics I (LEC 3.0)
Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension. (Co-listed with Physics 6403).

MATH 6803 Mathematical Physics II (LEC 3.0)
Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 6802 or Physics 6403. (Co-listed with Physics 6413).