<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 5000 Special Problems</td>
<td>(IND 0.0-6.0)</td>
<td>Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 1100 or an equivalent training program approved by S&amp;T. Consent of instructor required.</td>
</tr>
<tr>
<td>CHEM 5001 Special Topics</td>
<td>(LEC 1.0 and LAB 2.0)</td>
<td>This course is designed to give the department an opportunity to test a new course. Variable title.</td>
</tr>
<tr>
<td>CHEM 5099 Master Research</td>
<td>(IND 0.0-6.0)</td>
<td>Master level research with the intent to lead to the preparation of a master degree thesis. Not more than six (6) credit hours allowed for graduate credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report culminating in a thesis is required of the student. Prerequisite: Must meet departmental training requirements for laboratory safety. Consent of instructor required.</td>
</tr>
<tr>
<td>CHEM 5100 Laboratory Safety &amp; Hazardous Materials</td>
<td>(LEC 1.0)</td>
<td>A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies. Prerequisites: Graduate standing.</td>
</tr>
<tr>
<td>CHEM 5210 Fundamentals of Organic Reactions</td>
<td>(LEC 3.0)</td>
<td>An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Graduate students are required to demonstrate a higher level of learning on assessments. Prerequisite: Chem 2220.</td>
</tr>
<tr>
<td>CHEM 5220 Synthetic Organic Chemistry</td>
<td>(LEC 3.0)</td>
<td>A systematic study of organic reactions, their mechanisms and synthetic applications. Graduate students are expected to demonstrate a higher level of proficiency during assessments. Prerequisite: Chem 2220.</td>
</tr>
<tr>
<td>CHEM 5250 Industrial Chemical Processes</td>
<td>(LEC 3.0)</td>
<td>Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 3130 or Chem 2210, or graduate standing. (Co-listed with Chem Eng 5096).</td>
</tr>
<tr>
<td>CHEM 5310 Introduction to Inorganic Chemistry</td>
<td>(LEC 3.0)</td>
<td>A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates. Graduate students are required to demonstrate a higher level of proficiency during assessments.</td>
</tr>
<tr>
<td>CHEM 5410 Advanced Chemical Thermodynamics</td>
<td>(LEC 3.0)</td>
<td>A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Credit will not given for both Chem 5410 and Chem 4410. Prerequisites: Chem 3420.</td>
</tr>
<tr>
<td>CHEM 5420 Elemental Quantum Chemistry</td>
<td>(LEC 3.0)</td>
<td>A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 2222; Physics 2135 or Physics 2111.</td>
</tr>
<tr>
<td>CHEM 5430 Advanced Chemical Kinetics</td>
<td>(LEC 3.0)</td>
<td>Introductory graduate treatment of special topics of physical chemistry including statistical mechanics and kinetics. Prerequisites: Chem 3430.</td>
</tr>
<tr>
<td>CHEM 5510 Introduction to Chemical Analysis</td>
<td>(LEC 3.0 and LAB 1.0)</td>
<td>Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Graduate students are expected to achieve a higher level of proficiency on application and assessments compared to Chem 4510 students. Prerequisites: Chem 1100, Chem 2510, Chem 2220, Chem 3430.</td>
</tr>
<tr>
<td>CHEM 5520 Biochemical Metabolism</td>
<td>(LEC 3.0)</td>
<td>A continuation of Chem 5610. Catabolism and anabolism of carbohydrates, lipids, proteins, and nucleic acids. Photosynthesis, oxidative phosphorylation and membranes. Credit may not be given for both Chem 5620 and Chem 4620. Prerequisite: Chem 4610 or 5610.</td>
</tr>
<tr>
<td>CHEM 5530 Biochemical Nanotechnology</td>
<td>(LEC 3.0)</td>
<td>This course will educate on the interdisciplinary areas of bio-nanotechnology. Student will investigate the potential of nanoscience in advanced applications including DNA/protein nanotechnology, drug delivery, environmental biosensor and emerging biotechnology industries. Credit may not be given for both Chem 5630 and Chem 4630. Prerequisite: At least junior standing.</td>
</tr>
<tr>
<td>CHEM 5610 Biochemistry</td>
<td>(LEC 3.0)</td>
<td>A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Credit may not be given for both Chem 5610 and Chem 4610. Prerequisite: Chem 2220.</td>
</tr>
<tr>
<td>CHEM 5619 Biochemistry Laboratory</td>
<td>(LAB 2.0)</td>
<td>Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Credit may not be given for both Chem 5619 and Chem 4619. Prerequisites: Preceded or accompanied by Chem 5610 and Chem 1100 or an equivalent training program approved by S&amp;T.</td>
</tr>
<tr>
<td>CHEM 5620 Biochemical Metabolism</td>
<td>(LEC 3.0)</td>
<td>A continuation of Chem 5610. Catabolism and anabolism of carbohydrates, lipids, proteins, and nucleic acids. Photosynthesis, oxidative phosphorylation and membranes. Credit may not be given for both Chem 5620 and Chem 4620. Prerequisite: Chem 4610 or 5610.</td>
</tr>
<tr>
<td>CHEM 5630 Biochemical Nanotechnology</td>
<td>(LEC 3.0)</td>
<td>This course will educate on the interdisciplinary areas of bio-nanotechnology. Student will investigate the potential of nanoscience in advanced applications including DNA/protein nanotechnology, drug delivery, environmental biosensor and emerging biotechnology industries. Credit may not be given for both Chem 5630 and Chem 4630. Prerequisite: At least junior standing.</td>
</tr>
<tr>
<td>CHEM 5710 Environmental Monitoring</td>
<td>(LEC 3.0)</td>
<td>This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with specific examples. Credit may not be given for both Chem 5710 and Chem 4710. Prerequisites: Chem 2210, Physics 2111.</td>
</tr>
<tr>
<td>CHEM 5810 Introduction to Polymeric Materials</td>
<td>(LEC 3.0)</td>
<td>A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Credit may not be given for both Chem 5810 and Chem 4810. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with MS&amp;E 5810).</td>
</tr>
</tbody>
</table>
**CHEM 5819 Polymer Synthesis and Characterization Lab** (LAB 1.0)
Laboratory experiments dealing with polymerization syntheses and solution, bulk and solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Credit may not be given for both Chem 5819 and Chem 4819. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810 or Chem Eng 5310, preceded or accompanied by Chem 1100 or Chem 5100 or an equivalent training program approved by S&T. (Co-listed with MS&E 5819).

**CHEM 5850 Introduction to Coating Chemistry** (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Credit may not be given for both Chem 5850 and Chem 4850. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with MS&E 5850).

**CHEM 6000 Special Problems** (IND 0.0-6.0)
Problems or reading on specific subjects or projects in the department. Consent of instructor required.

**CHEM 6001 Special Topics** (LEC 0.0 and IND 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

**CHEM 6010 Seminar** (RSD 1.0)
Discussion of current topics.

**CHEM 6040 Oral Examination** (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

**CHEM 6050 Continuous Registration** (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

**CHEM 6099 Research** (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

**CHEM 6101 Introduction to Chemistry Research** (LEC 1.0)
An introduction to chemical research topics of interest to the department presented by different faculty members. Special emphasis will also be placed on a discussion of ethics, plagiarism, codes of conduct, research notebooks, publishing, and presentations. Prerequisite: Graduate Student Status.

**CHEM 6200 Advanced Synthetic Organic Chemistry** (LEC 3.0)
A discussion of a large number of synthetically useful reactions involving enolates and enamines; nucleophilic additions to carbonyl compounds; functional group interconversions, thermal pericyclic reactions; organometallic compounds; carbocations, carbenes and free radicals as reactive intermediates; aromatic substitutions; and multistep synthesis. Prerequisite: Chem 4210 or Chem 4220.

**CHEM 6240 Physical Organic Chemistry** (LEC 3.0)
An advanced course in theoretical organic chemistry treating molecular orbital theory, free energy relationships, transition state theory, and other fundamental topics. Prerequisite: Chem 4210.

**CHEM 6250 Spectrometric Identification of Organic Compounds** (LEC 3.0)
Overview of MS and IR techniques in the characterization of organic compounds; CD/ORD; 1H, 13C, and heteronuclear NMR spectroscopy in the structural analysis; applications of APT, DEPT, 1H-1H COSY, HETCOR, HMOC, HMBC, INADEQUATE, TOCSY, NOE AND NOESY, and dynamic NMR. Prerequisite: Chem 2220.

**CHEM 6320 Solid State Chemistry** (LEC 3.0)
The aim of this course is to build a comprehensive understanding of the chemistry of solids and its applications to the materials world. Emphasis will be given on the synthesis, crystal structure and various properties of solids including electrical, optical and magnetic. Students will gain knowledge about how to correlate a property with structure. Prerequisites: Chem 2310, Chem 2320, and Chem 3410.

**CHEM 6330 Nanomaterials Synthesis, Properties and Applications** (LEC 3.0)
Chemistry of nanomaterials. Understanding the fundamentals of nanoscience and technology. Studying the different synthesis strategies for nanomaterials and their characterization. Understanding the properties of nanomaterials and their possible applications. Introducing the concept for device fabrication. Prerequisite: Chem 4310.

**CHEM 6350 X-ray Crystallography** (LAB 2.0 and LEC 2.0)
Molecular and crystal structure determination by single crystal x-ray diffraction methods. Brief coverage of relation to neutron and electron diffraction.

**CHEM 6360 Bioinorganic Chemistry** (LEC 3.0)
Metallobiomolecules, including metalloenzymes and other metalloproteins; oxygen carriers; iron transport and other iron proteins; copper proteins; cancer agents and cures; nitrogen-fixation, etc. Prerequisite: Chem 4310.

**CHEM 6380 Inorganic Materials Chemistry** (LEC 3.0)
Chemical processing of solid materials. Introduction to point groups, space groups, and x-ray diffraction. Bonding in solids - from molecular orbital theory to band theory. Nonstoichiometric materials and Kroger-Vink notation. Optical and electrical properties of semiconductors. Epitaxial growth. Quantum effects in nanophase materials. Prerequisite: Chem 4310 or permission of instructor.
CHEM 6420 Quantum Chemistry I (LEC 3.0)
A rigorous introduction to the fundamental concepts and principles of quantum chemistry. Application to translational, vibrational, and rotational motion; one-electron systems. Prerequisite: Chem 3420 or equivalent.

CHEM 6430 Chemical Kinetics (LEC 3.0)
An introduction to the deduction of mechanisms of homogeneous chemical reactions from rate-data. Selected topics, such as photochemistry, free-radical mechanisms, catalysis, and explosion reactions. Prerequisite: Chem 3430.

CHEM 6450 Spectroscopy (LEC 3.0)
Introduction to the interaction of electromagnetic radiation with matter. Emphasis on the ultraviolet, visible, and radio portions of the spectrum. Prerequisite: Chem 3420 or equivalent.

CHEM 6480 Physical Chemistry Of Surfaces (LEC 3.0)
Adsorption at liquid interfaces and properties of surface films. Physical and chemical adsorption on solid surfaces. Catalysis.

CHEM 6510 Separations (LEC 3.0)
An in-depth study of all types of analytical and preparativescale separations. A special emphasis will be placed on chromatography and chromatographic theory. Prerequisite: Chem 4510 or equivalent.

CHEM 6550 Chemical Spectroscopy (LEC 3.0)
A study of the electronic, vibrational, rotational and nuclear magnetic resonance spectra of atoms and molecules. A basic understanding of the underlying theoretical principles and the interpretation of results is stressed. Prerequisite: Chem 4510, Chem 3420 or equivalent courses.

CHEM 6555 Principles And Applications Of Mass Spectrometry (LEC 3.0)
The course covers fundamental physical principles of mass spectrometry, instrumentation, interpretation of spectra, and applications in environmental, polymer, biomedical, and forensic fields. Prerequisite: Chem 4510 or equivalent.

CHEM 6570 Electrochemistry (LEC 3.0)
Introduction to the fundamentals, methods and applications of electrochemistry. Fundamentals cover the thermodynamics/kinetics of electrode reactions, and the modes of mass transport in the electrolyte. Methods cover potentiometric, amperometric, and a.c. techniques. Applications focus on analysis and study of materials. Prerequisite: Chem 3430.

CHEM 6580 Mass Spectrometry of Macromolecules (LEC 3.0)
This course will provide an overview of mass spectrometric applications in biomacromolecules and synthetic polymers; particular areas of emphasis are proteomics, genomics, pharmaceutical screening, characterization of biochemical complexes and synthetic polymers. Prerequisite: Chem 4510 or equivalent.

CHEM 6620 Intermediary Metabolism And Biosynthesis (LEC 3.0)
The course covers the biosynthesis and metabolism of nucleic acids, carbohydrates, lipids and proteins. Prerequisite: Chem 4620.

CHEM 6650 Free Radicals In Biochemistry (LEC 3.0)
The study of the basic principles of free radical chemistry and biochemistry. Prerequisites: Chem 2210, Chem 2220 and Bio Sci 2113.

CHEM 6820 Polymer Synthesis (LEC 3.0)
The methods of organic monomer and polymer syntheses will be explored. Mechanistic and structural components, modern and current industrial methods for polymer syntheses will be discussed. Topics include linear, branched, graft, and dendritic polymers, nano-technology and macromers. Prerequisites: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; Chem 2220 or Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with MS&E 6820).

CHEM 6840 Polymer Physical Chemistry and Analysis (LEC 3.0)
A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; thermodynamics. (Co-listed with MS&E 6840).