COMP SCI 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMP SCI 5099 Research (IND 0.0-16)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

COMP SCI 5100 Agile Software Development (LEC 3.0)
Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs and measure project progress and productivity. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMP SCI 5101 Software Testing And Quality Assurance (LEC 3.0)
It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5102 Object-Oriented Analysis And Design (LEC 3.0)
This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5200 Analysis Of Algorithms (LEC 3.0)
The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking, and graph algorithms. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5201 Object-Oriented Numerical Modeling I (LEC 3.0)
A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: A grade of "C" or better in both Comp Sci 3200 and Comp Sci 1575; a grade of "C" or better in one of Math 3108, 3103, 3329.

COMP SCI 5202 Object-Oriented Numerical Modeling II (LEC 3.0)
A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: A "C" or better grade in Comp Sci 5201.

COMP SCI 5203 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Math 5154, Philos 4354 and Comp Eng 5803.).

COMP SCI 5204 Regression Analysis (LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, 3117, or 5643. (Co-listed with Stat 5346).

COMP SCI 5204H Regression Analysis-H (LEC 3.0)

COMP SCI 5205 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisites: COMP ENG 3150 or COMP SCI 3800. Co-listed with Comp Eng 5170.

COMP SCI 5300 Database Systems (LEC 3.0)
This course introduces the advanced database concepts of normalization and functional dependencies, transaction models, concurrency and locking, timestamping, serializability, recovery techniques, and query planning and optimization. Students will participate in programming projects. Prerequisite: A "C" or better grade in both Comp Sci 1200 and Comp Sci 2300.

COMP SCI 5400 Introduction To Artificial Intelligence (LEC 3.0)
A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5401 Evolutionary Computing (LEC 3.0)
Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisite: A "C" or better grade in both Comp Sci 2500 and in a Statistics course.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 5402</td>
<td>Introduction to Data Mining</td>
<td>3.0</td>
<td>The key objectives of this course are two-fold: (1) to teach the fundamental concepts of data mining and (2) to provide extensive hands-on experience in applying the concepts to real-world applications. The core topics to be covered in this course include classification, clustering, association analysis, data preprocessing, and outlier/novelty detection. Prerequisites: A grade of "C" or better in all of Comp Sci 2300, Comp Sci 2500, and one of Stat 3113, Stat 3115, Stat 3117 or Stat 5643.</td>
</tr>
<tr>
<td>COMP SCI 5403</td>
<td>Introduction to Robotics</td>
<td>3.0</td>
<td>This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Eng 5880 and Elec Eng 5880).</td>
</tr>
<tr>
<td>COMP SCI 5404</td>
<td>Introduction to Computer Vision</td>
<td>3.0</td>
<td>This course introduces foundational theories and analysis methods in computer vision. Topics will include camera model and geometry, description of visual features, shape analysis, stereo reconstruction, motion and video processing, and visual object recognition. Prerequisite: A "C" or better grade in both Math 3108 and Comp Sci 2500.</td>
</tr>
<tr>
<td>COMP SCI 5406</td>
<td>Interactive Computer Graphics</td>
<td>3.0</td>
<td>Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisite: A "C" or better grade in both Comp Sci 3200 and Comp Sci 2500.</td>
</tr>
<tr>
<td>COMP SCI 5500</td>
<td>The Structure of a Compiler</td>
<td>3.0</td>
<td>Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisite: A "C" or better grade in both Comp Sci 3500 and Comp Sci 2500.</td>
</tr>
<tr>
<td>COMP SCI 5501</td>
<td>The Structure Of Operating Systems</td>
<td>3.0</td>
<td>This is an introduction to the fundamentals of distributed computing. Topics include the design and implementation of distributed systems, including distributed processes, causality, distributed state maintenance, failure detection, reconfiguration and recovery, distributed mutual exclusion, clock synchronization, and leader election. Students will implement select course concepts. Prerequisites: A grade of "C" or better in both Comp Sci 3800 and Comp Sci 2500.</td>
</tr>
<tr>
<td>COMP SCI 5600</td>
<td>Computer Networks</td>
<td>3.0</td>
<td>This course focuses on the Internet and the general principles of computer networking. It covers the TCP/IP model from the application layer to the link layer in a top-down approach. It also exposes students to multimedia networking, network security, wireless and mobile networks. It is a networking class targeted for entry-level graduate students. This course has additional requirements beyond CS4600 on network performance modeling and analysis, development and implementation of complex communication protocols. Credit will not be given if previously have taken CS4600 or CpE 4410/5410. Prerequisite: A "C" or better grade in Comp Sci 3800.</td>
</tr>
<tr>
<td>COMP SCI 5601</td>
<td>Security Operations & Program Management</td>
<td>3.0</td>
<td>An overview of information security operations, access control, risk management, systems and application life cycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: A "C" or better grade in all of: operating systems, computer networking, and a writing emphasized course.</td>
</tr>
<tr>
<td>COMP SCI 5602</td>
<td>Introduction to Cryptography</td>
<td>3.0</td>
<td>Introduces fundamentals of modern cryptography. Topics include basic number theory, public & private key encryption schemes, cryptographic hash functions, message authentication codes, elliptic curve cryptography, Diffie-Hellman key agreements, digital signatures, PUFs, quantum cryptography, and generation of prime numbers and pseudo-random sequences. Prerequisites: A grade of "C" or better in COMP SCI 5200 or a grade of "B" or better in COMP SCI 2500.</td>
</tr>
<tr>
<td>COMP SCI 5700</td>
<td>Bioinformatics</td>
<td>3.0</td>
<td>The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversityinformatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with Bio Sci 5323).</td>
</tr>
<tr>
<td>COMP SCI 5800</td>
<td>Distributed Computing</td>
<td>3.0</td>
<td>This is an introduction to the fundamentals of distributed computing. Topics include a review of communication between distributed processes, causality, distributed state maintenance, failure detection, reconfiguration and recovery, distributed mutual exclusion, clock synchronization, and leader election. Students will implement select course concepts. Prerequisites: A grade of "C" or better in both Comp Sci 3800 and Comp Sci 2500.</td>
</tr>
<tr>
<td>COMP SCI 5801</td>
<td>The Structure Of Operating Systems</td>
<td>3.0</td>
<td>The hardware and software requirements for operating systems for uniprocessing, multiprogramming, multiprocesssing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: A "C" or better grade in Comp Sci 3800.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 5802</td>
<td>Introduction to Parallel Programming and Algorithms</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 5803</td>
<td>Introduction to High Performance Computer Architecture</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6000</td>
<td>Special Problems</td>
<td>0.0-6.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6001</td>
<td>Special Topics</td>
<td>0.0-6.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6010</td>
<td>Seminar</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6040</td>
<td>Oral Examination</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6050</td>
<td>Continuous Registration</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6099</td>
<td>Research Special Topics</td>
<td>0.0-16</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6100</td>
<td>Software Engineering II</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6101</td>
<td>Software Requirements Engineering</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6102</td>
<td>Model Based Systems Engineering</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6103</td>
<td>Network Information Analysis</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6104</td>
<td>Applied Graph Theory for Computer Science</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6200</td>
<td>Algorithms II</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6201</td>
<td>Theory Of Computation</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6202</td>
<td>Markov Decision Processes</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6203</td>
<td>Network Information Analysis</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6204</td>
<td>Graph Theory for Computer Science</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 6300</td>
<td>Object-Oriented Database Systems</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>
COMP SCI 6301 Web Data Management and XML (LEC 3.0)
Management of semi-structured data models and XML, query languages such as Xquery, XML indexing, and mapping of XML data to other data models and vice-versa, XML views and schema management, advanced topics include change-detection, web mining and security of XML data. Prerequisite: A "C" or better grade in Comp Sci 5300.

COMP SCI 6302 Heterogeneous and Mobile Databases (LEC 3.0)
This course extensively discusses multidatabase systems (MDBS) and mobile data access systems (MDAS). Moreover, it will study traditional distributed database issues within the framework of MDBSs and MDASs. Prerequisite: A "C" or better grade in Comp Sci 5300.

COMP SCI 6303 Pervasive Computing (LEC 3.0)
Pervasive computing aims to seamlessly integrate computing with our everyday activities, so that people do not need to be aware of computing artifacts. This course will introduce various techniques needed to realize pervasive computing, such as position tracking and ad-hoc networking. Prerequisite: A grade of "C" or better in one of Comp Sci 4600, Comp Sci 5600, or Comp Eng 5410.

COMP SCI 6304 Cloud Computing and Big Data Management (LEC 3.0)
Covers facets of cloud computing and big data management, including the study of the architecture of the cloud computing model with respect to virtualization, multi-tenancy, privacy, security, cloud data management and indexing, scheduling and cost analysis; it also includes programming models such as Hadoop and MapReduce, crowdsourcing, and data provenance. Prerequisites: A grade of "C" or better in both COMP SCI 5800 and either COMP SCI 5300 or COMP SCI 5402.

COMP SCI 6305 Clustering Algorithms (LEC 3.0)
Introduces machine learning fundamentals in current computer vision research. Topics include modeling complex data densities, regression and classification models, graphical models such as chains, trees, and grids, temporal models such as particle filtering and models for visual recognition such as deep learning. Students will implement select course topics. Prerequisite: A grade of "C" or better in either Comp Sci 5402 or Comp Sci 5404.

COMP SCI 6306 Advanced Topics In Artificial Intelligence (LEC 3.0)
Advanced topics of current interest in the field of artificial intelligence. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in one of Comp Sci 5400, Comp Sci 5401 or Comp Eng 5310.

COMP SCI 6307 Advanced Evolutionary Computing (LEC 3.0)
Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: A "C" or better grade in Comp Sci 5401.

COMP SCI 6308 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Eng 6302 and Sys Eng 6216).

COMP SCI 6401 Theory Of Compiling (LEC 3.0)
Theoretical framework of local and global program optimization methods. Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: A "C" or better grade in Comp Sci 5500.

COMP SCI 6402 Advanced Topics in Data Mining (LEC 3.0)
Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Eng 6440).

COMP SCI 6403 Pervasive Computing (LEC 3.0)
Pervasive computing aims to seamlessly integrate computing with our everyday activities, so that people do not need to be aware of computing artifacts. This course will introduce various techniques needed to realize pervasive computing, such as position tracking and ad-hoc networking. Prerequisite: A grade of "C" or better in one of Comp Sci 4600, Comp Sci 5600, or Comp Eng 5410.

COMP SCI 6404 Computer Graphics And Realistic Modeling (LEC 3.0)
Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: A "C" or better grade in Comp Sci 5406.

COMP SCI 6405 Machine Learning in Computer Vision (LEC 3.0)
Introduces machine learning fundamentals in current computer vision research. Topics include modeling complex data densities, regression and classification models, graphical models such as chains, trees, and grids, temporal models such as particle filtering and models for visual recognition such as deep learning. Students will implement select course topics. Prerequisite: A grade of "C" or better in either Comp Sci 5402 or Comp Sci 5404.

COMP SCI 6406 Formal Methods in Computer Security (LEC 3.0)
The course presents various vulnerabilities and threats to information in cyberspace and the principles and techniques for preventing and detecting threats, and recovering from attacks. The course deals with various formal models of advanced information flow security. A major project will relate theory to practice. Prerequisites: A grade of "C" or better in both Comp Sci 3600 and Comp Sci 5200.

COMP SCI 6407 Advanced Evolutionary Computing (LEC 3.0)
Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: A "C" or better grade in Comp Sci 5401.

COMP SCI 6408 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Eng 6302 and Sys Eng 6216).

COMP SCI 6409 Computer Graphics And Realistic Modeling (LEC 3.0)
Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: A "C" or better grade in Comp Sci 5406.

COMP SCI 6410 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 6330, Elec Eng 6830, Sys Eng 6214 and Stat 6239).

COMP SCI 6411 Machine Learning in Computer Vision (LEC 3.0)
Introduces machine learning fundamentals in current computer vision research. Topics include modeling complex data densities, regression and classification models, graphical models such as chains, trees, and grids, temporal models such as particle filtering and models for visual recognition such as deep learning. Students will implement select course topics. Prerequisite: A grade of "C" or better in either Comp Sci 5402 or Comp Sci 5404.

COMP SCI 6500 Theory Of Compiling (LEC 3.0)
Theoretical framework of local and global program optimization methods. Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: A "C" or better grade in Comp Sci 5500.

COMP SCI 6501 Privacy Preserving Data Integration and Analysis (LEC 3.0)
This course covers basic tools, in statistics and cryptography, commonly used to design privacy-preserving and secure protocols in a distributed environment as well as recent advances in the field of privacy-preserving data analysis, data sanitization and information retrieval. Prerequisite: A "C" or better grade in both Comp Sci 3600 and Comp Sci 5200.

COMP SCI 6600 Network Performance Analysis (LEC 3.0)
Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Eng 6440).
COMP SCI 6603 Advanced Topics in Wireless Networks (LEC 3.0)
Introduces the fundamentals and recent advances in wireless networking. Coverage includes cellular networks, wireless and mobile ad hoc networks, wireless mesh networks, sensor networks and wireless LANs with a focus on network operation. Special topics selected from the literature on wireless network security will also be addressed. Prerequisite: A "C" or better grade in Comp Sci 4600 or equivalent.

COMP SCI 6604 Mobile And Sensor Data Management (LEC 3.0)
Architectures of mobile computing systems; Mobile-IP support in mobile computing systems; location data management, Broadcasting and indexing, replication control; caching, fault tolerance and reliability of mobile systems; adhoc and sensor routing schemes, key management. Prerequisite: Comp Sci 4601.

COMP SCI 6605 Advanced Network Security (LEC 3.0)
Topics covered include network security issues such as authentication, anonymity, traceback, denial of service, confidentiality, forensics, etc. in wired and wireless networks. Students will have a clear, in-depth understanding of state of the art network security attacks and defenses. Prerequisite: A "C" or better grade in either Comp Eng 5420 or Comp Sci 4600.

COMP SCI 6800 Distributed Systems Theory And Analysis (LEC 3.0)
Analysis of the problems of state maintenance and correctness in concurrent computing systems using formal methods such as Hoare Logic, Temporal Logic, and Symbolic Model Checking. Prerequisite: A "C" or better grade in Comp Sci 5800.

COMP SCI 6801 Topics in Parallel and Distributed Computing (LEC 3.0)
Introduction of parallel and distributed computing fundamentals and advanced research topics. Students present research papers selected from the current literature on P&D computing paradigms. A term paper and oral presentation are required. Prerequisite: A "C" or better grade in Comp Sci 5802 or equivalent background. (Co-listed with Comp Eng 6110).