BIOLOGICAL SCIENCES

Graduate study in the department of biological sciences encompasses an interdisciplinary approach to problems in applied and environmental biology. The program emphasizes research designed to understand responses and adaptations in biological systems at cellular and molecular levels. Areas of particular interest include microbiology, cell biology, applied plant genetics, toxicology and bioinformatics. Faculty research programs are distinguished by their close association with other science and engineering disciplines on the Missouri S&T campus.

Graduate study in biological sciences is characterized by close interactions with faculty members. While courses of study are individualized, they include seminars, laboratory rotations and specialized courses in multiple disciplines. Emphasis is placed on research efficiency and communication skills.

Equipment and Facilities

The department’s office, teaching and research laboratories, equipment rooms (including imaging, histology, lab preparation, and bioanalytical facilities), faculty offices, student study hall and conference room are housed in Schrenk Hall. The University maintains a Field Station near campus, adjacent to the Bohigian Conservation Area, for education and research use. Equipment required to support graduate research in the biological sciences is available within the department or in the laboratories of collaborators in other disciplines. The Missouri S&T Animal Research Facility (managed by the department) provides access to vertebrate animals for research. The 1,780 square foot facility includes colony rooms, a room for sterile surgery, a cage-washing room, and other support rooms. Faculty and students requiring additional analytical instruments have access to such equipment through the research centers at Missouri S&T. The Department of Biological Sciences is also equipped with instruments for cell and molecular biology, cryostat, confocal microscope, epifluorescent microscopes with CCD cameras and digital imaging software, high speed centrifuges with fixed angle and swinging bucket rotors, laminar flow hoods, microcentrifuges, gel dryer, evaporative centrifuge, thermocyclers, electroporator, protein and DNA gel-electrophoresis units, UV cross-linker, semi-dry and submarine dryer, evaporative centrifuge, UV-Vis spectrophotometers, scintillation counters, microtiter plate reader, semi-automatic cell-harvester, media prep room with autoclaves, -70°C freezers, and automated media dispenser. Equipment for environmental microbiology includes a Coy anaerobic glove bag.

Course Study

Degree Requirements M.S. - with thesis

BIO SCI 6202 Problems In Applied And Environmental Biology
BIO SCI 5010 Graduate Seminar
BIO SCI 5099 Research
BIO SCI 6223 Research Proposal Writing

Degree Requirements M.S. - without thesis

BIO SCI 6202 Problems In Applied And Environmental Biology
BIO SCI 5010 Graduate Seminar

Elective courses are chosen with guidance from the advisor and advisory committee. A minimum of 30 credit hours is required for a M.S. degree. Up to 6 credit hours may be taken at the 3000-level in courses offered by other departments. Candidates for the M.S. degree with thesis conduct original research that is defended in a final oral examination. Non-thesis M.S. degree candidates take a comprehensive written final examination.

David Duvernell, Professor
PHD Virginia Tech
Population genetics, evolutionary ecology.

Ronald L Frank, Associate Professor
PHD Ohio State University
Molecular genetics, molecular biology.

Chen Hou, Associate Professor
PHD University of Missouri-Columbia
Metabolic basis of aging, energetic basis of animal growth and reproduction.

Yue-Wern Huang, Professor
PHD University of Wisconsin Madison
Toxicology, nanobiotechnology, biomedical science.

Melanie R Mormile, Professor
PHD University of Oklahoma, Norman
Environmental microbiology.

Dev K. Niyogi, Associate Professor
PHD University of Colorado Boulder
Ecology, limnology.

Julie A Semon, Assistant Professor
PHD Tulane University
Adult stem cells, tissue engineering.

Katie B Shannon, Associate Teaching Professor
PHD Harvard Medical School
Cell biology, mitosis, cytokinesis, cell cycle regulation, genetics, biochemistry, genomics.

Matthew Scott Thimgan, Assistant Professor
PHD The University of North Carolina at Chapel Hill
Biochemistry, genetics and anatomy of the sleep-loss response, sleep biomarkers.

David J Westenberg, Associate Professor
PHD University of California-Los Angeles
Molecular microbiology, microbial diversity, microbial physiology.

BIO SCI 5000 Special Problems (IND 0.0-6.0)
Graduate problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

BIO SCI 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 5010 Graduate Seminar (RSD 0.0-6.0)
Presentation and discussion of current topics in Applied and Environmental Biology.

2016-2017
BIO SCI 5040 Oral Examination (IND 0.0-15)
(Variable) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BIO SCI 5099 Graduate Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

BIO SCI 5210 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Chem Eng 5200, MS&E 5310).

BIO SCI 5240 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with MS&E 5210).

BIO SCI 5313 Pathogenic Microbiology (LEC 3.0)
A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio Sci 2213 or Civ Eng 2601.

BIO SCI 5323 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with COMP SCI 5700).

BIO SCI 5333 Genomics (LEC 3.0)
This course offers a general overview of the field of genomics. Topics covered include genome sequencing and annotation, transcriptomics, proteomics, metabolomics, genomic variation, and an overview of human, and several animal, plant, and microbial genome projects. Prerequisite: BIO SCI 4323.

BIO SCI 5343 Biology of Aging (LEC 3.0)
We will discuss the proximate and ultimate mechanisms of aging, and review a few leading theories of aging with the emphases on oxidative stress and life history tradeoffs. We will take the comparative approach to study aging across species, and the interventions that extend animals’ lifespan, and explore why they may or may not work on humans. Prerequisites: Bio Sci 2213.

BIO SCI 5353 Developmental Biology (LEC 3.0)
Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisite: Bio Sci 2213.

BIO SCI 5423 Advanced Biodiversity (LEC 3.0)
This course focuses on the enhancement and reduction of biodiversity and modern techniques of measuring and monitoring it. Topics include biogeography, community structure, competition, predation, food webs, geology-biology relationships, environmental change, and human impact. Additional costs and a week-long field trip are required. Prerequisite: Bio Sci 2233 or Bio Sci 2263.

BIO SCI 5433 Neurobiology (LEC 3.0)
An intermediate course in cellular neurobiology. Emphasis will be placed on the unique properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of neurons, synaptic transmission, neurochemistry, signal transduction, neuropharmacology and neurodevelopment. Prerequisite: Bio Sci 2213.

BIO SCI 5463 Global Ecology (LEC 3.0)
This class covers ecological topics at large scales, emphasizing global scales. Topics include global energy balance, biogeochemical cycles of water, carbon, nitrogen, and other biologically important elements, and global biodiversity. Students will focus on primary literature related to global ecology. Prerequisite: Bio Sci 2263.

BIO SCI 5533 Pharmacology (LEC 3.0)
The basic principles of drug action, pharmacokinetics, pharmacodynamics and toxicity. We will emphasize the actions of drugs used to treat cardiovascular and nervous system disorders. Students will review the primary literature to prepare both written and oral reports on drug actions. Prerequisite: Bio Sci 2213.

BIO SCI 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.
BIO SCI 6202 Problems In Applied And Environmental Biology (LEC 0.0-3.0)
Overview of major areas of research in applied biology and environmental science with a focus on interdisciplinary approaches used on S&T campus in ongoing research. Prerequisite: Acceptance to Graduate Program.

BIO SCI 6210 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with CHEM ENG 6300, MS&E 6310).

BIO SCI 6223 Research Proposal Writing (LEC 3.0)
Students will learn best practices of grant proposal writing. Students will conduct background research, prepare an annotated bibliography, brainstorm specific aims, and critique each other’s writing. The course will conclude with a presentation by the student of their finished proposal. Prerequisites: Graduate standing.

BIO SCI 6240 Tissue Engineering II (LEC 3.0)
The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with MS&E 6210).

BIO SCI 6273 Techniques In Applied And Environmental Biology (LEC 3.0)
Students will have the opportunity for hands on experience with the various techniques used in the modern biology laboratory. Techniques will include gene cloning, DNA sequencing, protein purification, growth and development of various model organisms, data acquisition. Prerequisite: Graduate standing.

BIO SCI 6313 Environmental Microbiology (LEC 3.0)
Topics to be explored in this course will include but are not limited to microbial growth and metabolic kinetics, life in extreme conditions, biogeochemical cycling, bioremediation of contaminants, waterborne pathogens and environmental biotechnology. Prerequisite: Must be a graduate student.

BIO SCI 6353 Advanced Cancer Cell Biology (LEC 3.0)
Graduate level biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. In addition to lecture, will include a weekly section to examine primary cancer literature. Prerequisite: Bio Sci 2213.

BIO SCI 6363 Advanced Freshwater Ecology (LEC 3.0)
The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate student standing.

BIO SCI 6373 Advanced Stem Cell Biology (LEC 3.0)
This course will cover the fast-moving field of stem cell biology. Topics include: development and organogenesis, regeneration and repair, stem cell types and sources, pluripotency and reprogramming, stem cells and cancer, therapeutics, and ethics. Research proposal and additional readings required for graduate credit.

BIO SCI 6383 Advanced Toxicology (LEC 3.0)
We will discuss the toxicity and mechanisms of action of natural and man-made toxicants. The impact of toxicants on both human health and the environment will be considered. Students will be assigned to independent literature search and write a report. Prerequisites: Bio Sci 2213 and Bio Sci 2223.

BIO SCI 6413 Molecular Cell Biology (LEC 3.0)
Advanced study of the biology of euakaryotic cells, including biomembranes and membrane transport, subcellular organelles, cellular energetics, protein sorting, cytoskeletal elements, cell to cell signalling, regulation of the cell cycle, and tissue organization. Prerequisite: Bio Sci 2213 or equivalent.

BIO SCI 6423 Astrobiology (LEC 3.0)
The origins of life on early earth and the possibility of life on extraterrestrial bodies will be explored in this course through lectures and journal article discussions. In addition, the means to study extraterrestrial environments will be considered. Prerequisite: Graduate standing.

BIO SCI 6463 Bioremediation (LEC 3.0)
During this course, the use of microorganisms and other living organisms for the remediation of contaminated environments will be explored along with the techniques necessary for monitoring their activities. Prerequisite: Graduate standing.

BIO SCI 6513 Advanced Microbial Metabolism (LEC 3.0)
A survey of the diverse metabolic properties of microorganisms. Course material will emphasize major metabolic pathways and how they relate to microbial diversity and microbial ecology. Prerequisite: Bio Sci 3313 or an equivalent course.

BIO SCI 6523 Advanced Biomolecules (LEC 3.0)
Demonstration of the principles of modern biochemistry as they relate to the structure and function of the major macromolecules of the cell. An emphasis will be placed on reading and interpreting scientific literature and scientific writing. Prerequisite: Bio Sci 2213 or Chem 4610 or an equivalent course.

BIO SCI 6666 Advanced Nanotechnology in Biomedicine (LEC 3.0)
Applications of nanotechnology in life science is termed nanobiotechnology. This course describes recent development of nanotechnology in basic biological research as well as biomedical applications. In addition to attending regular lectures, graduate students will be assigned to an independent research project and present the information in the class. Prerequisites: Bio Sci 2213 and Bio Sci 2223 and graduate standing.