CLOUD AND AEROSOL SCIENCES LABORATORY (CASL)

Norwood Hall
Donald E. Hagen (Director)

Faculty

R. W. Alexander (Emeritus Prof. Phys.); D.J. Alofs (Emeritus Prof. M&AE and EM); J.C. Carstens (Emeritus Prof. Phys.); N. Ercal (Chem); B.N. Hale (Phys.); S. Kapila (Chem.); U.O. Koylu (M&AE); P. Nam (Chem); J.L. Schmitt (Assoc. Prof. Emeritus, Phys.); D.R. White, (Assoc. Prof. Emeritus, B.E.); P.D. Whitefield (Chem.); G. Wilemski (Phys.).

Global, regional, and local environmental concerns have propelled the atmospheric sciences to international prominence. Well known issues such as the local air quality, ozone, acid rain, photo-chemical smog, and global warming attest to the urgency of atmospherically related problems now facing society.

CASL is a multidisciplinary effort drawing on the solid base of engineering and sciences provided by Missouri S&T. Students from various academic departments perform their thesis research within the laboratory in partial fulfillment of the M.S. or Ph.D. degree requirements of their “home” department.

The program is directed toward a fundamental understanding of the role of aerosols, including clouds and fogs, in our atmospheric environment. Current studies focus on the generation and environmental impact of anthropogenic combustion aerosols, basic nucleation processes of water and ice, cluster structure both in the gaseous phase and on substrates, homogenous binary nucleation, neutron scattering measurements on nanodroplet aerosols, particle formation in supersonic expansions, the heterogeneous chemistry and chemical composition of air borne aerosols and their impact on the atmosphere, and the behavior of aerosol particles in the human respiratory system.

CASL provides leadership in international and national research programs. It is the home for the Missouri S&T lead federal Center of Excellence for Aerospace Particulate Emissions Reduction Research, is a member of the FAA-NASA-Transport Canada Center of Excellence for Aviation Noise and Aircraft Emissions Mitigation, and leads the air related mission for the Missouri S&T Center for Emerging Contaminants. Its brief extends to particulate mitigation strategies for new combustor development.

The Laboratory houses a variety of instrumentation, much of it unique. This includes a finely tuned expansion chamber used to study nucleation phenomena, instrumentation designed to directly determine the chemical composition of particles on which droplets form, and an extensive mobile facility for both the on-ground and in-flight collection and analysis of combustion (e.g. jet exhaust) aerosols.

In addition to acquiring knowledge of cloud, aerosol, and atmospheric science, the laboratory imparts to students a familiarity with a wide variety of data acquisition, signal conditioning, and system engineering problems. Visit our website at http://coe.mst.edu.