TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missouri S&T</td>
<td>3</td>
</tr>
<tr>
<td>Educational Goals of Missouri S&T</td>
<td>3</td>
</tr>
<tr>
<td>Administrators</td>
<td>4</td>
</tr>
<tr>
<td>Missouri University of Science and Technology</td>
<td>5</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>6</td>
</tr>
<tr>
<td>General Information</td>
<td>7</td>
</tr>
<tr>
<td>Career Opportunities and Employer Relations (COER)</td>
<td>7</td>
</tr>
<tr>
<td>Council of Graduate Students</td>
<td>7</td>
</tr>
<tr>
<td>Counseling Services</td>
<td>8</td>
</tr>
<tr>
<td>Curtis Laws Wilson Library</td>
<td>8</td>
</tr>
<tr>
<td>Fees</td>
<td>8</td>
</tr>
<tr>
<td>Fellowships, Research Assistantships, Teaching Assistantships and</td>
<td>11</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td></td>
</tr>
<tr>
<td>Financial Assistance</td>
<td>12</td>
</tr>
<tr>
<td>Global Learning</td>
<td>13</td>
</tr>
<tr>
<td>Graduate Faculty</td>
<td>13</td>
</tr>
<tr>
<td>Information Technology (IT)</td>
<td>13</td>
</tr>
<tr>
<td>International Affairs</td>
<td></td>
</tr>
<tr>
<td>Miner Wellness</td>
<td>17</td>
</tr>
<tr>
<td>Nuclear Reactor</td>
<td>17</td>
</tr>
<tr>
<td>Oak Ridge Associated Universities (ORAU)</td>
<td>17</td>
</tr>
<tr>
<td>Office of Graduate Studies</td>
<td>18</td>
</tr>
<tr>
<td>Office of the Registrar</td>
<td>18</td>
</tr>
<tr>
<td>S&T Police Department</td>
<td>20</td>
</tr>
<tr>
<td>Student Disability Services</td>
<td>23</td>
</tr>
<tr>
<td>Student Diversity Initiatives</td>
<td>23</td>
</tr>
<tr>
<td>Student Health Services</td>
<td>24</td>
</tr>
<tr>
<td>Student Organizations</td>
<td>24</td>
</tr>
<tr>
<td>Veteran Affairs</td>
<td>25</td>
</tr>
<tr>
<td>Admissions and Academic Program Procedures</td>
<td>27</td>
</tr>
<tr>
<td>Masters Degrees</td>
<td>32</td>
</tr>
<tr>
<td>Doctorate Degrees</td>
<td>36</td>
</tr>
<tr>
<td>Graduate Certificate and Minor Programs</td>
<td>41</td>
</tr>
<tr>
<td>Research Centers and Institutes</td>
<td>43</td>
</tr>
<tr>
<td>Center for Biomedical Research (CBR)</td>
<td>43</td>
</tr>
<tr>
<td>Center for Infrastructure Engineering Studies (CIES)</td>
<td>43</td>
</tr>
<tr>
<td>Cloud and Aerosol Sciences Laboratory (CASL)</td>
<td>44</td>
</tr>
<tr>
<td>Energetic Materials Research Center</td>
<td>44</td>
</tr>
<tr>
<td>Energy Research and Development Center (ERDC)</td>
<td>44</td>
</tr>
<tr>
<td>Environmental Research Center for Emerging Contaminants (ERCEC)</td>
<td>45</td>
</tr>
<tr>
<td>Intelligent Systems Center (ISC)</td>
<td>45</td>
</tr>
<tr>
<td>Materials Research Center (MRC)</td>
<td>46</td>
</tr>
<tr>
<td>Rock Mechanics and Explosives Research Center (RMERC)</td>
<td>46</td>
</tr>
<tr>
<td>Special Facilities and Programs</td>
<td>48</td>
</tr>
<tr>
<td>Advanced Materials Characterization Laboratory</td>
<td>48</td>
</tr>
<tr>
<td>Center for Aerospace Manufacturing Technologies</td>
<td>48</td>
</tr>
<tr>
<td>Center of Excellence for Aerospace Particulate Emissions Reduction</td>
<td>48</td>
</tr>
<tr>
<td>Research Centre</td>
<td></td>
</tr>
<tr>
<td>Critical Infrastructure Protection Laboratory</td>
<td>49</td>
</tr>
<tr>
<td>Design Engineering Center</td>
<td>49</td>
</tr>
<tr>
<td>Experimental Mine</td>
<td>49</td>
</tr>
<tr>
<td>High Pressure Waterjet Laboratory</td>
<td>49</td>
</tr>
<tr>
<td>Institute for Applied Chemistry and Nuclear Magnetic Resonance</td>
<td>50</td>
</tr>
<tr>
<td>Institute for Chemical and Metallurgical Process Development</td>
<td>50</td>
</tr>
<tr>
<td>Laboratory for Atomic, Molecular and Optical Research</td>
<td>50</td>
</tr>
<tr>
<td>Laboratory for Information Technology Evaluation</td>
<td>50</td>
</tr>
<tr>
<td>Mineral Processing Laboratory</td>
<td>50</td>
</tr>
<tr>
<td>Missouri Institute for Computational and Applied Mathematical Sciences</td>
<td>51</td>
</tr>
<tr>
<td>Missouri S&T Global - St. Louis</td>
<td>51</td>
</tr>
<tr>
<td>Natural Hazards Mitigation Institute</td>
<td>51</td>
</tr>
<tr>
<td>Rocks Mechanics Laboratory</td>
<td>52</td>
</tr>
<tr>
<td>South Central Regional Professional Development Center</td>
<td>52</td>
</tr>
<tr>
<td>Student Design and Experiential Learning Center</td>
<td>52</td>
</tr>
<tr>
<td>Technology Transfer and Economic Development</td>
<td>53</td>
</tr>
<tr>
<td>Virtual Surface Mining Simulator</td>
<td>53</td>
</tr>
<tr>
<td>Wei-Wen Yu Center for Cold-Formed Steel Structures</td>
<td>53</td>
</tr>
<tr>
<td>Graduate Certificates</td>
<td>54</td>
</tr>
<tr>
<td>Graduate Degree Programs</td>
<td>55</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>55</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>60</td>
</tr>
<tr>
<td>Business Administration</td>
<td>63</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>68</td>
</tr>
<tr>
<td>Chemical & Biochemical Engineering</td>
<td>70</td>
</tr>
<tr>
<td>Chemistry</td>
<td>74</td>
</tr>
<tr>
<td>Civil, Architectural, and Environmental Engineering</td>
<td>78</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>91</td>
</tr>
<tr>
<td>Computer Science</td>
<td>96</td>
</tr>
</tbody>
</table>
Economics ... 103
Electrical Engineering .. 105
Engineering Management ... 115
English ... 124
Explosives Engineering .. 125
Geological Engineering .. 128
Geology and Geophysics .. 132
Geotechnics ... 137
Information Science and Technology 141
Manufacturing Engineering ... 148
Materials Science and Engineering 150
Mathematics and Statistics .. 153
Mechanical Engineering ... 160
Metallurgical Engineering ... 170
Mining Engineering .. 173
Nuclear Engineering ... 178
Petroleum Engineering .. 181
Physics .. 183
Psychology .. 185
Systems Engineering .. 188
Technical Communication ... 196
Course Information .. 199
Course List ... 200
Aerospace Engineering (AERO ENG) 200
Biological Sciences (BIO SCI) ... 203
Business (BUS) ... 205
Ceramic Engineering (CER ENG) .. 208
Chemical Engineering (CHEM ENG) 209
Chemistry (CHEM) ... 211
Civil Engineering (CIV ENG) ... 214
Computer Engineering (COMP ENG) 221
Computer Science (COMP SCI) .. 224
Electrical Engineering (ELEC ENG) 228
Engineering Management (ENG MGT) 234
Environmental Engineering (ENV ENG) 238
Explosives Engineering (EXP ENG) 240
Geological Engineering (GEO ENG) 241
Geology (GEOLOGY) .. 245
Geophysics (GEOPHYS) ... 247
Info Science & Technology (IS&T) 249
Materials Science & Eng (MS&E) 251
Mathematics (MATH) .. 253
Mechanical Engineering (MECH ENG) 256
Metallurgical Engineering (MET ENG) 262
Mining Engineering (MIN ENG) ... 264
Nuclear Engineering (NUC ENG) ... 268
Petroleum Engineering (PET ENG) 269
Physics (PHYSICS) ... 270
Psychology (PSYCH) .. 272
Statistics (STAT) ... 274
Systems Engineering (SYS ENG) ... 276
Technical Communication (TCH COM) 278
Non-Degree Graduate Course List 280
Economics (ECON) ... 280
English (ENGLISH) .. 281
Enterprise Resource Planning (ERP) 282
Finance (FINANCE) .. 283
History (HISTORY) ... 283
Marketing (MKT) ... 283
Philosophy (PHILOS) ... 284
Psychology (PSYCH) .. 284
Speech & Media Studies (SP&M S) 285
Index ... 286
MISSOURI S&T

Statement of Affirmative Action

It is the policy of the Missouri University of Science and Technology to provide full and equal employment opportunities to all persons without regard to race, color, national origin, ancestry, religion, sex, sexual orientation, gender identity, gender expression, age, genetic information, disability or protected veteran status; to prohibit discrimination in recruitment, employment or conditions of employment, including salary and benefits related thereto; to promote employment opportunity and to take affirmative action in this regard.

Title VI of the Civil Rights Act of 1964

“No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance.”

Title IX of the Education Amendments of 1972

“No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving Federal financial assistance.”

Section 504 of the Rehabilitation Act of 1973

“No otherwise qualified handicapped individual in the United States...shall, solely by reason of the handicap, be excluded from the participation in, be denied the benefits of, or be subject to discrimination under any program or activity receiving Federal financial assistance.”

Section 303 of the Age Discrimination Act of 1975

“No person in the United States shall, on the basis of age, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance.”

The Americans with Disabilities Act of 1990 Section 102

Discrimination

General Rule – No covered entity shall discriminate against a qualified individual with a disability because of the disability of such individual in regard to job application procedures, the hiring, advancement, or discharge of employees, employee compensation, job training, and other terms, conditions, and privileges of employment.

Missouri S&T conducts its programs and activities involving admission and treatment of students, employment, teaching, research, and public service in a non-discriminatory manner as prescribed by Federal law and regulation.

Inquiries concerning the above may be addressed to:

Neil Outar, J.D., Campus Title IX Coordinator and Interim Chief Diversity Officer
203 Centennial Hall, Missouri University of Science and Technology
http://equity.mst.edu/

Cady Holmes, Deputy Title IX Coordinator
203 Centennial Hall, Missouri University of Science and Technology

Chancellor, Missouri University of Science and Technology

Rolla, Missouri 65409-9957

Director, Office for Civil Rights Department of Education
Washington, D.C. 20201

Accreditation

Missouri University of Science and Technology is accredited by the Higher Learning Commission of the North Central Association of Colleges and Schools:

30 North LaSalle Street
Suite 2400
Chicago, Illinois 60602-2504
314-263-0456
http://www.ncahigherlearningcommission.org

Further information on specialized accreditation by department is available at the Office of Institutional Research and Assessment website at http://ira.mst.edu/accreditation/.

Registrar's Office Contact Information

103 Parker Hall
300 W. 13th Street
Rolla, MO 65409
573-341-4181
Email registrar@mst.edu or visit http://registrar.mst.edu

Educational Goals of Missouri S&T

Missouri University of Science and Technology's mission is to integrate education, research and application to create and convey knowledge that serves our state and helps solve the world's great challenges. In a world growing increasingly dependent on science and technology, tomorrow's graduates must be prepared to be leaders in more than just their chosen professions. They must also be leaders in business, in government, in education and in all aspects of society. Missouri S&T is dedicated to providing leadership opportunities for its students. Getting an excellent technological education is only part of the educational experience that Missouri S&T offers. Missouri S&T provides a full range of engineering and science degrees, coupled with business and liberal arts degrees and programs that are vital to the kind of comprehensive education that turns bright young men and women into leaders.

Missouri S&T is nationally recognized for its excellent undergraduate engineering programs, and is distinguished for producing cutting-edge research and key technologies vital to the economic success of Missouri and the nation. Missouri S&T has a distinguished faculty dedicated wholeheartedly to the teaching, research and creative activities necessary for scholarly learning experiences and advancements to the frontiers of knowledge. Missouri S&T has excellent physical facilities, which support the best possible education in the liberal arts, humanities, engineering, science, applied science and selected interrelated fields.

Missouri S&T's programs in science, engineering and business, its technology transfer programs, its leadership opportunities, and its learning environment are all integral parts of the total educational package available.
Mission Statement

Missouri S&T integrates education, research and application to create and convey knowledge that serves our state and helps solve the world’s great challenges.

Vision

Missouri S&T will be the leading public technological research university for discovery, creativity and innovation.

Administrators

University of Missouri Board of Curators

David L. Steelman, 1-1-2019 (chair)
Darryl M. Chatman, 1-1-2023 (vice chair)
Julia G. Brmcic, 1-1-2021
Jamie L. Farmer, 1-1-2023
Maurice B. Graham, 1-1-2021
Jeffrey L. Layman, 1-1-2023
John R. Phillips, 1-1-2019
Philip H. Snowden, 1-1-2021
Jon T. Sundvold, 1-1-2019

Missouri University of Science and Technology Administrators

Christopher G. Maples, Interim Chancellor
Timothy Albers, Vice Provost and Dean, Enrollment Management
Jeffrey D. Cawfield, Vice Provost, Academic Support
Robert J. Marley, Provost and Executive Vice Chancellor, Academic Affairs
Caprice Moore, Acting Vice Provost, Global Learning
Joan M. Nesbitt, Vice Chancellor, University Advancement
Neil Outar, Interim Chief Diversity Officer
Cuba Plain, Interim Vice Chancellor, Finance and Operations
Stephen P. Roberts, Vice Provost and Dean, College of Arts, Sciences, and Business
Debra Robinson, Vice Chancellor, Student Affairs
Constantinos Tsatsoulis, Vice Chancellor for Research and Dean of Graduate Studies
Daniel Uetrecht, Chief Information Officer
Richard W. Wiezien, Vice Provost and Dean, College of Engineering and Computing

Missouri S&T Board of Trustees

Wayne Alexander, (retired) SBC Southwestern Bell, San Antonio, TX
Tim Bradley, (retired) Kinder Morgan CO2 Company, Austin, TX
Robert G. Brinkmann, Brinkmann Constructors, St. Louis, MO
Michael Bytnar, (retired) Nooter Corporation, St. Louis, MO
Bipin Doshi, Schafer Industries, Inc., South bend, IN
James A. Faletti, (retired) Strategic Insights, Ltd., Homewood, IL
Lister Florence, US Geological Survey, Rolla, MO
James Foil, Burns & McDonnell Inc., Kansas City, MO
Gary Havener, Havener Companies, Fort Worth, TX
Mike Hurst, (retired) McCarthy Building Companies, St. Louis, MO
Jeremiah D. King, Brinkmann Constructors, St. Louis, MO
John Lovitt, Pattern Insight, San Diego, CA
Christopher G. Maples, Missouri S&T, Rolla, MO
Richard S. Martin, Boeing, St. Louis, MO
Peggy Montana, (retired) Shell’s Midstream Partners, LP, Houston, TX
Joan Nesbitt, Missouri S&T, Rolla, MO
Helene Hardy Pierce, GAF, Wayne, NJ
Stephen W. Rector, RIM Operating, Inc., Englewood, CO
Joseph Rupp, (retired) Olin Corporation, Clayton, MO
Jeffrey W. Sheets, (retired) ConocoPhillips, Houston, TX
Susan Simmons, (retired) Anheuser-Busch Companies, Inc., St. Louis, MO
Geoffrey Steinhart, (retired) Anheuser-Busch Companies, Inc., St. Louis, MO
Stephen Sulleton, Hunt Oil Company, Dallas, TX
Cynthia Tang, (retired) Insight Industries, Inc., Platteville, WI
Thomas Voss, (retired) Ameren, St. Louis, MO
Kathryn Walker, OPENAIR Ventures, Olathe, KS
Theodore Weise, (retired) Federal Express Corporation, Memphis, TN
Joan Woodard, (retired) Sandia National Laboratories, Albuquerque, NM
Steve Wunning, (retired) Caterpillar, Inc., Peoria, IL

Missouri S&T Named Professorships

Magdy A. Abdelrahman, Missouri Asphalt Pavement Association (MAPA) Endowed Professorship in Flexible Pavements in Civil, Architectural and Environmental Engineering
Baojun Bai, Lester Birbeck Endowed Chair
David M. Borrok, Gulf Oil Foundation Professorship
Anthony Convertine, Roberta and G. Robert Couch Professorship in Materials Science and Engineering
Mariesa Crow, Fred W. Finley Distinguished Professorship of Electrical and Computer Engineering
Sajal Das, Daniel St. Clair Endowed Chair in Computer Science
Islam Eladaway, Hurst McCarthy Endowed Professorship in Construction Engineering and Management (CEM)
Nuran Ercele, Richard K. Vitke/FCR Endowed Chair in Biochemistry
Samuel Frimpong, Robert H. Quenon Missouri Endowed Chair in Mining Engineering
Kamal Khayat, Vernon and Maralee Jones Endowed Professorship
Ming Leu, Keith and Pat Bailey Missouri Professorship in Mechanical Engineering and Aerospace Engineering
Frank Liu, Michael and Joyce Bytner Product Innovation and Creativity Professorship
Ronald J. O’Malley, F. Kenneth Iverson Chair of Steelmaking Technologies
David J. Rogers, Karl F. Hasselman Missouri Chair in Geological and Petroleum Engineering
Jagannathan Sarangapani, Rutledge-Emerson Professor in Electrical Engineering
Joseph D. Smith, Laufer Endowed Chair in Energy
Jay Switzer, Castleman/FCR Missouri Professorship of Discovery in Chemistry
TBD, Maxwell C. Weiner Professorship in English and Technical Communications
TBD, Union Pacific Foundation/Rocky Mountain Energy Co. Professorship
Donald Wunsch, Mary K. Finley Missouri Professorship in Computer Engineering
Reza Zoughi, Schlumberger Distinguished Professor in Electrical and Computer Engineering

Curators’ Distinguished Professors

Muthanna H. Al-Dahhan of chemical and biochemical engineering
Harlan Anderson of ceramic engineering (emeritus)
S.N. Balakrishnan of mechanical and aerospace engineering
Martin Bohner of mathematics and statistics
Richard K. Brow of ceramic engineering
Joel Burken of civil, architectural and environmental engineering
K. Chandrashekara of mechanical and aerospace engineering
Missouri University of Science and Technology is building upon its heritage of discovery, creativity and innovation to inspire and prepare students of all majors to solve the world's great challenges. Founded in 1870 during the height of the Industrial Revolution, today Missouri S&T is one of the four campuses of the University of Missouri System.

The 284-acre campus is located in Rolla, Missouri, a town of nearly 20,000 in the heart of the Ozarks. The university offers bachelor of arts and bachelor of science degrees in 30 fields of study, including engineering, science, humanities, business and the social sciences. Master of science degrees are offered in 30 disciplines, the doctor of philosophy in 21 and the doctor of engineering in eight.

The Missouri S&T campus is home to 50 research and academic support centers. Externally sponsored program expenditures have increased by over 150 percent since fiscal year 2001, from $17.23 million to $43.8 million in fiscal year 2014. In fiscal year 2014, Missouri S&T received $30.7 million in new grant and contract awards. Missouri S&T will enhance its research activity in order to distinguish itself through interdisciplinary collaborations of national significance.

Missouri S&T enrolls more than 9,900 students from 50 states and 55 countries. More than 70 percent of students study in engineering, science or computer fields, but Missouri S&T also offers liberal arts, humanities, social science and business degrees, as well as certification in select education fields. More than 2,400 different employers, including many of the nation’s top companies, recruited S&T graduates in academic year 2017-2018. S&T graduates get great jobs at great salaries. In academic year 2017-2018, graduates with bachelor’s degrees started at over $63,892 on average and graduates earning post-baccalaureate degrees started at $72,333 on average.

The Missouri University System has a long and proud history. The first campus was established at Columbia in 1839, only 18 years after Missouri became a state. A land-grant university, the UM System is recognized as the first state university west of the Mississippi River. The university remained a single-campus institution until 1870 when the University of Missouri School of Mines and Metallurgy (Missouri S&T’s former designation) was established at Rolla. Campuses at St. Louis and Kansas City were added in 1963.

Campus Life

Missouri S&T offers a number of campus living options, including fraternity and sorority houses, traditional residence halls, the residential college, and university commons. The university has more than 200 student organizations, including over a dozen student design teams, a competitive NCAA Division II athletic program, student professional societies, a student radio station, and theater and music programs. Each year, Missouri S&T students help to organize one of the largest St. Pat’s celebrations in the nation.

University of Missouri System Structure and History

The four University of Missouri System campuses are located in Rolla, Columbia, Kansas City and St. Louis. Governing these campuses is the Board of Curators, whose members are appointed by the governor of Missouri and confirmed by the Missouri Senate. The president of the University of Missouri System directs and coordinates programs of all four campuses with assistance from staff in finance, business management, academic affairs, research, extension, human resources, university relations, and other university services. The activities of each campus are under the supervision of a chancellor, who directs campus affairs within policies established by the UM System Board of Curators and the president.

The UM System has a long and proud history. The first campus was established at Columbia in 1839, only 18 years after Missouri became a state. A land-grant university, the UM System is recognized as the first state university west of the Mississippi River. The university remained a single-campus institution until 1870 when the University of Missouri School of Mines and Metallurgy (Missouri S&T’s former designation) was established at Rolla. Campuses at St. Louis and Kansas City were added in 1963.
On July 1, 1964, the UM System Board of Curators took action to rename the University of Missouri School of Mines and Metallurgy to the University of Missouri-Rolla.

Student Consumer Information

Various state and federal laws, specifically the Higher Education Opportunity Act, require Missouri University of Science and Technology to provide information and notice to students on a variety of topics. In addition, Missouri S&T occasionally develops statements or policies on important matters and distributes them to all students. For a listing of official notifications that are currently provided to students visit the web at: http://registrar.mst.edu/studentinfo/.

It is a student’s responsibility to know and follow current requirements and procedures at the departmental and university levels, including those described in the university’s Student Academic Regulations, Student Handbook, Undergraduate and Graduate Catalogs, Residential Housing Terms and Conditions, and the Collected Rules and Regulations of the University of Missouri System.

For More Information

If you have additional questions, contact the Director of Admissions, Missouri University of Science and Technology, Rolla, MO 65409-1060, admissions@mst.edu (admissions@mst.edu), call 573-341-6731 or 800-522-0938 or visit http://admissions.mst.edu. You also may wish to contact one of the following offices for specific information:

- Alumni Affairs and Constituent Relations 573-341-4145
- Career Opportunities and Employer Relations 573-341-4343
- Counseling Services 573-341-4211
- Extended Learning 573-341-4132
- Global Learning-Distance Education 573-341-6591
- Global Learning-Professional & Continuing Education 573-341-6222
- Intercollegiate Athletics 573-341-4175
- International Affairs 573-341-4208
- Miner Wellness 573-341-4225
- Registrar 573-341-4181
- Residential Life & Student Support 573-341-4218
- Student Disability Services 573-341-6655
- Student Diversity Initiatives 573-341-7286
- Student Financial Assistance 573-341-4282
- Student Health Services 573-341-4284
- University Advancement 573-341-6900
- University Police 573-341-4300
- Vice Chancellor Student Affairs 573-341-4292

Academic Calendar

The academic calendar can be found at http://registrar.mst.edu/calendars.
GENERAL INFORMATION

This section includes information about various academic, campus and extracurricular resources available to Missouri S&T students. These links include fee information, academic and extracurricular programs, student opportunities, policies, and services and support available to graduate students.

Please navigate this section by using the menu at the left and selecting the category that best represents the information you wish to view. For more comprehensive information please visit the individual department websites.

Career Opportunities and Employer Relations (COER)

Career opportunities and employer relations (COER), located on the third floor of Norwood Hall, provides many services to assist Missouri University of Science and Technology students and graduates in their job search for professional full-time, intern (summer) and co-op employment.

COER is an effective link between Missouri S&T students and employers, and its goals are two-fold: first, to PREPARE students for conducting a successful job search, and second, to PROVIDE opportunities for employment.

Job Search Preparation

The COER webpage, http://career.mst.edu, contains information on services, career fairs, events, on-campus interviews, and job listings, as well as on-line copies of the COER Career Guide.

Individual Advising

Appointments are available with career advisors who work one-on-one with students to review their resume and cover letter and to discuss job search concerns.

Seminars & Events

Seminars on resume and cover letter writing, conquering the career fair, professionalism and interviewing skills, networking, negotiating a job offer and more are presented each semester at convenient times for students.

An etiquette dinner is provided each semester to review dining and business etiquette. Reservations are required and there is a $15 charge.

Adulting 101 is presented annually for graduating students. This is a series of seminars to help students make a smoother transition to the real world and includes tips from business and industry experts.

Practice Interviews

Practice interviews are available for students who would like to assess their interviewing skills. Students are evaluated by a career advisor and given feedback on their strengths and areas that need improvement.

Job Search Opportunities

Career Fairs

Two career fairs are sponsored each year to provide students direct access to hundreds of employer representatives. Students have the opportunity to meet face-to-face with recruiters, hand out resumes, and collect employer information. These contacts often lead to full-time, intern, and co-op interviews and employment.

On-Campus Interviews

Full-time, intern and co-op interviews are conducted by employers in COER’s professional interview suites, located on the 3rd floor of Norwood Hall. Students must be registered with COER to upload their resume into HireMiners and participate in on-campus interviews. Students should check the system daily for information about employers coming to interview, job requirements, and important dates. Each student is responsible for submitting his or her resume electronically and for signing up for interviews by the stated deadlines.

Resume Referrals

When a student registers with COER, his or her resume can be referred to employers who are interested in hiring Missouri S&T students even though the employer may not necessarily be coming to campus to interview. The employer will then contact the student directly if he or she is interested.

Resume Drops

Some employers will list their job opportunities and request a “resume drop” from students. Interested students are responsible for making their profile and resume public through HireMiners by a designated date. Resumes submitted are reviewed and students the employer is interested in will be contacted.

Alumni

Missouri S&T alumni may also register with COER. Once registered, they will receive access to HireMiners to search job listings. In addition, alumni resumes that are uploaded in the system will be sent to employers requesting resume referrals if they match their hiring qualifications.

Council of Graduate Students

The Council of Graduate Students (CGS) is the authorized governing body for the graduate students on the Missouri S&T campus. As such, it provides a liaison between the school administration and the graduate student population. Representatives of the council serve on various committees on the campus and represent the graduate community to advocate their opinions and concerns on various campus policies. CGS deals with the procedural matters on campus and exists to share and discuss the information pertinent to all Missouri S&T graduate students. The Council of Graduate Students maintains open lines of communication with all the other governing bodies at Missouri S&T and other UM System campuses. CGS strives to maximize the quality of life, develop leadership skills and foster higher academic standards for graduate community at Missouri S&T.

All graduate students who are in good academic standing at Missouri S&T are automatically the members of Council of Graduate Students. The executive board of CGS is elected through student voting and holds office for one year. The board consists of the president, vice-president, secretary and treasurer. The department representatives are elected from each graduate degree-granting department. One representative serves for each 25 graduate students in a single department. The information on department representative and the executive board can be obtained from CGS website http://cgs.mst.edu/.
The office of CGS is in 218 Havener Center. You can email your inquiries to cgs@mst.edu. Please visit the CGS website, http://cgs.mst.edu, to learn more about the organization’s mission and its activities.

Counseling Services

Counseling Services promotes self-awareness and skill development to support individual success and well-being. Counseling offers a variety of services to the Missouri S&T campus community including individual, group, and crisis counseling; consultation; care coordination; presentations and programming on many topics; the StressLess room; the Van Matre resource center of self-help materials; and the Faculty/Staff Assistance Program (FSAP).

Counseling/Faculty-Staff Assistance Program (FSAP)

Mental Health counseling is provided through a solution-focused brief treatment model to Missouri S&T students and benefit-eligible employees. Services, provided by licensed counselors and psychologists, are free and confidential within ethical and legal limitations. Concerns commonly addressed include self-improvement, adjusting to change, coping with stress, motivation and self-management, interpersonal and relationship issues, depression and anxiety, and career development.

Group counseling is an effective, interactive, supportive, interpersonal form of therapy. Counseling Services offers many groups based on campus need and interest. Some current and past groups are Building Social Confidence, Miners for Recovery, Test Anxiety, and issue-focused support groups such as ADD/ADHD, grief, autism, etc.

Counseling Services actively promotes student learning, persistence, professional development, and graduation through its outreach programming services on topics such as mental health, mindfulness, resiliency, teamwork, stress management, conflict resolution, and time management.

The Van Matre Resource Center, a self-help library, contains a wide range of reading materials. Topics range from communication skills to parenting, career exploration to dealing with depression, anxiety, and abuse. Materials are available for checkout.

FSAP provides a variety of services for faculty and staff such as counseling, consultation, organizational development, and programming.

Contact Information
Counseling Services
204 Norwood Hall
Phone: 573-341-4211
Fax: 573-341-6179
E-mail: counsel@mst.edu
Web: http://counseling.mst.edu

Care Coordination

Care Coordination supports students throughout their Missouri S&T experiences to achieve academic, personal, and professional goals. Care Coordination helps students address challenges by identifying immediate needs, providing appropriate resources, and collaborating to develop an action plan. Care Coordination empowers students to take action and advocate for themselves.

Care Coordination services include:

- Problem solving
- Exploration and referrals related to mental or physical health concerns and significant life events
- Assistance navigating campus and community resources
- Help managing complex medical needs
- Coordination and follow up during and after hospitalization and/or medical leaves of absence
- Crisis management
- Student Emergency Fund

The Care Coordinator works discretely with others to facilitate communication and provide support, while respecting privacy and sharing information only as needed to ensure student well-being. Students are informed of confidential resources available to them.

Contact Information
Care Coordination
Counseling Services
204 Norwood Hall
Phone: 573-341-4211
Fax: 573-341-6179
E-mail: cc@mst.edu
Web: http://carecoordination.mst.edu

Curtis Laws Wilson Library

The Curtis Laws Wilson Library provides services and materials to support the university’s academic programs. In addition to providing students with research resources and skills, the library is a place for collaborative learning. Spaces are technologically enabled, with resources such as the Nonavitra visualization wall, high performance computers, computer learning centers (CLC), and 3D scanner and printers.

In addition to a legacy print collection, the library provides strong online and full-text resources. Missouri S&T is a selective depository for United States government documents. The library receives a wide selection of materials from the Government Printing Office and other agencies. Through interlibrary loan, the Missouri S&T collection is supplemented by materials owned by other libraries throughout the United States.

The Curtis Laws Wilson Library is home to the Scholars’ Mine, the university’s online repository of scholarly contributions created by S&T faculty and students. The library provides support on campus for scholarly communications and related questions such as copyright and data management plans.

Librarians provide direct support and consultation with students and faculty. One-on-one research consultations are welcome, and librarians meet regularly with classes and student groups.

The Curtis Laws Wilson Library is Missouri S&T’s gateway to the ever-expanding world of information. Students are encouraged to explore the library’s homepage at http://library.mst.edu.

Fees

“The university reserves the right to modify by increase or decrease the fees charged for attendance and other services at the University, including but not limited to tuition, at any time when in the discretion of the governing board the same is in the best interest of the University, provided that no increases can or will be effective unless approved by the governing board not less than
To review the statement of financial responsibility and its terms visit http://cashier.mst.edu/studentfees/statementoffinancialresponsibility/. This statement allows students to confirm their understanding of financial implications when registering each semester.

Electronic Billing Statements
Electronic billing is the official billing method for currently enrolled students at Missouri University of Science and Technology. Students will be notified by e-mail at their Missouri S&T e-mail account when monthly billing statements are available. Currently enrolled students will be able to view, print, and pay their student fee bill online at Joe’SS.

Currently enrolled students can also authorize others (parents, grandparents, guardians) to view and pay their student fee bill. Access to student account information can be granted by visiting http://registrar.mst.edu/psinfo/additionalauthorizedaccess/. As an additional authorized access (AAA) member, they have access to electronically view and print the monthly billing statement and make payment online. They are also notified when the statement is available at the e-mail address entered by the student during set-up. For further information, visit the Missouri S&T registrar’s office web site at http://registrar.mst.edu.

Tuition per Credit Hour
All students enrolled at Missouri S&T are required to pay tuition. Visit the Missouri S&T cashier’s office web site for fee information at http://cashier.mst.edu.

Courses audited and courses taken for reduced credit will be counted at their normal credit value in computing the amount of tuition to be paid. Students enrolling in zero credit hours are required to pay tuition and fees according to the equivalent credit for the course.

Information Technology Fee
All students enrolled at Missouri University of Science and Technology are required to pay an information technology fee per credit hour.

Course Fees
An additional course fee will apply to the following and will be charged per credit hour:

Engineering and sciences course fee will be charged per credit hour to all students enrolled in engineering, biological sciences, chemistry, computer science, geology, geophysics and physics courses. Co-listed courses are subject to the engineering and sciences course fee.

Business and information technology course fee will be charged per credit hour to all students enrolled in business, IS&T and M&IS courses. Co-listed courses are subject to the business and information technology course fee.

Student Activity/Facility Fee
A student activity/facility fee is charged to students each semester to pay for a variety of activities, services, and bonded debt on student fee funded buildings. The activity/facility fee is determined and approved by the Student Council. The activity/facility fee includes fees for the Havener Center, intramural and recreational facilities and programs, campus events, the student newspaper, radio station and yearbook, and funding for a variety of student organizations. The Rollamo Yearbook fee will be charged during the fall semester to all undergraduate students enrolled for seven or more hours and will remain optional for all undergraduate students enrolled for fewer than seven hours and all graduate students. Graduate students pay a fee to fund the Council of Graduate Students. The activity/facility fee is prorated for students enrolled in fewer than ten hours.

The activity/facility fee is charged to all students, undergraduate and graduate. Students attending the Engineering Education Center in St. Louis do not pay the student activity fee.

Additional information concerning the Missouri S&T Student activity/facility fee is available at: http://studentlife.mst.edu.

Health Service Fee
The mandatory health service fee is charged to all students, graduate and undergraduate (full or part time enrolled) each semester. This allows students access to the Student Health Complex.

Academic Testing Fee
An academic testing fee will be charged to all undergraduate students that have reached the level of sophomore, junior and senior. The fee will be assessed each semester at the following rates:

- Senior Fee: $19.50 per semester
- Junior Fee: $12.00 per semester
- Sophomore Fee: $5.00 per semester

Graduation Fee
A $75 graduation fee is assessed to all students who have applied as a candidate for graduation. This fee will be charged to the student account after submitting an application for graduation.

Time of Payment of Fees
All fees must be paid in full or payment arrangements made at the time of registration at the opening of each semester or term as a condition of admission to classes. Consult the academic calendar for dates of registration and payment of fees.

Minimum Fee Payment Plan
The student’s account (to include tuition and fees, housing, traffic violations, etc.) will be billed for the full amount each month with a minimum payment allowed. The minimum payment is derived by dividing the full account balance by the number of scheduled payments remaining in the semester. If a student chooses to pay the minimum amount, a 1 percent per month interest charge will be assessed on the remaining unpaid account balance.

Late Payment Fee
Student fee accounts will be subject to a late fee for unpaid amounts billed when payment is not received by the scheduled due date as communicated on the student’s monthly billing statement. If the minimum payment or billed balance due is paid on or before the scheduled due date, as it appears on the student’s monthly billing statement, no late fees will apply.

Past due amounts owed to the university must be satisfied by payment in full. Failure to pay may result in transcripts or diplomas being withheld.
The university will pursue appropriate collections practices which may include referrals to a collection agency for accounts that remain past due. The account may be assessed an additional collection charge of up to 50 percent of the balance if referral to a collection agency becomes necessary.

Fall Semester Payment Due Dates
Preregistered students: five installments due July, August, September, October, and November 15th.

Open registration students: the number of installments available will be dependent upon the timing of your registration.

Spring Semester Payment Due Dates
Preregistered students: five installments due December, January, February, March, and April 15th.

Open registration students: the number of installments available will be dependent upon the timing of your registration.

Summer Semester Payment Due Dates
Preregistered students: 50 percent of fees due May 15th and 50% due June 15th.

Open registration students: total fees will be billed and due June 15th.

Financial Aid
Approved financial aid is applied directly to a student’s account. The entry will appear as a credit on the billing statement and will reduce the current term balance due. The balance remaining after application of financial aid will be billed to the student and will be subject to the minimum payment process and interest charge calculation.

Personal Checks
Personal checks will be accepted only for the amount due from the student. Personal checks can be presented to the cashier’s office in person or by mail to G4 Parker Hall, Rolla MO 65409. A late registration fee will be assessed if a check presented in payment of student fees is returned unpaid and remains unpaid after the close of the registration period.

Online Payment Options
Missouri S&T has convenient online payment options for our students and their authorized payers. Students can make online check and credit card payments by accessing the student self-service module Joe’S’S>Self-Service>Campus Finances>Make a Payment. Authorized payers with access to student account information will log in to https://joess.mst.edu/ to make online payment.

The University of Missouri contracts with a third party vendor to process credit card payments applied to the student fee account. Credit card payment can be made by Visa, MasterCard, Discover and American Express online only. A convenience fee of 2.75 percent will be charged by the third party vendor on all credit card payments.

Debit Card Payment
PIN based debit card payments are processed at the cashier’s office at no cost to the student. The student must present the card at the time of the transaction and will enter their personal identification number (PIN) to complete. Credit card payments, for payment of a student account, are not accepted at the cashier’s office.

Late Registration Fee
A student who registers after the start of the semester will be charged a late fee equivalent to one hour undergrad tuition. Also, by registering late, a student may find certain sections or entire courses closed to registration. Each department reserves the right to close sections of courses or even to close enrollment in a department when the capacity of the class is reached.

International Student Sponsored Program
A full range of services for sponsored international students is provided through the office of international affairs. International students sponsored by international agencies receive special services and are charged an administrative fee per semester. Individual students desiring to take advantage of these special services may apply for them. Details on the current Sponsored Student program and costs are available upon request from:

Office of International Affairs
103 Norwood Hall
Rolla, MO 65409-0160

Sponsor Billing
If part or all of your educational expenses are being paid by an embassy, agency or company, you can elect to have them billed directly through your sponsor billing process.

Upon receipt of written authorization, a credit will be posted to your student account for the amount authorized. We will discontinue billing you for that amount and bill your sponsor directly. If the sponsor does not pay in a timely manner, the credit will be removed from your account and you will be responsible for this amount again, including the accrual of finance charges.

Additional information is available on the cashier’s website under sponsor billing.

International Student Services Fee
The office of international affairs (IA) student services provides a full range of services to international students including, but not limited to, communication with prospective international students and applicants, issuance of immigration documents, new international student orientation as well as ongoing orientation/acculturation programs. IA manages the federally-mandated Department of Homeland Security Student and Exchange Visitor Information System (SEVIS) database and is responsible for meeting current requirements, the upcoming SEVIS II, and all follow-on phases. Due to the complexity and scope of these associated mandatory requirements, a fee has been implemented in order to meet the system demands. Therefore, all F-1 and J-1 international students who are enrolled in one or more academic hours will be charged an International Student Fee of $80.00 per semester for fall and spring semesters, and $40.00 for summer semester.
Mandatory Health Insurance for International Students

All international students, as a condition of their enrollment, are required to purchase mandatory health insurance. This includes all F-1 and J-1 visa students. In addition, J-1 visa students whose spouse and/or children are living in the U.S. are required to carry health insurance. An independent carrier working through the International Affairs (IA) office, provides an insurance policy at a reasonable cost. Premiums will be charged during the fall and spring semester. Summer premiums are included in the spring semester.

For more information on the mandatory health insurance requirements for international students, contact:

International Affairs Office
103 Norwood Hall
573-341-4208

Refund of Fees

Fees subject to refund include: tuition, information technology fees, engineering, science, and business supplemental fees, student activity/faculty fees, health service fees and any instruction-related miscellaneous fees that may be assessed.* Students who have registered for credit courses, and made payment of fees, and whose registration is subsequently canceled, or who withdraw from the university or reduce their course load, will, subject to certain exceptions and upon written request to the registrar's office, receive a refund of the fees in accordance with the following schedule: class day of cancellation, withdrawal, or change of course load. The official Missouri S&T refund policy can be found from the Chancellor's Policy Memorandum site at: http://chancellor.mst.edu/media/administrative/chancellor/documents/policy/III-16.pdf. (http://chancellor.mst.edu/documents/policy/III-16.pdf)

<table>
<thead>
<tr>
<th>Fall/Spring Semester – 16 weeks</th>
<th>Percent of Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the first day of classes</td>
<td>100%</td>
</tr>
<tr>
<td>Class days 1-5</td>
<td>90%</td>
</tr>
<tr>
<td>Class days 6-10</td>
<td>70%</td>
</tr>
<tr>
<td>Class days 11-25</td>
<td>50%</td>
</tr>
<tr>
<td>After class day 25</td>
<td>NO REFUND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Session – 8 weeks</th>
<th>Percent of Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the first day of classes</td>
<td>100%</td>
</tr>
<tr>
<td>Class days 1-3</td>
<td>90%</td>
</tr>
<tr>
<td>Class days 4-5</td>
<td>70%</td>
</tr>
<tr>
<td>Class days 6-13</td>
<td>50%</td>
</tr>
<tr>
<td>After class day 13</td>
<td>NO REFUND</td>
</tr>
</tbody>
</table>

Class days are counted by excluding Saturdays, Sundays and holidays.

*Deductions may be made from any refund of fees for any financial obligation due the university.

Examination Fee

A candidate for a graduate degree who, before the end of a semester, has submitted to the office of graduate studies his/her thesis/dissertation, may enroll during the intersession for the final examination only (course 5040/6040) for no hours credit and pay the examination fee equivalent to one credit hour graduate, in-state tuition. If the submission of graduate Form 2/7 and final copy of the thesis/dissertation are not completed before the next semester begins, the student may register in one hour of graduate research good through the end of the fourth week of the semester or second week of a summer session. If the submission of graduate Form 2/7 and final copy of the thesis/dissertation are not completed by then, the student must enroll in a minimum of three credit hours for the semester. The one hour of graduate research should be approved by the advisor, department chair, and the dean of graduate studies (following the same approval process as 5040/6040). A candidate for a graduate degree beyond commuting distance of campus who returns to defend his/her thesis/dissertation may enroll for the final examination only (course 5040/6040), for no hours credit and pay the examination fee equivalent to one credit hour graduate, in-state tuition.

Fellowships, Research Assistantships, Teaching Assistantships and Graduate Assistants

Institutional financial assistance of four types is available to graduate students at Missouri S&T: graduate teaching assistantships, graduate research assistantships, graduate assistants, and fellowships.

Chancellor’s Distinguished Fellowship

For full details refer to http://grad.mst.edu/futurestudents/funding/cd_fellowship.

National Science Foundation Fellowships (NSF)

NSF fellowships are awarded to the successful applicants directly. NSF pays the fees of the fellows. Part-time teaching by NSF fellows may increase the appointment; some departments require this teaching experience.

Graduate Teaching Assistantships

Part-time teaching is mandatory in some departments, to help students achieve professional experience and self-development. Departmental policies on this matter vary and inquiry should be made to the appropriate chair. Permissible schedules for graduate students holding part-time teaching appointments are described under “Permissible Schedules.” Remuneration varies according to the number of academic hours taught. Half-time assistantships for the academic year require 20 hours per week of effort. In-state student status for fee purposes is awarded to all graduate assistants employed 25 percent time or more.

Graduate Research Assistantships

Graduate research assistantships are offered in all departments. Half-time graduate assistant stipends may be available. Holders of assistantships devote approximately 20 hours per week to laboratory effort and are, therefore, limited to a maximum of 12 credit hours of academic study per semester. Graduate instructorships require full-time teaching effort and are appointed only under exceptional circumstances. Research credits toward a degree may require effort beyond that required of the appointment. A number of positions are available during the
summer months. In-state student status for fee purposes is awarded to all graduate assistants employed 25 percent time or more.

Radcliffe Graduate Scholarships
The geology and geophysics program offers the Radcliffe Graduate Scholarship to qualified M.S. and Ph.D. students. Contact the geology and geophysics program for further details.

State and Federal Fellowships
Missouri S&T receives grants from various agencies. Contact your academic department for further information.

Stephen P. Gorman Scholarship
Gorman applicants must have lived in St. Louis City or County and graduated from a St. Louis City high school. Need is a factor. An application may be obtained from the student financial assistance website http://sfa.mst.edu.

Industrial Fellowships
Several industrial fellowships are available, the number varying with the problems and support given by the industry. Industrial fellowship holders are required to work part time on the project to which they are assigned. The exact amount of time is governed by the character of the project and its applicability to thesis requirements. The stipend for industrial fellowships is variable, depending on support from industry, but appointments are ordinarily effective for a year at a time. Both academic and research work may be applied as credit to fulfill the requirements of the master of science or doctor of philosophy degrees.

Complete information concerning the fellowships currently available may be obtained from the chair of the department concerned.

Student Diversity and Academic Support Programs
The student diversity and academic support programs are designed to promote and support under-represented minority (African American, Hispanic American, and Native American) students with special emphasis on those who are pursuing engineering or science degrees.

The student diversity and academic support programs also provides opportunities for professional development activities, networking events, and opportunities to participate in regional and national conferences. Missouri S&T is also a member of the National Consortium for Graduate Degrees for Minorities in Engineering and Science, Inc. (GEM).

Miscellaneous Grants and Awards
Several miscellaneous awards also are available for graduate students in various disciplines. Research programs are carried on in a variety of fields and are sponsored by such donors as the National Science Foundation, various government agencies, and industrial companies. The periods of award and the amounts of the stipends vary according to the qualifications of the applicant and the funds available.

All graduate teaching assistants, graduate research assistants, graduate assistants, fellows, and holders of industrial fellowships must pay the regular fees required for enrollment as graduate students at Missouri S&T. However, many of the fellowships do provide for payment of these fees from fellowship funds and waive out-of-state fees.

Research Assistantships
A number of research projects sponsored by federal agencies or other donors carry graduate research assistantships. The stipends and tenures vary according to the particular grant, but they are usually comparable with other assistantship figures. Specific information can be obtained from the department involved. Recipients work on a specified research program under the supervision of a member of the professional staff.

Other Research Assistantships
A number of research assistantships are offered each year in conjunction with Missouri S&T research centers. The research performed may supplement other credited research in the preparation of theses and dissertations.

Applicants must have a bachelor of science degree or its equivalent, have had the proper training in the required field of study and be qualified for admittance to graduate standing while doing research work. Fellows must register as candidates for one of the advanced degrees (master of science or doctor of philosophy).

Financial Assistance
Our Mission
The Student Financial Assistance Office (SFA) assists families with understanding college costs at Missouri University of Science and Technology. Our team facilitates access to federal, state, institutional and private financial resources and coordinates access to university scholarship and loan awards for our students, while adhering to NASFAA’s statement of ethical principles.

The SFA Office continually strives to provide high quality service to all students, families, faculty, staff, alumni and other interested parties. Our team works to meet campus strategic goals through financial aid administration, community outreach, financial literacy and debt counseling programs.

Federal Aid Policies and Procedures
To apply for federal financial aid, (loans and work study), you must complete a FAFSA (Free Application for Federal Student Aid). Preference will be given to those students whose FAFSA has been received by February 1. If you apply for federal financial aid at any other time of the year, Missouri S&T will attempt to fill your financial needs to the extent that funds or opportunities are available.

Federal aid is contingent upon students meeting satisfactory academic progress (SAP). SAP requirements are listed on the student financial assistance website: http://sfa.mst.edu/policiesprocedures/.

The student financial assistance office strongly encourages students to keep their expected graduation date current. Having an incorrect expected graduation date could affect a student receiving financial aid for a given semester. Contact the registrar’s office if you wish to change your expected graduation date.

Graduate Certificate Programs and Gainful Employment Program Disclosure
The US Department of Education requires all certified programs disclose particular gainful employment information to current and prospective students. The information provided in the disclosure
includes the estimated cost of the certificate program as well as on-
time graduation and job placement rates for this particular certificate
program. Information on graduate certificate programs, including gainful
employment disclosures, may be found at http://dce.mst.edu/.

Global Learning

Global Learning

Global learning’s mission is to enhance Missouri S&T’s efforts by
enriching the learner’s experience and supporting faculty excellence
to meet the needs of campus, professional, and global markets. Global
learning strives to be a leader in the development, delivery and support of
high quality education and training programs.

Global learning includes:

• Distance Education: offers nationally ranked graduate programs in
business, engineering, science and technology. Go online to http://
distance.mst.edu for a current list of graduate degrees and certificate
programs offered through distance education. For more information,
contact 573-341-6591, or email global@mst.edu.

• Educational Technology: enhances education through instructional
design, physical/virtual learning environments, and media
services using the latest technologies. Contact 573-341-4131,
edtech@mst.edu, or online at http://edtech.mst.edu/

• Missouri S&T Global - St. Louis: provides educational services
to the greater St. Louis, Rolla, and distance locations. Contact
573-835-9822, global-stl@mst.edu, http://global-stl.mst.edu/.

• Professional and Continuing Education: provides professional
development opportunities through technical short courses,
seminars and conferences, along with full service event planning and
program development. Contact 573-341-6222, pce@mst.edu, http://
pce.mst.edu.

For further information, contact:

Global Learning
216 Centennial Hall
300 West 12th Street
Phone: 573-341-4132
Fax: 573-341-4992
Web: http://global.mst.edu

Educational Technology

Educational technology, located in 102 Centennial Hall, enhances
education through instructional design, physical/virtual learning
environments, and media services using the latest technologies.

EdTech instructional services:

• The instructional services team provides assistance in teaching
strategies, consultations, and in pairing the best technology with
teaching style.

• The learning environments group supports all the learning
technologies available at S&T including the learning management
system, access to discipline specific software, and many other types
of instructional technology, both hardware and software.

EdTech media services:

• For those pursuing advanced degrees through distance education,
EdTech offers an array of communication tools to extend the
classroom beyond the campus

• Advanced coursework is live streamed over the internet, recorded and
archived online for later access

• Studio classroom use for thesis defense and project presentation

• Video teleconferencing for project presentation to sponsoring
companies and for student organizations meeting between
campuses, or for job interviews

• Assistance in setting up, capturing, and converting research lab
project videos for documentation and presentation

For more information on EdTech services, call 573-341-4131, e-mail:
edtech@mst.edu, or visit our website at: http://edtech.mst.edu.

Graduate Faculty

The Graduate Faculty, acting in accordance with the Rules and
Regulations of the Board of Curators and campus policy legislated by the
General Faculty, is responsible for the establishment of the policies, rules
and regulations governing all graduate studies on the campus.

The membership of the Graduate Faculty consists of the following: The
President of the University of Missouri, the Chancellor, the Provost, the
Vice Provost for Research, the Vice Provost for Graduate Studies, the Vice
Provost for Academic Affairs, and the Vice Provost for Undergraduate
Studies, Chairs of Departments authorized to offer graduate degree
programs and/or graduate courses and other members of the faculty at
Missouri University of Science and Technology who are accepted under
the rules of the Graduate Faculty to assume the responsibilities and
authorities delegated to it.

Graduate Faculty membership will be approved automatically for those
newly hired at a position of Assistant Professor or higher and holding
the highest degree ordinarily awarded in the candidate’s field. Their
membership will be subject to reappointment regulations (Article IV.D).

Information Technology (IT)

Getting Started

Missouri S&T’s information technology (IT) department provides a variety
of computing tools and resources to assist with academic, research and
administrative work done at the university. Students, faculty, and staff
use computers daily to register for classes, communicate with friends,
send email, collaborate on group projects and research, publish web
pages, write reports, and find course schedules.

Computer Accounts

Computer accounts are assigned to students and are used to access
various resources at Missouri S&T, such as the computing network
and the computers and software in computer learning centers (CLCs).
Most Missouri S&T IT services require an authorized computer account
(username and password) to gain access. The following services are
available through IT computer accounts:

• Access to the campus network, including wireless networks on
campus

• Google Apps, including Gmail, Drive, Sites, Google+

• High Performance Computing clusters

• Joe’Ss (student web portal)
• Learning Management System (Canvas)
• Network file storage

University Communications to Students

Each student, once initially registered for classes, will be issued a Missouri S&T email account with an address on the mst.edu domain. This is the account used for official university business and official university communications to students. Students are expected to check their Missouri S&T email account regularly for university communications and are responsible for communications sent to this and from this account. Therefore, communications sent to this account will be considered to have fulfilled any university obligation for notification.

Students must activate their email account online at: http://it.mst.edu/services/email/student/activate/.

Leaving Missouri S&T

Assigned computer accounts remain active and available for use as long as a student is enrolled in classes at Missouri S&T. Additional information regarding account maintenance may be found at http://it.mst.edu/policies/ and then clicking the "username maintenance" link.

Following graduation, Missouri S&T students retain access to their student email accounts. Local account access is removed one semester after students graduate or stop attending. If the student was also employed by the university, account removal may occur sooner.

Students are responsible for creating a backup of any data on their network storage prior to leaving the university.

Systems and Software

Missouri S&T’s IT department provides a wide variety of computing and networking facilities and support. These facilities include, but are not limited to the following:

• 3D printing
• Computer learning centers (CLCs)
• General purpose cluster computing
• HPC
• Linux systems
• Macintosh systems
• Nonavitra high definition wall
• Software for use on personal computers
• Windows-based PCs

Computer Learning Centers (CLCs)

Computer labs, called computer learning centers (CLCs), provide computers and specialty software for students to use for in-class, homework, and project related work.

CLCs are located in various buildings around campus. Use of computers and technology in these locations is restricted to Missouri S&T faculty, staff and students. The list of CLC locations, hours of operation, and equipment is available online at http://clc.mst.edu.

Missouri S&T is now using a print management system, PaperCut NG, in campus computer labs (CLCs). Students and instructors will be given a semester printing quota sufficient for completing academic work. This initiative will help conserve paper, toner and electricity and help ensure fair use of campus printing resources. As of Fall 2014, all print quota is reflected in shamrocks. It is important to note that shamrocks in no way correlate to real money. More information can be found online at http://edtech.mst.edu/clcprint/.

The Web Print service allows users to initiate a print job from their local machine or device and then direct that print job remotely to a select few printers on campus. Once you are at the printer, you can simply retrieve your print job and have it print while you are there at the printer. You can find more information online at http://edtech.mst.edu/clcprint/webprint/.

Instructional Technology

To support teaching and learning, IT supports a broad set of instructional technologies. In addition to CLCs, classroom presentation technology, such as podium computers, laptop connections, projectors, and speakers, are provided to enhance the ability of instructors and teaching assistants to present course materials and use student response systems (clickers) in the classroom.

Teaching and learning are also enhanced by a number of online technologies at Missouri S&T. See http://edtech.mst.edu/instructionalservices for more information. Personalized assistance in best practices and usage of these technologies is available to instructors and teaching assistants upon request by calling the IT help desk at 573-341-HELP (4357).

The learning management system, Canvas, is used to enhance the distribution of course materials, assess student learning (e.g., quizzes and exams), enable student discussion, and facilitate learning collaboration.

More information about available instructional technologies can be found online at http://edtech.mst.edu. (http://edtech.mst.edu)

Privileges and Responsibilities

Missouri S&T IT provides access to computing, networking and information resources in support of teaching, research and other official duties of the university. Access to the computing resources and facilities is a privilege, not a right. The Missouri S&T Computing and Network Facilities Acceptable Use Policy describes the ethical and legal responsibilities regarding computing resources.

Other computing policies and procedures, including the University of Missouri policies, can be found at http://it.mst.edu/policies/.

Individually Owned Devices

Missouri S&T’s IT department, in partnership with The S&T Store, provides recommendations for hardware and software to those wishing to purchase for personal use.

Academic discounts are available for personally-owned computers and software purchased through The S&T Store. Most software on university-owned machines is provided through licensing agreements with various vendors.

All students have access to a free copy of Office Professional for Students through Missouri S&T (Microsoft Office Suite). Contact the IT Help Desk at 573-341-4357 or visiting the IT Help Desk on the first floor of the Curtis Laws Wilson Library.

Missouri S&T faculty and staff can purchase a discounted version of Microsoft Office for their use at home through Microsoft’s Home Use Program (HUP) as part the University’s software licensing
agreement with Microsoft. Visit the UM DoIT "My Services (https://myservices.missouri.edu/Services/ServiceDetails.aspx?sd=i+nQn72H0xuAluh1nBlsd6IfJ0ovAu86qmxhBl/v5v9Us1)" application for additional information and instructions on how to sign up.

Please visit http://it.mst.edu/services for more information on supported technology and recommended systems.

Connecting to the Network

Computers in campus residence halls and fraternities or sororities connect to the network through an Ethernet connection or via wireless connection. Wireless coverage currently extends to nearly 100 percent of the campus - providing great flexibility and convenience for members of the campus community.

Detailed instructions on connecting to the network, using either wired or wireless Ethernet, are available by supported operating system at: http://it.mst.edu/services.

Virtual private network (VPN) connections are available, which allow members of the campus community to connect to the network while away from campus or traveling.

Special usage policies apply to network connections. For more information, see the policies and procedures web page at http://it.mst.edu/policies. (http://it.mst.edu/policies) In addition, Ethernet cards (both wired and wireless) and cables may be purchased through The S&T Store, located in the Havener Center.

Emergency Alert System

Missouri S&T has a system in place to alert the campus community in the event of a campus-wide emergency. An email is automatically sent to every university email account, but students, faculty and staff can enter additional contact information and register to receive emergency alerts via cell phone voicemail or text message.

For more information, or to register for the Emergency Alert System, visit: http://alert.mst.edu/.

Getting Help

The Missouri S&T IT help desk is available to assist the students, faculty and staff of Missouri S&T in using the different computing systems on campus.

Help is available on a wide range of items, including Windows-based PCs, Macintosh systems, and Linux workstations, as well as supported software on these systems.

Members of the campus community may call 573-341-HELP (4357), stop by the IT help desk on the first floor of the Missouri S&T Library, or access the online help request system at http://help.mst.edu. Hours of operation are available by visiting http://it.mst.edu/help-desk.

Internet Resources

- Campus Library – http://library.mst.edu
- Education Technology – http://edtech.mst.edu
- IT Department Homepage – http://it.mst.edu
- IT Help Desk – http://it.mst.edu/help-desk
- IT Services – http://it.mst.edu/services/
- Joe’SS (student web portal) – http://joess.mst.edu
- Missouri S&T campus gateway – http://www.mst.edu
- Online Help Request – http://help.mst.edu

International Affairs

The office of international affairs (IA) coordinates international activities, administers all matters involving immigration for international students and scholars, and provides advisement services to the university's international population.

IA is responsible for the recruitment of international students, and serves as a direct contact with U.S. government agencies, embassies, consulates, and the private sector concerning international activities. The office serves as the campus home for international student exchange programs and study abroad programs. In addition, the office assists faculty and staff wishing to travel or work overseas, and offers special educational and training programs, both domestically and abroad.

The office of international affairs administers Missouri S&T’s Applied Language Institute, which houses the Intensive English Program. IA is responsible for the organization of international protocol activities, promotes and monitors international linkage agreements, and administers a variety of international contracts.

Office of the Associate Provost
International Affairs
209 Norwood Hall
Rolla, MO 65409-0160 USA
573-341-6425

International Sponsored Student Program

A full range of services for sponsored international students is provided through the office of international affairs. International students sponsored by international agencies receive special services and are assessed a sponsored student fee for each semester.

Details on the current sponsored student program and costs are available upon request from:

Office of International Affairs
Sponsored Student Programs
104 Norwood Hall
Rolla, Missouri 65409-0160 USA
573-341-6015
iasss@mst.edu

Mandatory Health Insurance for International Students

All international students are required to purchase Missouri S&T international student health insurance as a condition of their enrollment. This includes all F-1 and J-1 visa holders. F-2 visa holders who are enrolled in classes at the applied language institute and/or Missouri S&T are also required to purchase Missouri S&T international student health insurance. Student insurance premiums are charged to the student’s Missouri S&T cashier’s account.
In addition, the J-2 dependents of the J-1 visa holders are required by U.S. department of state immigration regulations to purchase health insurance meeting J visa requirements.

For more information on the mandatory health insurance requirement, contact:

Office of International Affairs
Health Insurance
104 Norwood Hall
Rolla, MO 65409-0160 USA
573-341-6015
iainsure@mst.edu

Travel Registry

All students traveling on a university-related trip should register in a university approved travel registry. Missouri S&T travelers can access the travel registry at http://globalminers.mst.edu Faculty and/or staff members or non-S&T affiliated travelers who are accompanying students are also required to register their travel. Faculty and/or staff members who are not traveling with students may voluntarily register their travel.

The purpose of the travel registry is to provide information to travelers of resources available to them while traveling and to assist the university to quickly and easily locate university travelers during an emergency.

For additional information, contact:

Office of International Affairs
Insurance Services
104 Norwood Hall
Rolla, MO 65409-0160 USA
573-341-6015

Intensive English Program (IEP)

The Intensive English Program (IEP) at Missouri University of Science and Technology provides intensive instruction in the English language for international students whose proficiency in the language is insufficient for full-time academic admission to Missouri S&T.

The mission of the IEP at Missouri S&T is to assist international students in attaining the proficiency level needed to meet language standards and promote a successful transition to academic programs. The program provides courses in English grammar, writing, reading comprehension, listening comprehension, pronunciation, and presentation at four proficiency levels.

All international students who have not satisfied S&T’s language proficiency requirements are required to complete IEP’s assessment testing, which is comprised of four parts:

Michigan Test of English Language Proficiency (MTELP) A standardized test that evaluates abilities in grammar, reading comprehension, and vocabulary.

Michigan English Language Institute College English Test - Listening (MELICET-L) A standardized test that evaluates abilities to understand spoken English.

Test of Writing Proficiency (TWP) A locally developed test that evaluates abilities to write clear, well-organized English based on nationally developed guidelines.

Oral Proficiency Evaluation (OPE) A locally developed test that evaluates abilities to speak English clearly based on nationally developed guidelines.

Students who perform well on all tests may be approved immediately for academic course work at the university. Other students are enrolled in IEP course work, and may then complete the series of tests again at the end of the semester. Recommendations for promotion into a higher level of the IEP or for advancement into university course work are made by the IEP’s academic coordinator based on student testing and faculty input.

Students who enroll in the IEP must complete that program to the satisfaction of its director and academic coordinator (i.e. satisfy all completion requirements) before being allowed to enroll full-time in university course work.

Ordinarily, the IEP is open only to students who intend to pursue study at Missouri S&T, and who have been conditionally admitted to the university. If space exists, international students already admitted to Missouri S&T and already taking course work may enroll in IEP courses to improve their English. In addition, international persons with no academic affiliation with the University may be considered for admittance into the Intensive English Program.

For more information on IEP, testing fees and program costs please contact:

Intensive English Program (IEP)
1207 N. Elm St.
114 SWBCC
Missouri University of Science and Technology
Rolla, MO 65409-1140 USA
Miner Wellness

Through health education and promotion, Miner Wellness strengthens the well-being of S&T students by reinforcing healthy habits of the majority and reducing the impact of high-risk behaviors.

PROGRAMS
Miner Wellness provides community-based initiatives, such as, presentations, awareness campaigns, and trainings on the following topics:

- Alcohol and other drug harm reduction
- Sexual health
- Interpersonal violence prevention
- Sleep health and stress management
- Nutrition and fitness

Bystander Intervention
STEP UP! is Missouri S&T's bystander intervention program that empowers the campus community to foster a culture of awareness, intervention, and inclusion. It helps students recognize problematic events and increases their motivation, skills, and confidence when responding to problems or concerns.

Consultations
Miner Wellness offers one-on-one consultations for students in the areas of:

- Nutrition
- Tobacco cessation
- Alcohol and cannabis screening
- Bystander intervention
- General wellness

Peer Education
Miner Wellness coordinates a peer education network comprised of three student groups: Joe’s PEERS, Peer Wellness Educators, and STEP UP! Student Ambassadors. Through participation in the peer education program, students gain professional development and leadership experience. They also provide education and resources to their fellow S&T students to encourage safe and healthy behavior.

Missouri S&T Prevention Coalition
The Missouri S&T Prevention Coalition is a network of campus and community partners who utilize S&T specific data to guide wellness initiatives. These initiatives encourage positive choices among students and reduce the impact of high-risk behavior associated with alcohol and other drugs. We collaborate closely with Partners in Prevention (PIP) and twenty other Missouri universities to guide and improve Miner Wellness programming.

Contact Information:
Jessica Gargus, M.ED, CHES
Manager, Miner Wellness
201 Norwood Hall
573-341-4225
mailto:minerwellness@mst.edu (minerwellness@mst.edu)

http://minerwellness.mst.edu

Nuclear Reactor

The Missouri S&T Nuclear Reactor is a Nuclear Regulatory Commission (NRC) licensed 200 kilowatt pool-type reactor that is used to support the engineering and science activities on campus. Using the facility, the reactor staff provides hands-on laboratory, research & development, and project opportunities. The reactor itself uses uranium fuel and is cooled by either natural convection or a 400 kilowatt forced cooling system in a pool containing approximately 30,000 gallons of water. The reactor generates a brilliant blue glow (Cerenkov radiation) when operated at higher power.

The open pool design allows access to the reactor core where experiments and samples to be irradiated can be positioned. The facility is equipped with a pneumatic sample irradiation system, a collimated neutron beam, a thermal column that provides a diffuse thermal neutron source, a gamma spectroscopy system, computer data acquisition and control systems, and an internet accessible hot cell.

The reactor is open to the greater campus community and offers an active (operations) licensure program for interested students and others. The facility hosts numerous projects that actively engage students of various backgrounds; some recent projects include activities in:

- applied robotics
- applied biometrics
- photolytically-induced material development
- radiation tolerance of electronic chips
- instrumentation and sensors
- convective heat transfer and multiphase flows

We encourage you to contact the facility for additional information.

Oak Ridge Associated Universities (ORAU)

Since 1981, students and faculty of the Missouri University of Science and Technology have benefited from its membership in Oak Ridge Associated Universities (ORAU). ORAU is a consortium of 91 colleges and universities and a contractor for the U.S. Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country; to keep its members informed about opportunity for fellowship, scholarship, and research appointments; and to organize research alliances among its members.

Through the Oak Ridge Institute for Science and Education (ORISE), the DOE facility that ORAU operates, undergraduates, graduates, postgraduates, as well as faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry, and mathematics. Appointment and program lengths range from one month to four years. Many of these programs are especially designed to increase the number of under-represented minority students pursing degrees in science- and engineering-related disciplines. A comprehensive listing of these programs and other opportunities, their disciplines, and
Office of Graduate Studies

The mission of the Office of Graduate Studies is to administer student-centric services from inquiry through graduation and provide campus leadership for excellence in graduate education. Our mission is four-fold in support of our students, faculty, and staff.

1. Recruit and retain high quality graduate students in collaboration with the other campus units by providing excellent graduate education opportunities and advocating student issues to improve the quality of student life.
2. Provide a relevant student learning environment to foster innovation, creativity, and scholarship so that students can aim high to reach their true potential.
3. Provide student-centric services to ensure students graduate in a timely fashion.
4. Provide campus leadership to promote excellence in graduate education by actively engaging student leaders, graduate faculty, and staff.

Office of the Registrar

Mission Statement

The primary mission of the Office of the Registrar is to ensure the accuracy, integrity, and security of the academic records of the Missouri University of Science and Technology. In addition, the office will strive to provide quality service to students, alumni, faculty, staff, and other constituents of the university. To this end, the office will attempt to utilize available technology to deliver services and information in an efficient manner. Further, the office will seek to interpret and apply the academic policies and regulations of the university for the benefit of the institution and its constituents.

These statements are set forth as guidelines and procedures to implement the University of Missouri policy on student records developed from the Family Educational Rights of Privacy Act 1974 (FERPA).

The Missouri University of Science and Technology as charged in the act will annually inform its eligible students by including in the academic regulations and the general catalog the following information:

1. “Educational records” are those records, files, documents, and other materials which contain information directly related to a student and are maintained by the university. Those records made available under FERPA are student financial aid, the student’s cumulative advisement file, student health records, disciplinary record, the admissions file, and the academic record. The Missouri University of Science and Technology “educational records” do not include:
 A. Records of instructional, supervisory, and administrative personnel and educational personnel ancillary thereof which are in the sole possession of the maker thereof and which are not accessible or revealed to any other person except a substitute.
 B. The records and documents of the University of Missouri police department that are maintained solely for law enforcement purposes and are not available to persons other than law enforcement officials of the same jurisdiction.
 C. In the case of persons who are employed by the university but are not in attendance at the university, records made and maintained in the normal course of business which relate exclusively to such person and person’s capacity as an employee where the records are not available for any other purpose.
 D. All records on any university students which are created and maintained by a physician, psychiatrist, psychologist, or other recognized professional or paraprofessional acting in his or her professional or paraprofessional capacity, or assisting in that capacity, and which are created, maintained, or used only in connection with the provision of treatment to the student, and are not available to anyone other than persons providing such treatment, provided, however, that such records can be personally reviewed by a physician or other appropriate professional of the student’s choice.

2. The Missouri University of Science and Technology recognizes “directory information” to be the student’s name, e-mail address, address, telephone listing (including local and permanent address), major field of study, participation in officially recognized activities and sports, dates of attendance, degrees and awards received, the most recent previous educational agency or institution attended by a student, student level, and full- or part-time status. All students must inform the Registrar’s Office before the end of the two-week period following the first day of classes that this information should not be released without the student’s prior consent. The information listed above will become directory information as of the first day of classes following the end of the one-week period during the summer session.

3. Missouri University of Science and Technology students have access to the educational records identified in paragraph one above. In accordance with Pub. L. 93-380, as amended, the Missouri University of Science and Technology will not make available to students the following material:
 A. Financial records of the parents of students or any information contained therein.
 B. Confidential letters and statements of recommendation which were placed in the education records prior to January 1, 1975, if such letters or statements are not used for the purpose other than those for which they were specifically intended.
 C. Confidential recommendations respecting admission to the university, application for employment, and receipt of an honor or honorary recognition, where the student has signed a waiver of
10. If any material or document in the educational record of a student includes information on more than one student, they may inspect and review only such part of such material or document as relates to him or her or to be informed of the specific information contained in such part of such material.

4. The director of financial aid, the appropriate academic department chair, the director of the student health service, the vice chancellor for student affairs, the director of admissions, and the registrar are the officials responsible for the maintenance of each type of record listed in paragraph one.

5. Any student may, upon request, review his or her records and if inaccurate information is included, may request the expunging of such information from his or her file. Such inaccurate information will then be expunged upon authorization of the official responsible for the file.

6. Students desiring to challenge the content of their record may request an opportunity for a hearing to challenge the content of his or her educational record in order to ensure that the record is not inaccurate, misleading or otherwise in violation of the privacy or other rights of the student, and to provide an opportunity for the correction of deletion of any such inaccurate, misleading, or otherwise inappropriate data contained therein and to insert into such records a written explanation respecting the content of such records.

7. The university official charged with custody of the records will attempt to settle informally any disputes with any student regarding the content of the university’s educational records through informal meeting and discussions with the student.

8. Upon request of the student or the university official charged with custody of the records of the student, a formal hearing shall be conducted, as follows:

A. The request for a hearing shall be submitted in writing to the campus chancellor who will appoint a hearing officer of a hearing committee to conduct the hearing.

B. The hearing shall be conducted and decided within a reasonable period of time following the request for the hearing. The parties shall be entitled to ten days prior written notice of the item and place of the hearing.

C. The hearing shall be conducted and the decision rendered by an appointed hearing official or officials who shall not have a direct interest in the outcome of the hearing.

D. The decision shall be rendered in writing within a reasonable period of time after the conclusion of the hearing.

E. Either party may appeal the decision of the hearing official or officials to the campus chancellor. Appeal from the chancellor’s decision is to the president of the Board of Curators.

9. The Missouri University of Science and Technology may permit access to or release the educational records without the written consent to a school official with legitimate educational interest. A school official is determined to have legitimate educational interest if the information requested is necessary for that official to (a) perform appropriate tasks that are specified in his or her position or by a contract agreement; (b) perform a task related to a student’s education; (c) perform a task related to the discipline of a student; (d) provide a service or benefit relating to the student or student’s family, such as health care, counseling, job placement or financial aid.

11. Students desiring reproduction of copies of educational records will be charged $.10 per page. Official copies of transcripts are $10.00 per copy for currently enrolled students and alumni.

University Communications to Students

Each student, once initially admitted, will be issued a Missouri S&T e-mail account with an address on the mst.edu domain. This is the account used for official university business and official university communications to students. Students are expected to regularly check their Missouri S&T e-mail account for university communications and are responsible for communications sent to this account. Therefore, communications sent to this account will be considered to have fulfilled any university obligation for notification.

Application for Graduation

Students planning on graduating must do the following:

- Check application deadlines for semester in which you are applying for graduation
- Fill out the online application for graduation form found in JoeSS and submit through the online process

A $75 graduation fee is assessed to all students who have applied as a candidate for graduation. This fee will be charged to the student account after submitting an application for graduation.

Schedule of Classes

The most current information regarding the schedule of classes is located at http://registrar.mst.edu/classofferings/index.html.

Course Information

The number in parentheses following the name of the course indicates the number of credit hours given for successfully completing the course. It also reflects the section type; for example, (LEC 3.0) designates a lecture course of three hours credit; (LAB 1.0) designates a laboratory course of one-hour credit, (RSD 2.0) designates a recitation, seminar, discussion of two hours credit, and (IND 0.0-15.0) designates independent study or research with variable hours. A lecture credit hour is usually the credit granted for satisfactorily passing a course of approximately 15 classroom hours. A laboratory course of one-hour credit would normally meet three classroom hours per week for 15 weeks.

Three credit hour courses normally meet 50 minutes three times per week, or 75 minutes twice a week, for 15 weeks. The time in class is the same in each case. If you have two classes in succession, there should be at least ten minutes between classes. Classes meeting Monday-Wednesday-Friday will normally begin on the hour. Classes meeting Tuesday-Thursday will normally alternate between the hour and half hour, beginning at 8:00 a.m.

Students must have completed the stated prerequisite(s) for the course for admission to the course or obtain the ‘consent of the instructor’ of the course.

Course Numbers

This section has been prepared to give you a listing and description of the approved courses at the Missouri University of Science and Technology. Courses listed are those approved at the time this publication went to press. Changes are made at regular intervals. Electronic catalog descriptions, which are updated during the academic year, are available
through Joe’S SS at http://registrar.mst.edu. This will enable you to keep abreast of new course additions. For current information on when courses are available, consult class offerings available through the Office of the Registrar website at: http://registrar.mst.edu/classofferings.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-1999</td>
<td>Freshmen-level courses</td>
</tr>
<tr>
<td>2000-2999</td>
<td>Sophomore-level courses</td>
</tr>
<tr>
<td>3000-3999</td>
<td>Junior-level courses</td>
</tr>
<tr>
<td>4000-4999</td>
<td>Senior-level courses</td>
</tr>
<tr>
<td>5000-5999</td>
<td>Entry and mid-level graduate courses</td>
</tr>
<tr>
<td></td>
<td>(undergraduate enrollment allowed)</td>
</tr>
<tr>
<td>6000-6999</td>
<td>Advanced graduate courses</td>
</tr>
</tbody>
</table>

Absence from Class

Work missed due to absence from class must be made up to the satisfaction of the instructor concerned. Excessive absences from class may result in the student being dropped from the course at the request of his or her instructor.

Missouri S&T Grade Reports on the Web

Students may obtain their grades on the web through Joe’S SS. Students who desire a paper copy of their grade report should contact the registrar’s office.

Certification of Enrollment Status

Certifications of enrollment status should be requested through the registrar’s office either by visiting 103 Parker Hall or using the form located at http://registrar.mst.edu/media/administrative/registrar/documents/certlet.pdf. Certification of full-time or half-time status is based on the number of credit hours for which the student is enrolled and includes courses in which the student is enrolled as a hearer, with one exception. Hearer courses are not included for international student status, as defined by SEVIS.

For graduate students, full-time is based on at least 9 credit hours; half-time is at least four credit hours during the regular fall and spring term. For the summer term full-time is three credit hours and half-time is at least two credit hours.

Grading System

The following system of grades is used:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points Per Credit Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Excellent</td>
<td>4</td>
</tr>
<tr>
<td>B-Superior</td>
<td>3</td>
</tr>
<tr>
<td>C-Medium</td>
<td>2</td>
</tr>
<tr>
<td>F-Failure</td>
<td>0</td>
</tr>
<tr>
<td>I-Incomplete</td>
<td></td>
</tr>
<tr>
<td>S-Satisfactory</td>
<td>Indicates credit has been earned for the course scheduled</td>
</tr>
<tr>
<td>U- Unsatisfactory</td>
<td>Indicates credit has not been earned for the course scheduled</td>
</tr>
<tr>
<td>DLS-Delayed</td>
<td>Permissible for ongoing research</td>
</tr>
<tr>
<td>Y</td>
<td>No grade available</td>
</tr>
</tbody>
</table>

Grades of “S” and “U” are used for research (6099), internship (5085/6085) and continuous registration (6050). Grades of S and U are also permitted for special problems (3000/4000/5000/6000) and seminar (3010/4010/5010/6010).

The purpose of the “I” grade is to allow a student to complete a course when, due to illness or unavoidable absence within the last four weeks (three weeks of classes plus finals weeks) of a fall or spring semester or within the last week and a half plus the final exam period of an eight-week summer session, he/she would otherwise be unable to do so. The intent is to provide a means for completing a course without having to retake the entire subject for lack of fulfillment of one or two requirements of the course.

Graduate students cannot take courses with a pass/fail grading option. “D” grades are not permitted for graduate students.

For a complete explanation of grades and grading options refer to the Student Academic Regulations handbook at: http://registrar.mst.edu/academicregs/index.html.

S&T Police Department

Parking

All student-operated vehicles should have either a valid campus parking permit or student registration decal affixed properly to the vehicle. Missouri S&T Parking, Security and Traffic Safety Regulations, as adopted by the Parking, Security and Traffic Safety Committee and approved by the chancellor, provide for the payment of established fees for parking privileges and set fees for violation of those regulations. The university police department has the responsibility of enforcing parking regulations at Missouri S&T.

The size of the student body, faculty, and staff, coupled with the fact that a large number of students live off-campus, leads to a relatively large number of motor vehicles on and near the campus. This traffic load, in turn, complicates parking for the campus citizen and creates a hazard for vehicles and pedestrians. The committee has prescribed the rules governing the classification and use of parking lots, the qualifications for parking on those lots, and the rules for application, issuance, and use of parking permits.

Specific information on current regulations and other details pertaining to parking can be obtained at the University Police Department, G-10 Campus Support Facility, 573-341-4303. The regulations may also be found at: http://police.mst.edu/parking/parking.

Missouri S&T Parking: Rules in Capsule Form

1. All parking on campus requires either a purchased permit or payment at a meter. Decals (permit and registration stickers) must be affixed to the outside of the rear window or bumper on the driver’s side of the vehicle. Temporary tags shall be affixed to the inside rear window on the driver’s side of the vehicle or hung on rear-view mirror.
2. All vehicles shall be parked HEADING into the parking spaces. (Do not back into or pull through the space.)
3. A visitor is anyone OTHER THAN an employee, student or member of their family.
4. Regulations pertaining to area permits and metered parking are enforced YEAR ROUND from 7:30 a.m. to 4:30 p.m. except on
Saturdays, Sundays and official university holidays. Other regulations are enforced at all times.

5. Permit and metered parking at Thomas Jefferson Residence Hall and the Multi-Purpose Building shall be enforced 24 hours a day 7 days a week.

6. Employees and students lending their vehicle to a visitor will be responsible for any violations occurring on campus.

7. Parking permit owners shall park only in the area to which the purchased permit allows access.

8. Employees and students without parking permits shall use only metered spaces.

9. Specially marked disabled parking, driveways, yellow curbs and zones, spaces marked for 24 hour enforcement, fire lanes, vehicle types and areas not designated as a parking area, etc., shall be enforced 24 hours a day seven days a week.

10. University driveways, yellow curbs and zones, and any other area not specifically designated as a parking area shall not be used at any time.

11. The Director of University Police, with the concurrence of the Parking Committee Chair, shall have the authority to suspend all or part of the parking regulations for specific periods of time.

The full and complete set of Missouri S&T Parking Rules and Regulations can be found on our website, http://police.mst.edu/parking/parking/.

Lost and Found
The university police department is the central "lost and found" repository for the campus. Any lost and found items should be turned into the university police for reclaimation purposes. If an item is lost, information should be filled out with university police, 573-341-4300, or can be reported by accessing: http://police.mst.edu/aboutus/services/lost/ in case the item is turned in at a later date.

Campus Security
Missouri State Uniform Crime Reporting (UCR) Statistics
Every law enforcement agency in the state is required to report crime data monthly to the Missouri State Highway Patrol (MSHP). MSHP creates and maintains computer files of the Missouri data and supplies information not only to the Federal Bureau of Investigations (FBI) for use in national crime statistics, but also to local agencies and organizations. To access crime data for the Missouri S&T police department submitted to the MSHP visit the MSHP Statistical Analysis Center: http://www.mshp.dps.missouri.gov/MSHPWeb/SAC/data_and_statistics_ucr.html.

Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act (CLERY)
As required by the U.S. Department of Education, the CLERY Act requires higher education institutions to make public certain crime data. Review the annual CLERY report submitted by the Missouri S&T police department online: http://police.mst.edu/info/clery/. A paper copy of the report can be requested by contacting the Missouri S&T police department at 573-341-4300 or by responding to the department which is located in G-10 Campus Support Facility.

Daily Crime Report
The CLERY Act also requires that crime information be made available to the public within two working days. Review the Daily Crime Report in the lobby of the Missouri S&T police department located in G-10 Campus Support Facility or at http://police.mst.edu/crimeinfo/ucr/.

University Police
The mission of the Missouri S&T police department is to support the academic and campus community in fulfilling its commitment to teaching, research, and service. The functions performed by the Missouri S&T police department include many services offered by a small municipal police agency, as well as certain service functions unique to the university setting. The Missouri S&T police department has an authorized strength of 25 full-time employees, including 13 state-commissioned police officers, 6 security guard, 2 parking control officers and 4 administrative staff members. Missouri S&T police officers are empowered under Chapter 172.350 of the Missouri Revised Statutes. As such the police officers are commissioned and armed. Additionally all Missouri S&T police officers possess Rolla City Police commissions as well. The S&T university police are also fully accredited through the International Association of Campus Law Enforcement Administrators (IACLEA).

Police officers patrol on foot, bicycle and by vehicle all properties owned by the Missouri University of Science and Technology 24 hours a day and seven days a week. The security guards perform additional security checks on the main campus during evening and night hours. In addition to the full-time staff, the department employs six campus service officers (CSO's), who are students that assist on a part-time basis. Missouri S&T police department also has a Reserve Police Officer Program where part-time, fully sworn, police officers are used on an as-needed basis. Please visit the university police department’s webpage to see all of the various services offered by the university police http://police.mst.edu.

Duties of the Missouri S&T police department include, but are not limited to preventative patrols, the investigation of crimes, crime prevention through active campus involvement, service to students and others in emergencies, special event coverage, overseeing parking lot operations, and the enforcement of state laws, city ordinances, and university rules and regulations. The university police department monitor several security cameras located throughout campus via a 24/7 operations desk located at the university police department. The university police are dispatched via the Rolla area 911 call center located within the Rolla police department. The camera views for the campus are shared with the call center. The university police can be reached at any time via 911 or for non-emergency situations, 573-341-4300.

Reporting Crimes at Missouri S&T
A log of all reported crimes is posted at the Missouri S&T police department (G10 Campus Support Facility) and on our website http://police.mst.edu/crimeinfo/ucr/, under crime statistics to meet Clery Act requirements.

All crime victims are highly encouraged to report incidents to the Missouri S&T police department regardless of how seemingly insignificant the crime. Missouri S&T policy requires employees to promptly report all criminal acts occurring on campus. To report a crime, the victim or witness need only call the Missouri S&T police department via 911 or 573-341-4300. A police officer will meet with the person to gather information and prepare an official report. You may wish to report an incident to have the alleged offender apprehended and/or for the protection of yourself or others. If this is the case, successful apprehension and/or prosecution of the offender depends greatly on the rapid and accurate report of the crime. Information about the incident can
assist law enforcement authorities in providing and improving prevention strategies for the protection of the victim and others in the community.

If you wish to report an incident without seeking disciplinary or legal actions, please contact the Missouri S&T counseling and disability support department, the equity and title IX department, the dean of students and student affairs department, the residential life department, the campus human resources department or any campus security authority ** for assistance.

Additional contact and resource information for reporting a crime is available by calling the university police department at 573/341-4300 or online via https://police.mst.edu/reporting/crimes, http://titleix.mst.edu/reporting, and http://dos.mst.edu/studentcompliantprocess.

**The campus security authority is an official of an institution who has significant responsibility for student and campus activities, as well as employees who control or monitor access to various locations on campus.

Security of Campus

Accountability of the security of campus facilities originates with the department chair. Areas of responsibility include, but are not limited to, both interior and exterior entryways, exists, and windows, and items of value within the department. Areas not under a specific department shall be under the responsibility of the next higher level within the division.

The department chair is ultimately answerable for security problems existing within his/her area of control, but can designate a dependable and reliable individual(s) areas of security responsibility.

A particularly sensitive area in building access control is the issuance of keys by departments to faculty, staff, and students. Department key issuance and control shall comply with guidelines set forth in BPM-404

Buildings shall be secured during the evening hours at the earliest reasonable time. Any facility open for an extended period after normal operating hours for that building shall require a permit to be open for the hours specified on the permit.

During the academic year in which residence halls are open, those halls shall be secured during the evening hours according to housing department regulations. Faculty, staff, and students are encouraged to prevent access by unauthorized personnel in both residence halls and other campus buildings, by verifying any door entered or exited has closed and locked.

Maintenance of campus facilities involving security problem areas, such as broken locks, windows, door, etc., shall involve reporting the security problem as soon as possible to the physical facilities department, who shall rectify the security breach within a timely manner.

In the event of a campus emergency, the university police department will notify the campus community via a RAVE mass notification message. The message will note the situation, give basic direction, and it updates until the situation is resolved or stabilized. Messages will be sent via text, email, and phone (there may be situations when the messages will only be sent via text and email).

RAVE Guardian

Missouri S&T University purchased an add-on phone app for the campus community. The app is named Rave Guardian and is available for free at the app store for anyone who has a Missouri S&T email address. The app has several different valuable components including a safety timer, a method to text message the university police, an icon to reach the university police with the touch of a button, and the ability to call the 911 call center with the touch of a button. For further information on the Rave Guardian app please visit the website: http://ravemobilesafety.com or contact the university police department via email police@mst.edu or via phone 573-341-4300.

Alcohol/Illegal Drugs Policies:

Alcoholic Beverages

The use or possession of any alcoholic beverage is prohibited on all university property, except in the chancellors’ residence, and the sale, use, or possession may, by appropriate university approval be allowed in approved university alumni centers or faculty clubs, and for single events and reoccurring similar events in designated conference, meeting, or dining facilities provided by university food services, subject to all legal requirements. Further information pertaining to alcoholic beverages can be obtained from http://chancellor.mst.edu/media/administrative/chancellor/documents/policy/I-90.pdf.

Illegal Drugs

University of Missouri regulations prohibit the unlawful possession, use, distribution, and sale of alcohol and illicit drugs by university students and employees on university-owned property and at university or supervised activities. Local, state, and federal laws also prohibit the unlawful possession, use, distribution, and sale of alcohol and illicit drugs. Violation of the University of Missouri regulations and federal and state laws can result in disciplinary action up to and including expulsion for students and discharge for employees.

A variety of resources exist for drug and/or alcohol counseling, treatment, or rehabilitation program. For detailed information concerning university and community resources, students and employees may contact the Substance Abuse Prevention Program, 107 Norwood Hall, 573-341-4292. Confidential consultation, assessment, short term counseling, and referral services are available free of charge to faculty, staff, and students. A variety of prevention of education programs are also offered.

Victim of Sexual Assault Information

The following information is provided to assist a person who has been the victim of a sexual assault.

Emergency Medical Examination/Evidence Collection

Receiving medical care immediately following a rape, attempted rape, or sexual assault is extremely important for your well-being. It is essential that you obtain:

- Emergency medical exam if you are injured.
- A general medical exam to ensure that you haven’t obtained injuries that you are unaware of or unable to determine.
- A medical/legal examination for the collection of evidence if you think there is any possibility you will want to prosecute the offender. The exam must be conducted within 48 hours of the assault and you must NOT clean up before the exam to avoid loss or contamination of evidence.
• Testing for sexually transmitted diseases. AIDS, and possible pregnancy (as part of follow-up treatment).

For medical emergencies, call 911 to have an ambulance dispatched.

Other sources of medical information for victims include Missouri S&T student health services (available during business hours).

Emotional Support

The need for emotional support and assistance after a rape, attempted rape, or sexual assault is great. In the aftermath of such a violation and loss of control, it may be difficult to consider what steps to take.

Contact a close friend or family member to talk with and assist in making decisions. Contact the Missouri S&T counseling center whose services are strictly confidential and contacting this support service does not obligate you to take any further action.

Reporting of Incident

You may wish to report the assault in order to have the alleged offender apprehended and/or for the protection of self or others. If this is the case, successful apprehension and or prosecution of the offender depends greatly on a rapid and accurate report of the crime. Information about the assault can assist law enforcement authorities in providing and improving prevention strategies for the protection of the victim and others in the community.

You have the option of making a report for the purpose of assisting the police in protecting the community without obligation to participate in the prosecution. While the actual prosecution of the offender is pursued by the Phelps County prosecutor (not by the victim), prosecution is unlikely to occur without the consent and assistance of the victim. You have the right to choose not to contact the Missouri S&T police, but you are strongly encouraged to report the assault to the police department.

Anonymous or Third Party Reporting

Even if you may not want to prosecute the offender to have it known you were the victim of an assault, you can choose to report the assault anonymously. Or somebody who you have told about the assault can report it. This type of reporting will provide the department with general information that may be useful in preventing additional assaults on campus. To make an anonymous report, call the police department and request to speak with an officer.

Disciplinary Actions

Whether or not you choose to report the assault to law enforcement or participate in criminal prosecution, you may decide to take action through the campus judicial system. If you were assaulted by another Missouri S&T student, on or off-campus, the accused may be charged under the University of Missouri Standard of Conduct. The judicial officer at Missouri S&T is available to discuss campus judicial procedures. While the judicial officer may investigate the complaint and impose appropriate discipline with or without the victim’s consent, discussing a matter of sexual assault with her/him does not compel the victim to participate actively in pursuing disciplinary charges. The judicial officer’s phone number is 573-341-4292.

Contact with Offender

In situations where the accused and the accuser may be in close contact with each other because of class schedules and/or living arrangements, adjustments to housing or class schedules may be made. The director of residential life has the authority to give the accuser and/or accused the option of changing living arrangements. If the accuser and the accused refuse to change living arrangements, the director has the authority to change the living arrangements of either person. The judicial officer shall give the parties the option of changing class schedules to avoid contact. However, change of class schedules cannot be required until after disciplinary proceedings have concluded.

Student Disability Services

The mission of student disability services is to assist in creating an inclusive and accessible university community where students with disabilities have an equal opportunity to fully participate in all aspects of the educational environment. We cooperate through partnerships with students, faculty, and staff to promote students’ independence and to ensure recognition of their abilities.

Missouri University of Science and Technology (S&T) strives to assure that no qualified person with a disability shall, solely by reason of the disability, be denied access to, participation in, or the benefits of any program or activity operated by the university. Each such qualified person shall receive reasonable accommodations to provide equally effective access to educational opportunities, programs, and activities in the most integrated setting appropriate unless provision of such reasonable accommodation would constitute an undue hardship on the university or would substantially alter essential elements of the academic program or course of study or would otherwise compromise academic standards.

In compliance with federal and state laws, S&T is intentional in efforts to be consistent with Section 504 of the Rehabilitation Act of 1973, which states that no recipient of federal financial assistance may discriminate against qualified individuals with disabilities solely by reasons of disability. This policy is also intended to be consistent with the Americans with Disabilities Act of 1990 and the Missouri Human Rights Act.

If you are a student with a disability and would like more information regarding the provision of services through the office of student disability services, please feel free to contact us to schedule a personal, confidential appointment.

Contact Information

203 Norwood Hall
http://dss.mst.edu
Email: dss@mst.edu
Phone: 573-341-6655
Fax: 573-341-4172

Student Diversity Initiatives

The mission of the SDI office is to foster diversity and inclusion in the Missouri S&T community by providing a welcoming climate for all students. The department aims to support underrepresented, first generation, and low income students from all walks of life through programming, retention, and mentoring initiatives.

Through programs and partnerships, student diversity initiatives supports diversity-related programming and promotes awareness about female and multicultural related issues; first generation and low-income student support; SDI helps foster an academic and professional environment that supports the students of Missouri S&T and strengthens the campus community.
For more information about our peer mentoring program, cultural programming, and diversity and inclusion training visit our website at https://sdi.mst.edu/. You may contact us directly at 573-341-7286 or via e-mail at sdi@mst.edu. Student Diversity Initiatives, 605 W. 11th Street.

Student Health Services

The goal of Missouri S&T Student Health Services is to provide for healthy students and a healthy campus population.

Student Health offers a wide range of primary health care for currently enrolled students at Missouri S&T. Multiple providers are available to deliver care for acute illness and injury. The Student Health fee covers visits with the providers, but some procedures, labs and medications may require a small fee. It is highly recommended that all students have some form of health insurance to cover for services not provided at Student Health. An Aetna group policy is available and information on this plan may be obtained at the Cashier’s Office or the Student Health Complex.

There are certain requirements that need to be met before you can complete enrollment and move onto campus. Failure to meet these requirements will result in a hold on your registration process.

To submit your information, please follow the instructions on the Student Health website http://studenthealth.mst.edu/.

At a minimum, students must submit records including:

- **Two Measles, Mumps, Rubella Vaccines (MMR).** The first one must be done after age 12 months; the second at least 30 days later.
- **One Meningitis Vaccine,** given after age 16. Missouri Senate Bill 754 states, “each student attending a public institution of higher education who lives in on-campus housing must receive the meningococcal vaccine unless he or she has a medical or religious exemption”. Vaccination strongly recommended for all university students. You will not be allowed to move into campus housing if we have not received your meningitis immunization documentation. More information about the meningitis vaccine and disease can be found on the Student Health Website
- **Tuberculosis Screening Form for New Students.** This form must be completed by all students. Student Health staff will review and contact you if further testing is necessary.

For more information contact:

Student Health Services
910 W. 10th St.
Rolla, MO 65409
573-341-4284
mstshs@mst.edu

Student Organizations

Academic and Departmental

Honor and Professional

Alpha Chi Sigma, Alpha Nu Sigma, Alpha Psi Omega, Alpha Sigma Mu, American Association of Drilling Engineers, Blue Key, Chi Epsilon, Epsilon Mu Eta, Eta Kappa Nu, Industrial Designers Society of America, Kappa Kappa Psi, Kappa Mu Epsilon, Keramos, National Residence Hall Honorary, National Society of Black Engineers, Omega Chi Epsilon, Order of Omega, Phi Alpha Theta, Phi Eta Sigma, Phi Sigma Pi, Pi Epsilon Tau, Pi Tau Sigma, Psi Chi, Sigma Gamma Epsilon, Sigma Gamma Tau, Sigma Tau Delta, Society of American Military Engineers, Society of Hispanic Professional Engineers, Society of Women Engineers, Tau Beta Pi, Tau Beta Sigma

Intercultural

African Student Association, Association for Black Students, Chinese Students and Scholars, India Association, International Student Club, Iranian Students Association, Korean Students Association, Libyan Student Association, Malaysian Students Organization, Saudi Students Association, Taiwanese Student Association, Thai Students Association, Turkish Students Association

Media and Publication

KMNR Radio Station (89.7 FM), Miner Multi-Media, Missouri Miner, Rollamo, Southwinds

Programming

St. Pat’s Celebration Committee, Student Union Board

Governing

Associated Students of the University of Missouri (ASUM), Council of Graduate Students, Downtown Hall Association, Greek Independent Board, Interfraternity Council, Miner Village Hall Association, Panhellenic Council, Residence Hall Association (RHA), Residential Commons Hall Association, Student Council, Thomas Jefferson Residence Hall Association, University Commons Hall Association
Recreation and Sports

Faith Based and Spiritual
All Nations Christian Fellowship, Baptist Student Union, Campus Crusade for Christ, Catholic Newman Center, Chi Alpha, Christian Campus Fellowship, Common Call Campus Ministry, Fellowship of Christian Athletes, Geeks for God, Hillel of Missouri S&T, Koinonia (Student Fellowship of Church of Christ), Latter-Day Saint Student Association, Lutheran Student Fellowship, Muslim Student Association, Restoration Campus Ministries, Voices of Inspiration

Service
Alpha Phi Omega (APO), FIRST Alumni Association, Habitat for Humanity, Intercollegiate Knights (IK), Lambda Sigma Pi, Missouri S&T Chapter of Optimists International, Omega Sigma, Project Lead the Way Alumni Association

Social and Special Interest

Student Design Groups
Advanced Aero-Vehicle Group, Concrete Canoe Team, Engineers Without Borders, Formula Electric SAE, Formula SAE, Human Powered Vehicle Team, International Genetically Engineered Machines (iGEM), Mars Rover Design Team, Miner Baja SAE, Nuclear Science Design Team, Robotics Competition Team, Solar Car Team, Solar House Team, Steel Bridge Team

Fraternities
Alpha Epsilon Pi, Alpha Phi Alpha, Beta Sigma Psi, Delta Lambda Phi, Delta Sigma Phi, Delta Tau Delta, Kappa Alpha, Kappa Alpha Psi, Kappa Sigma, Lambda Chi Alpha, Omega Psi Phi, Phi Beta Sigma, Phi Kappa Theta, Pi Kappa Alpha, Pi Kappa Phi, Sigma Chi, Sigma Nu, Sigma Phi Epsilon, Sigma Pi, Sigma Tau Gamma, Tau Kappa Epsilon, Theta Xi, Triangle

Sororities
Chi Omega, Delta Sigma Theta, Kappa Delta, Missouri S&T Gamma Pho Lambda Colony, Phi Sigma Rho, Zeta Tau Alpha

For more information about any recognized organization, or how to get involved on campus, contact the department of student life at 573-341-6771, stulife@mst.edu or http://studentlife.mst.edu.

Volunteerism and Service
At Missouri S&T, we realize that our impact goes far beyond our campus. As a result, the office of student life is committed to contributing to the betterment of our local, surrounding, and global communities. We do this by offering students a variety of opportunities to become actively engaged through service. All of which is possible due to the mutually beneficial partnership that exists between community organizations and the University. Annual events such as the Civic Engagement Fair, Make A Difference Day, Martin Luther King Day of Service, and the Miner Challenge Alternative Spring Break program are some of the volunteerism highlights of the academic year. Learn how to get involved in volunteer activities by joining our listserv at http://studentlife.mst.edu/volunteersinvolvement/homepage/ or by watching campus announcements for opportunities scheduled throughout the year. For more information on how you can get involved in volunteerism and service, please contact the Department of Student Life, 218 Havener Center, at 573-341-6771 or stulife@mst.edu.

Veteran Affairs
Veteran Access, Choice and Accountability Act of 2014, Section 702
The university is compliant with the requirements of PL 113-146 the Veteran Access, Choice and Accountability Act of 2014, Section 702. Section 702 targets educational assistance through ensuring in-state tuition/in-district rates to uniformed services veterans and their qualified dependents covered under this Section. These new requirements will ensure that our Nation’s recently discharged Veterans, and their eligible family members, will not have to bear the cost of out-of-state charges while using their well-deserved education benefits.

The following individuals shall be charged the in-state/in-district rate, or otherwise considered a resident, for tuition purposes:

- A veteran using educational assistance under either chapter 30 (Montgomery G.I. Bill – Active Duty Program), chapter 31 (Vocational Rehabilitation and Employment), or chapter 33 (Post-9/11 G.I. Bill), of title 38, United States Code, who lives in the state of Missouri while attending a school located in the state of Missouri (regardless of his/her formal state of residence) and enrolls in the school within three years of discharge from a period of active duty service of 90 days or more.
- Anyone using transferred Post-9/11 GI Bill benefits (38 U.S.C. § 3319) who lives in the state of Missouri while attending a school located in the state of Missouri (regardless of his/her formal state of residence) and enrolls in the school within three years of the transferor’s discharge from a period of active duty service of 90 days or more.
- Anyone described above while he or she remains continuously enrolled (other than during regularly scheduled breaks between courses, semesters, or terms) at the same school. The person so described must have enrolled in the school prior to the expiration of the three year period following discharge or release as described
above and must be using educational benefits under either chapter 30 or chapter 33, of title 38, United States Code.

- Anyone using benefits under the Marine Gunnery Sergeant John David Fry Scholarship (38 U.S.C. & 3311(b)(9)) who lives in Missouri while attending a school located in Missouri (regardless of his/her formal State of residence).
- Anyone using transferred Post-9/11 G.I. Bill benefits (38 U.S.C. & 3319) who lives in Missouri while attending a school located in Missouri (regardless of his/her formal state of residence) and the transferor is a member of the uniformed service who is serving on active duty.

For more information contact the VA representative at:

Office of the Registrar
103 Parker Hall, 300 W. 13th St.
Rolla, MO 65409-0930
573-341-4181
registrar@mst.edu
ADMISSIONS AND ACADEMIC PROGRAM PROCEDURES

Admission to Graduate Study
Any person who holds a bachelor’s degree, a master’s degree, or any equivalent degree from a college of good standing and who wishes to enroll as a graduate student at Missouri S&T must submit all required application materials to admissions. Required materials include an online application, an official transcript sent from all undergraduate and any graduate institutions, standardized test scores (GRE or GMAT) if required by your academic program and non-refundable application fee of $55 for U.S. citizens and permanent residents or $75 for international applicants payable to Missouri S&T. Other application materials may be required by individual programs, so please refer to the department’s website or entry in the Areas of Study section of this catalog to find out the specific admission requirements for your prospective degree program. All graduate school admissions must be approved by the chair or designate of the appropriate department, as well as the dean of graduate studies.

Application Deadlines for U.S. Students
Application materials must be received by the Missouri S&T office of admissions by the following dates:

- Fall semester – July 15
- Spring semester – December 15
- Summer session – May 1

International Student Admission
Students from outside the United States who wish to enroll at Missouri S&T are required to submit all application materials required by their prospective department, as well as to demonstrate a command of English sufficient to pursue graduate work at Missouri S&T. International students for whom English is a second language, or whose schooling has been conducted in another language, must demonstrate sufficient command of English to successfully pursue work at Missouri University of Science and Technology by doing one of the following:

I. Take the Test of English as a Foreign Language (TOEFL).
The campus minimum for TOEFL scores is 79 (internet-based scoring). Departmental minimum acceptable scores are listed on the office of graduate studies’ website or entry in the areas of study sections of this catalog.

Students may obtain TOEFL information from:

Test of English as a Foreign Language
Educational Testing Service
Box 899
Princeton, NJ 08540 USA
http://www.ets.org/toefl

The TOEFL Bulletin of Information and registration form may also be obtained in a number of cities outside the United States, and are often available at American embassies and consulates, Offices of the United States Information Service (USIS), United States educational commissions and foundations abroad, and binational centers.

Students seeking Taiwanese editions of the TOEFL should apply to:

Language Center
2-1 Hsuchow Road

Taipei, Taiwan

TOEFL scores should be sent directly to Missouri S&T, using school code 6876.

II. Take the International English Language Testing System (IELTS) exam.
The minimum acceptable overall band score on the IELTS exam is 6.5 for campus. Departmental minimums are listed on each department’s website or entry in the areas of study sections of this catalog.

Students may obtain test information from:

IELTS Administration
7900 W. Division
River Forest, IL 60305
http://www.ielts.org

III. Attend and satisfactorily complete an Intensive English Program (IEP) within Missouri S&T’s Applied Language Institute.
Students who enroll in an IEP must complete that program to the satisfaction of its director and academic coordinator (i.e. satisfy all graduation requirements) before they are allowed to enroll in full-time academic coursework. A student enrolled in an IEP may simultaneously enroll for a part-time academic course load with the approval of his or her academic department chair or designate, the director of the intensive English program, and the dean of graduate studies. Students may also submit proof of successful completion of a commission on English language program accreditation (CEA) recognized English as a second language (ESL) program.

International Transfer Students
An international student enrolled in another American college or university is eligible to transfer to Missouri S&T if he or she meets the following criteria:

- has been enrolled full-time at the school he or she was last authorized to attend during the term immediately preceding the transfer or last preceding vacation period
- applies to and is accepted at Missouri S&T
- plans to be a full-time student at Missouri S&T
- is financially able to attend Missouri S&T

International students must
- Pay all expenses while at Missouri S&T. In most departments, financial assistance, in the form of research and/or teaching assistantships, is available to some qualified applicants. International students are encouraged to contact the academic department to apply for these competitive assistantships.
- Submit a health history and immunization record to the Missouri S&T Health Services office.

Contact the Missouri S&T international and cultural affairs office (ia@mst.edu) regarding required immigration documents for SEVIS transfer within the United States.
Application Deadlines for International Students
Application materials for overseas students and international students who are already in the U.S. but who want to transfer to Missouri S&T into a different degree level or into a different degree program must be received in the Missouri S&T office of admissions by the following dates:

- Fall semester – June 15
- Spring semester – November 15
- Summer session – April 1

Application materials for state-side applicants transferring to Missouri S&T at the same degree level and the same degree program (straight transfer) must be received in the Missouri S&T office of admissions by the following dates:

- Fall semester – July 15
- Spring semester – December 15
- Summer session – May 1

Applications, transcripts, English proficiency test scores (if applicable), required immigration documents, and any other materials required by an individual degree program must be received by the above dates in order to facilitate the student’s admittance to Missouri S&T. Students whose credentials are not complete or are still being processed by the above dates may have their admission delayed. Students are strongly encouraged to submit their complete application package as early as possible, to ensure that all documents can be processed in a timely manner.

Readmission After a Lapse in Enrollment
Main campus students who do not register for one semester must complete and submit a Former Graduate Student Refresh Registration (SRR) Eligibility Form (available at http://registrar.mst.edu) in order to reinstate their registration. Distance education students who do not register for three consecutive semesters must complete and submit the SRR form to reinstate their registration. A returning student can use this form to reestablish his or her admission status, provided that the student:

- has a graduate GPA greater than 3.0
- has received fewer than nine credit hours of F and/or C grades
- has taken his or her first graduate course within the past six years
- has taken fewer than twelve credit hours under probational M.S. status

All these criteria must be met in order for the student to reestablish active status as a regular graduate student. If any of these criteria are not met, the student must reapply for graduate admission to his or her former department. A student who wishes to change departments or change from non-degree status to regular or probational graduate status must submit a complete graduate admissions application package to his or her prospective department.

Admission Categories and Graduate Student Classifications
Graduate students at Missouri S&T are admitted or classified in one of the following categories:

Regular Status
Admission as a regular graduate student is normally limited to those who ranked in the upper third of their baccalaureate graduating class or who have done quality work at the graduate level. For this requirement, a cumulative B average (3.0 GPA on a 4.0 scale), or a B average (3.0 GPA on a 4.0 scale) for the student’s last sixty credit hours of undergraduate coursework is considered equivalent to an upper one-third standing. If the student’s undergraduate coursework does not meet the standards of the graduate degree granting department, the student may be required to take additional courses, for non-graduate credit, as determined by the chair or designate of the academic department. For more specific information about minimum GPA requirements, please consult your prospective department’s website or entry in the areas of study section of this catalog.

Probational Status
Any person not eligible for admission as a regular graduate student may be considered for admission as a probational graduate student. Probational graduate admission is normally limited to those students who ranked in the upper one-half of their baccalaureate graduating class, or who have achieved at least a cumulative 2.75 GPA (on a 4.0 scale) for their entire undergraduate career, or a 2.75 GPA (on a 4.0 scale) for their last sixty credit hours of undergraduate coursework. Minimum GPA requirements for particular departments may be set higher; so please consult your prospective department’s website or entry in the areas of study sections of this catalog for more specific information.

Any probational graduate student who subsequently desires to pursue a degree as a regular graduate student may apply to change his or her status from “probational” to “regular.” However, such consideration is not permitted until the probational graduate student has completed a minimum of twelve credit hours of graduate coursework with a cumulative grade point average of 3.0 or higher. After these initial twelve hours are completed satisfactorily, the probational student may, with the concurrence of his or her advisor, apply for regular student status by submitting Form 1. The approval of Form 1 by the department chair and the dean of graduate studies confers “regular” status to a formerly “probational” graduate student.

Only those credits completed as a probational graduate student that are subsequently approved by the student’s advisor, department chair, and dean of graduate studies may be applied toward a graduate degree. However, all coursework completed as a probational graduate student, as well as the student’s GRE scores, will be considered relevant to this change-of-status decision. Probational graduate students may retain their probational status for no more than one additional semester after completing their first twelve hours of graduate coursework. Regardless of the student’s admission status, all completed graduate coursework (excluding 5000, 6000, and graduate research) will apply toward the student’s cumulative GPA. Students with probational status are not allowed to register for graduate research credit until the semester in which the minimum of twelve credit hours of graduate coursework that form the proposed schedule on Form 1 will be completed.

Non-degree Status
Any prospective student who wishes to study at the graduate level but who does not intend to pursue a graduate degree or graduate certificate may be considered for admission as a non-degree graduate student. Typically, this category of admission applies to, but is not restricted to, individuals who have a job-related need for a particular graduate-level course. Admission to non-degree graduate student status requires an application form, official transcripts, and an application fee, but neither GRE nor GMAT scores are required. Prospective students seeking admission in this category are encouraged to refer to their prospective department’s website or entry in the areas of study section of this catalog.
Graduate Student Forms

With the help of their advisors and department chairs, all graduate students must complete and submit a series of forms to the office of graduate studies throughout the course of their degree programs. These forms are used to indicate academic intentions, details of degree programs, membership of advisory committees, and performance on various examinations. All graduate student forms are available online at http://grad.mst.edu/currentstudents/forms/.

Graduate Student Appeals

Graduate students at Missouri S&T have the right to appeal decisions made about their performance or their status. For details regarding the appeals procedure, please refer to the Student Academic Regulations Handbook, available online at http://registrar.mst.edu/academicregs/.

Graduate Student Registration

The graduate student registration guidelines are outlined in Policy Memorandum No. II-20, which is available at http://chancellor.mst.edu/policy/. The policies below are taken directly from that document.

A. Registration Guidelines for All Graduate Degree Candidates

1. The full-time load for graduate students is a minimum of nine credit hours for each fall and spring semester and three credit hours for a summer session.
2. Students possessing an F-1 or J-1 student visa may be subject to additional course enrollment requirements in order to retain their student visas.
3. Students may also be subject to the registration requirements of other agencies, such as federal financial aid, etc.
4. All graduate teaching and research assistants (GTA/GRA), including graduate assistants (GA), graduate instructors, and teaching fellows, are required to be enrolled for at least nine credit hours each fall and spring semester and three credit hours during summer session.
5. Graduate students using campus resources* will enroll for credits consistent with their usage, as determined by their department and their own needs for credit. But in no case shall they be enrolled for less than three hours each fall and spring semester or summer session. Graduate students not using campus resources during a summer session are not required to be enrolled in the summer session.
6. On-campus graduate students conducting off-campus research for credit must obtain advance approval from the department chair and the office of the dean of graduate studies.
7. When a graduate student takes the master’s comprehensive exam, doctoral qualifying exam, doctoral comprehensive exam, or defends his/her thesis or dissertation they must be enrolled on the date of the exam/defense. Failure to do so may invalidate the exam or final defense.
8. If a graduate student takes the master’s comprehensive exam, doctoral qualifying exam, doctoral comprehensive exam, or defends his or her thesis or dissertation during the intersession, then an examination-only fee is appropriate by enrolling in one credit hour of Oral Examination, 5040/6040. Intersession, for the purposes of this section, refers to the specific interval of time between the closing date of one academic session (a semester or summer session) and beginning of classes for the academic session that immediately follows.
9. A one-time only exit semester exemption of full-time enrollment is available to students on an F-1 or J-1 visa in the terminal semester of studies at Missouri S&T. If a student does not graduate at the end of the semester of reduced enrollment, full-time enrollment will be required in each and every subsequent semester until the student graduates. Full-time enrollment consists of at least nine credit hours in each fall and spring semester and at least three credit hours for each summer session until the student graduates. This may adversely affect the student’s availability for co-op or Curricular Practical Training.

B. Other Registration Guidelines for Candidates for a Doctoral Degree

1. A student actively engaged in research work toward the degree must be enrolled for credit commensurate with this activity, but in no case fewer than three credit hours each fall and spring semester or summer session.
2. After completing the residency requirement and passing the comprehensive examination for the doctoral degree, the student must remain enrolled until completion of the degree. Failure to do so may invalidate the candidacy.
3. When all requirements except the defense and submission of the final dissertation have been completed, and the candidate is not using any university resources\footnote{University resources include but are not limited to: student health; library; recreation facilities; faculty/staff at Missouri S&T; etc.}, he or she may enroll for at least one credit hour of continuous registration for each registration period until the degree is completed. Failure to do so may invalidate the candidacy.

4. Once application for continuous registration is made and the Continuous Registration Form is approved, registration and billing will be automatic after the student passes the comprehensive examination.

5. Continuous Registration 6050 for F-1 and J-1 visa holders may be allowed only during summer sessions and only if the student is finishing the degree requirements prior to the beginning of the next fall semester.

6. Interruption of continuous registration due to failure to comply (e.g., non-payment) may result in the need for readmission under requirements then in effect.

C. Other Registration Guidelines for Candidates for a Master’s Degree

An examination-only fee, achieved by enrolling in one credit hour of Oral Examination, 5040/6040, is an appropriate substitute for the three-credit-hour minimum enrollment requirement when a master’s degree student who has (in a previous session) completed all other requirements for the degree and is no longer an on-campus student returns at any time during the semester to defend the thesis or take the M.S. comprehensive examination.

D. Other Registration Considerations

Students enrolled in oral examination only during an intersession but who fail to submit the final copy of thesis/dissertation by the last business day before the next academic session must register for at least one credit hour of graduate research through the end of the third week of the summer session. All non-resident students on appointment during the spring semester may enroll at the in-state educational fee rate the following summer semester. If the Thesis/Dissertation Approval and Report on Examination for Master’s/Doctoral Degree and the final copy of the thesis/dissertation are not submitted by that time, the student will enroll in at least three but no more than nine credit hours, depending on the student’s individual circumstances.

Credit Hours of Coursework

<table>
<thead>
<tr>
<th>Appointment</th>
<th>Regular Semester</th>
<th>Summer Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250 FTE Grad. Asst.</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>0.375 FTE Grad. Asst.</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>0.500 FTE Grad. Asst.</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>0.625 FTE Grad. Asst.</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>0.750 FTE Grad. Asst.</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Graduate Instructor</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Teaching Fellow</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

In addition to the above schedule, any graduate student may enroll for no more than one credit hour in graduate seminar courses in a given semester.

Enrollment Requirements and Funding Structure for Students on GTA/GRA/GA of 0.25 FTE or More

Graduate assistants employed by Missouri S&T as graduate teaching assistants (GTA), graduate research assistants (GRA), or who receive university or departmental fellowships at the 0.25 FTE or higher level, are expected to enroll in at least nine credit hours per academic semester.

Students hired in these positions will pay regular educational fees for the first six hours; the educational fees for all hours beyond the first six hours will be covered by a fee waiver. This policy is known as the 6/9 rule. All other charges and fees, including the engineering course supplementary fee, are not covered by this fee waiver. Furthermore, only courses for the graduate degree that are approved on Forms 1,1-A, or 5,5-A, or prerequisites for these courses, shall be covered by the fee waiver under the 6/9 rule.

All graduate funding is subject to change.

Enrollment Requirements and Funding Structure for Doctoral Students on GTA/GRA/GA of 0.375 FTE or More

Doctoral graduate assistants employed by Missouri S&T as graduate teaching assistants (GTA), graduate research assistants (GRA), or who received university or departmental fellowships at the 0.375 FTE or higher level are expected to enroll in at least nine credit hours per academic semester. Doctoral students hired in these positions will have educational fees and supplemental fees waived for those courses in their primary program of study. All other charges and fees are not covered by this fee waiver. Furthermore, only on-campus courses for the graduate degree that are approved on Forms 5 and/or 5-A shall be covered by the fee waiver.

Students pursuing a doctoral degree program after a master’s degree program may receive four years of tuition and supplemental fees support.
Students pursuing a doctoral degree program directly after a bachelor’s degree program may receive five years of tuition and supplemental fees support.

Funding is only available for a student’s primary program of study. Additional programs are ineligible. If a student changes their primary program, funding will only be available for the total years of support listed above and no longer, even if the change results in a longer degree completion time frame.

All graduate funding is subject to change.

Enrollment Requirements and Funding Structure for Master’s Students in Non-Doctoral Granting Departments on GTA/GA of 0.375 FTE or More

Master’s students in non-doctoral granting departments employed by Missouri S&T as graduate teaching assistants (GTA), research assistants (GRA), or who received university or departmental fellowships at the 0.375 FTE or higher level are expected to enroll in at least nine credit hours per academic semester. Master’s students in non-doctoral granting departments hired in these positions will have educational fees and supplemental fees waived for those courses in their primary program of study. All other charges and fees are not covered by this fee waiver. Furthermore, only on-campus courses for the graduate degree that are approved on Forms 1 and/or 1-A shall be covered by the fee waiver. Master’s students eligible for the funding can receive two years of tuition and supplemental fees support.

Funding is only available for a student’s primary program of study. Additional programs are ineligible. If a student changes their primary program, funding will only be available for the total years of support listed above and no longer, even if the change results in a longer degree completion time frame.

All graduate funding is subject to change.

Grading System for Graduate Students

Grades in graduate courses, with the exception of the below listed pass/fail courses, are A, B, C, and F. “A” is an honor grade and indicates outstanding work. “B” means that the work is entirely satisfactory. “C” means that the work will be considered satisfactory, to a limited extent, in fulfilling the requirements for advanced degrees. “F” means that the student has not earned credit for the course. 6050, 5080/6080, 5085/6085, and graduate research grades are satisfactory (S) and unsatisfactory (U). Grades of “S” and “U” are also permitted for courses numbered 5000, 5010, 6000, and 6010. For ongoing graduate research, a delayed grade (DL) can be used. Delayed grades are sometimes assigned to students enrolled in graduate research until all of the research has been satisfactorily completed and the thesis or dissertation is successfully defended. Delayed grades may be changed to “S” upon satisfactory completion of the research or “U” if the research is not satisfactorily completed.

The grade of incomplete (I) is given only at the end of a semester or session in which the student is prevented from completing a course due to sickness or unavoidable absence within the last four weeks of a semester or session (three weeks of class plus finals week). Incomplete grades can be assigned only if the student had earned a passing grade in the course up to the time of such sickness or unavoidable absence.

Effective Winter 2001, students must complete the work in which they are deficient within one year from the close of the semester in which the Incomplete (I) grade was recorded. Failure to do so will cause the incomplete grade to be changed automatically to an “F” or a “U.” Effective Fall 1992, a student may not withdraw from a course in which he or she receives a grade of incomplete.

GPA Requirements for Graduate Students

In order to earn a graduate degree, all students must achieve a cumulative GPA of 3.0 or higher in all graduate work taken at Missouri S&T, as well as for all graduate courses listed on the program of study (Form 1 for master’s students and Form 5 for doctoral students). This 3.0 GPA requirement does not apply to courses taken for undergraduate credit. No substitutions may be made on the program of study for courses in which the student has earned less than a B grade. All graduate students are encouraged to maintain at least a 3.0 cumulative GPA at all times, and certain departments may even require this minimum GPA. In cases where a graduate student repeats a course, both the original and repeat grades will be used in calculating the student’s GPA, and both will appear on the student’s transcript.

A graduate student who accumulates ten or more credit hours of C or F grades shall no longer be a candidate for a graduate degree or certificate from Missouri S&T. This rule does not apply to courses taken for undergraduate credit, nor does it apply to courses taken outside of the respective degree or certificate completion time limits. This grade requirement is cumulative over all degree programs (M.S. plus Ph.D., M.S. plus a second M.S., etc.) and is not per degree program.

Graduate Learning Outcomes

The Graduate Learning Outcomes for Missouri University of Science and Technology as required by the Higher Learning Commission are listed below.

1. Knowledge: an ability to apply knowledge of subject matter within their field of study
2. Communication: an ability to communicate effectively within their field of study
3. Critical Thinking: an ability to engage in productive critical thinking within their field of study
4. Professional Development: an ability to develop professionally within their field of study.

Certification of Enrollment Status

Students who must send certification of enrollment status to their lending agencies may apply for these certifications at the registrar’s office, using the form located at: http://registrar.mst.edu/media/administrative/registrar/documents/certlet.pdf. Certification of full-time or half-time status is based upon the number of credit hours for which the student is enrolled and includes courses in which the student is enrolled as a hearer. Full-time status is granted to students enrolled in at least nine credit hours during a regular semester; half-time status is granted to students enrolled in at least four credit hours during a regular semester. For the summer session, at least three credit hours is considered full-time and two credit hours is considered half-time. Hours committed to fulfilling GRA and GTA appointments are not included in enrollment certifications.
Masters Degrees

Master’s Degree Programs at Missouri S&T

Missouri S&T offers three programs leading to master of science degrees: the master of science with thesis (a minimum of thirty credit hours; some programs require more), the master of science without thesis (a minimum of thirty credit hours; some programs require more), and the master of science for teachers. In addition, Missouri S&T offers a master of business administration degree (MBA), a master of engineering degree, and a master of arts degree (the M.A. is offered in cooperation with the University of Missouri-St. Louis).

The beginning graduate student should choose an appropriate degree program in consultation with his or her advisor and with the approval of the department chair. Within the first six weeks of the semester in which the student takes his or her fifteenth graduate credit hour, the student must formally plan the remainder of his or her graduate program in consultation with his or her advisor and selected committee members. For students pursuing the M.S. with thesis, the advisor will also serve as the chairperson of the three-person thesis advisory committee. The chairperson and at least half of the other thesis advisory committee members must be members of the graduate faculty.

After consulting with his or her advisor, the student will complete and submit Form 1 (http://grad.mst.edu/currentstudents/forms/), which outlines the student’s intended program of study. A minimum of one-half of the course requirements for the degree should be completed after the student submits for approval the typed original Form 1 to the department chair and the dean of graduate studies. Students who fail to comply with the deadline to submit Form 1 will have a registration hold placed on their account by the office of graduate studies. If changes to the approved Form 1 occur at any time, the student must submit Form 1-A to revise his or her approved plan of study.

Time Limits for Earning a Master’s Degree

Students may earn a master’s degree only if all graduate credit counted toward the degree has been earned within the previous six years. When recommended by the student’s advisory committee, however, the committee may validate by examination as many as six credit hours of coursework completed outside this six-year time limit.

Transferring Credits Toward a Master’s Degree

A maximum of nine credit hours of coursework for M.S. degrees may be transferred from another university. Such credits must have been registered as graduate courses when they were taken. Students must have earned at least a B grade for all courses to be transferred to a Missouri S&T graduate program, and these transferred courses must be entered as part of the student’s program on Form 1 or 1-A. The Missouri S&T equivalent should be stated, and a transcript that includes the course(s) to be transferred should accompany Form 1. Approval of Form 1 or Form 1-A will allow the transferred course(s) to be entered on the student’s Missouri S&T transcript, but only after the registrar’s office has received the student’s official transcript(s) from his or her previous school(s).

Earning a Second Master’s Degree

A student who has earned a master’s degree at Missouri S&T or elsewhere in one major shall be eligible to earn a second master’s degree in another area upon the satisfactory completion of a minimum of 24 additional credit hours of graduate academic work (thesis or non-thesis). At least three credit hours of required coursework must be from the group of lecture courses bearing numbers in the 6000-series. A maximum of three credit hours of 3000-level courses can be accepted in a second M.S. program. Individual programs may further restrict the number of credit hours of 3000-level courses and specific 4000-level courses counting towards their graduate degree programs. 1000-level and 2000-level courses may never be used. The total graduate credit hours earned in courses numbered 5000, 5010, 6000, and/or 6010 must not exceed four hours. In planning dual, or simultaneous, master’s degrees, students must clearly define on Form 1 which degree is to be completed first. A change in order will require the submission of Form 1-A. International students must contact the international affairs office before attempting to pursue dual master’s degrees.

Master of Science Degree with Thesis

The master of science degree program with thesis requires a minimum of thirty hours of graduate credit and above any prerequisites, but some programs may require more than thirty hours. Please refer to individual program websites or entries in this catalog for information about particular programs. A minimum of six hours of the required coursework must come from the group of 6000-level lecture courses, no credit hours from 1000/2000-level courses, and a maximum of six credit hours of 3000-level coursework may be applied toward certain master’s degree programs, although individual programs may further restrict 3000-level coursework and specific 4000-level courses counting towards their master’s degree programs. Please consult your program for specific details. Students are encouraged to take at least six credit hours of coursework outside their major program. In addition, the program of study (Form 1) must include at least six hours of graduate research and a minimum of eighteen hours of 3000-, 4000-, 5000-, and 6000-level lecture courses. The program of study may also include up to nine credit hours of coursework transferred from another university. When a student has co-advisors in different departments, the student’s graduate research credit may be shared by all departments involved. Research will normally be conducted on the Missouri S&T campus, but in special cases, all or part of the research may be conducted elsewhere. Off-campus research must be supervised by a member of the Missouri S&T faculty, and must have the prior written approval of the student’s graduate advisor, department chair, and the dean of graduate studies (the application to do non-resident research is available at http://grad.mst.edu/currentstudents/forms/). Care must be taken to ensure that an off-campus research endeavor will result in educational experiences equivalent or superior to those that a student might expect to have at Missouri S&T.

Master’s Thesis

The findings and results of research undertaken by the candidate for a master’s degree must be presented in a written thesis. A manual entitled “Specifications for Thesis and Dissertations” is available at
http://grad.mst.edu/currentstudents/thesisdissertationinformation/formatting/. This manual outlines the specific requirements for the thesis. Effective June 1, 2013, the final copy of the thesis must be submitted electronically unless an indefinite hold is being placed on the thesis.

Oral Examination, or Master’s Thesis Defense
When the thesis is completed, the candidate distributes a copy to each member of his or her advisory committee and arranges a time and place for the oral examination, or defense, of the thesis. These oral examinations are normally scheduled when the university is officially in session, and the candidate must be enrolled at the time of the examination. An on-campus candidate for a graduate degree may enroll during the intersession for the final examination only (course 5040) for no hours of credit and pay the examination fee. Each committee member should be allowed to examine the thesis for at least seven working days before the oral defense. The defense may be comprehensive in character, and the candidate should be able to demonstrate an acceptable level of knowledge of a professional area, as defined by his or her degree program.

In order for the candidate to pass the examination, every member of the examining committee must vote affirmatively. If any member votes not to pass the candidate, the dean of graduate studies shall appoint a new examining committee on which the dissenting member may be replaced, and the new committee will administer a second examination. A student who fails a second time will no longer be eligible to receive a graduate degree from that program. However, the student is still eligible to pursue a graduate degree from any other graduate degree program willing to accept him or her.

Immediately following the thesis defense, the chair of the examining committee will report the action of the committee (on Form 2) first to the department chair and then to the dean of graduate studies. Approval of Form 2 signifies that the members of the committee examined the thesis closely for both scientific content and format, and determined that it meets the requirements for a master’s degree and is worthy of acceptance by the graduate faculty of Missouri S&T.

Approval and Filing of the Thesis
At the close of a successful thesis defense, the members of the examining committee will sign the Form 2 to signify that they have read and approved the thesis. If the committee indicates that corrections must be made to the thesis, the student must make such corrections and then seek approval of the revised thesis from the committee members and obtain the necessary signatures. The final approved copy of the thesis is then taken to the office of graduate studies, where it is carefully checked to ensure that the document is properly formatted according to the specifications available online. After the office of graduate studies approves the document, it is submitted electronically (unless there is an indefinite hold) to the electronic thesis/dissertation (ETD) website. Liberal choices are allowed relative to the style manual used in the preparation of the thesis. However, approval of the thesis requires strict adherence to the style manual selected, and must reflect a level of quality suitable for professional publication. Upon departmental request, the student may present one copy of the approved thesis to the department chair and one to the thesis advisor, and may choose to retain one copy for his or her personal records.

Procedures for Earning the Master of Science Degree with Thesis
All master’s degree students must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to a master of science degree program and who are writing a thesis must adhere to the following procedures.

1. The student will consult with the graduate advisor about course scheduling and registering for classes.
2. The student will select an advisor and committee, and complete Form 1 (typed original) within six weeks of the beginning of the semester in which the student takes his or her fifteenth graduate credit hour. Students who fail to comply with this deadline will have a registration hold placed on their account.
3. The student will complete academic requirements.
4. The student will check with the registrar to make application for graduation within four weeks of the beginning of the student’s final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation though their JoeSS account.
5. The student will arrange a date, time, and place for the oral examination, or thesis defense, and forward this information to the office of graduate studies electronically. The student must be enrolled at the time of oral examination.
6. The student will distribute copies of the thesis to all members of the examining committee at least seven working days before the oral examination.
7. The chair of the examining committee will report the action of the committee to the office of graduate studies by submitting a typed original Form 2, accompanied by a hard copy of the committee approved thesis for format check.
8. Once the format check is complete the office of graduate studies will direct the student to submit the final copy of the thesis electronically to the ETD website, provided the student has fulfilled all academic requirements and has paid all enrollment or examination fees.
9. Upon departmental request, the student may present one copy of the approved thesis to the department chair and one to the thesis advisor, and may retain one copy for his or her personal records.
10. The Board of Curators will, upon the recommendation of the graduate faculty, grant the student the master of science degree when all degree requirements are met and all enrollment or examination fees have been paid.

Master of Science Degree without Thesis
The master’s degree program without thesis requires a minimum of thirty hours of graduate credit over and above any prerequisites, but some departments may require more than thirty hours. Please refer to individual department websites or entries in the areas of study sections of this catalog for information about particular programs. A minimum of nine credit hours of the required coursework must come from the group of 6000-level lecture courses, no credit hours from 1000/2000-level courses, and a maximum of six credit hours of 3000-level coursework may be applied toward certain master’s degree programs, although individual programs may further restrict 3000-level coursework and specific 4000-level courses counting towards their master’s degree program. Please consult your department for specific details. Students are encouraged to take at least six credit hours of coursework outside their major department. Students are limited to a maximum of four credit hours in courses numbered 5000, 5010, 6000, and/or 6010 on
their program of study. Non-thesis students are not allowed to include graduate research on a program of study.

Master's Comprehensive Examination

Most master's degree programs at Missouri S&T do not require students to take a comprehensive written examination. Please consult your department's website or areas of study sections of this catalog to determine if the comprehensive examination is required for master's degree candidates.

For those students whose department requires it, the master's degree candidate must successfully complete a final written comprehensive examination that is administered by an examining committee. The members of this committee are chosen by the candidate, in consultation with his or her advisor and department chair. The department chair then submits for approval the names of four faculty members and that of the major advisor to the dean of graduate studies, using Form 1-B. The committee must consist of at least five members, including at least one person from outside the candidate's major department. The chair and at least one half of the members of this committee should belong to the graduate faculty.

The comprehensive written examination will be given only once each semester or summer session and not earlier than six weeks before the last Friday of the semester or three weeks before the end of the summer session. The candidate will receive a passing grade if all, or all but one, of the members’ votes to pass. A student who fails the examination must take it again at the next regularly scheduled examination time. A student who fails the examination a second time will no longer be eligible to receive a graduate degree from that program. However, the student is still eligible to pursue a graduate degree from any other graduate degree program willing to accept him or her.

Procedures for Earning the Master of Science Degree without Thesis

All master's degree students must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to a master of science degree program who are not writing a thesis but who are taking a comprehensive examination must adhere to the following procedures.

1. The student will consult with the graduate advisor about course scheduling, and register for classes.
2. The student will select an advisor, and complete Form 1 (typed original) within six weeks of the beginning of the semester in which the student takes his or her fifteenth graduate credit hour. Students who fail to comply with this deadline will have a registration hold placed on their account.
3. The student will complete academic requirements.
4. The student will check with the registrar to make application for graduation within four weeks of the beginning of the student's final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation through their Joe'SS account.
5. The student will work with the graduate advisor and the department chair to complete and submit Form 1-B, which identifies potential members of the student’s examining committee.
6. The dean of graduate studies will formally appoint the student's examining committee.
7. The student will take the written comprehensive examination. An on-campus candidate for a graduate degree may enroll during the intersession for the final examination only (course 5040) for no hours of credit and pay the examination fee.
8. The chair of the examining committee will report the action of the committee to the office of graduate studies, using Form 3.
9. The Board of Curators will, upon the recommendation of the graduate faculty, grant the student the master of science degree when all degree requirements are met and all enrollment or examination fees have been paid.

Procedures for Earning the Master of Science Degree, Coursework Only

All master's degree students must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to a master of science degree program who are not writing a thesis and who are not required to pass a comprehensive examination must adhere to the following procedures.

1. The student will consult with the graduate advisor about course scheduling, and register for classes.
2. The student will select an advisor and complete Form 1 (typed original) within six weeks of the beginning of the semester in which the student takes his or her fifteenth graduate credit hour. Students who fail to comply with this deadline will have a registration hold placed on their account.
3. The student will complete academic requirements.
4. The student will check with the registrar to make application for graduation within four weeks of the beginning of the student's final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation through their Joe'SS account.
5. The Board of Curators will, upon the recommendation of the graduate faculty, grant the student the master of science degree when all degree requirements are met and all enrollment or examination fees have been paid.

Master of Science Degree for Teachers

The master of science for teachers degree program is primarily designed for high school teachers in the sciences and mathematics who want to further their education and earn an advanced degree. The master of science for teachers degree is offered through the departments of chemistry, mathematics, and physics. More information about these specific degree programs is available on the departmental websites and in the areas of study sections of this catalog.

Admission to the Master of Science for Teachers Program

Because of possible variation in the preparation and academic background of prospective master of science for teachers students, the program of each admitted student will be planned and supervised by an advisory committee approved by the dean of graduate studies. To be admitted into this program, the prospective student must have:

- A degree from an accredited college.
- A teaching certificate for mathematics, biology, earth science, physics, or unified sciences.
- Previous training totaling a minimum of 36 credit hours in mathematics and sciences, including at least 24 credit hours in any of the following areas: biology, chemistry, geology, mathematics,
or physics. The department chair may modify or waive these requirements, if necessary, on a case-by-case basis.

- A complete application package, including an application form, official undergraduate and graduate transcripts, official graduate record examination (GRE) score (if required), and an application fee.

General Requirements for the Master of Science for Teachers Program

Students admitted to the master of science for teachers program must complete at least thirty credit hours of courses numbered 3000 or higher in sciences and mathematics. These must include at least one course of three hours or more numbered 6000 or above, exclusive of courses numbered 5000, 5010, 6000, 6010, and/or any graduate research credit. A maximum of nine credit hours may be transferred from other colleges or universities. The entire program must be outlined on Form 1 and submitted to the dean of graduate studies for approval. The cumulative GPA for all courses on the student's Form 1 must be 3.0 or higher.

Upon near completion of the student's coursework, the student must satisfactorily pass comprehensive oral and written final examinations (if required by their department). A committee, appointed by the dean of graduate studies, will administer and evaluate both examinations for each candidate.

Specific requirements for individual majors enrolled in the master of science for teachers program are described on each department's website and in the areas of study sections of this catalog.

Master of Engineering Degree

The master of engineering (M.E.) degree program is designed for full-time students who are able to complete the degree requirements on campus within a single year, as well as for students who have jobs in industry and who thus choose to access this program through distance education. This degree program is practice oriented, and students are expected to complete a significant project in the course of their studies. Currently, the departments of geotechnics, manufacturing engineering, and mining engineering offer the master of engineering degree. Students interested in pursuing the Master of Engineering degree should consult with an academic advisor and seek approval of the program director in the department of their choice.

General Requirements for the Master of Engineering Degree

The master of engineering degree program with project requires a minimum of thirty hours of graduate credit over and above any prerequisites. A minimum of six credit hours of the required coursework must come from the group of 6000-level lecture courses in the major field of study (not required for mining engineering). A maximum of six hours of 3000-level coursework can be applied toward the M.E. Degree (individual programs may further restrict 3000-level courses and specific 4000-level courses counting toward their graduate degree programs). A minimum of one three-hour practice-oriented project is required for all M.E. candidates, through taking at least three credit hours of any of the graduate courses 5000, 5080, 6000, or 6080. The findings and results of the practice-oriented project must be presented in a written report, and some programs may require the candidate to make an oral presentation as well. Care will be taken to provide distance education students with an industrial project that promises education experiences equivalent or superior to those that students working on the campus of Missouri S&T might expect to have. Specific requirements for individual master of engineering degree programs are described on each department's website and in the areas of study sections of this catalog.

Procedures for Earning the Master of Engineering Degree

All students in a master of engineering degree program must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to a master of engineering degree program must adhere to the following procedures:

1. The student will consult with the graduate advisor about course scheduling, and register for classes.
2. The student will select an advisor, and complete Form 1 (typed original) within six weeks of the beginning of the semester in which the student takes his or her fifteenth graduate credit hour. Students who fail to comply with this deadline will have a registration hold placed on their account.
3. The student will complete academic requirements.
4. The student will check with the registrar to make application for graduation within four weeks of the beginning of the student's final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation through their JoeSS account.
5. The student will submit the practice-oriented project report to the graduate advisor. (Some programs may also require the student to make an oral presentation based on the report.)
6. The advisor will advise the program director of the results of the report. The program director will complete Form 3 and submit it to the dean of graduate studies. The Board of Curators will, upon the recommendation of the graduate faculty, grant the student the master of engineering degree when all graduation requirements are met and all enrollment or examination fees have been paid.

Master of Business Administration (MBA) Degree

The business and information technology department offers a unique master of business administration (MBA) degree. The MBA degree integrates core business knowledge and the latest information technology, management, leadership, and entrepreneurship knowledge. In addition to developing influential presentation skills and advanced problem solving competencies, the MBA education develops advanced strategic thinking skills that are required of the leaders of today and tomorrow.

The MBA requires 36 hours of coursework and students can complete the degree program in as little as 18 months of full-time study or three years in our part-time MBA track. Students take 21 hours of core course work and choose 15 hours of electives.

The MBA program is unique in that graduate certificates are offered that may be completed within the MBA program requirements. The part-time executive MBA is offered on-campus or entirely through distance education.

General Requirements for the MBA Program

The master of business administration program requires a minimum of 36 credit hours of graduate coursework for successful program completion.
Within the 36 credit hours of graduate coursework, students must complete 21 credit hours of core classes and 15 credit hours of electives. These elective credits allow candidates to pursue a graduate certificate in entrepreneurship and technological innovation, electronic and social commerce, business intelligence, enterprise resource planning, human-computer interaction, management and leadership, mobile business and technology, digital media, project management (information systems), digital supply chain management, project management (engineering management), or psychology of leadership. Additionally, MBA candidates may choose to develop an area of focus to meet individual career goals.

Procedures for Earning the MBA
All master of business administration students must have fulfilled all admissions requirements established by the MBA Admissions Committee. Students admitted to the MBA program must adhere to the normal procedures for master’s degree candidates established by the university dealing with advising, submission of Form I, and submission of applications for graduation.

Master of Arts Degree in Economics and English
The departments of economics and English at Missouri S&T have entered into a cooperative agreement with the corresponding departments at the University of Missouri-St. Louis to offer the master of arts in economics and English. This agreement permits students to take up to twelve hours of graduate credit on the Missouri S&T campus. However, students may take only nine credit hours at the 5000-level. Students interested in enrolling in a master of arts program are required to fulfill all admissions requirements, including English proficiency test scores, if necessary. Specific requirements for individual majors enrolled in the master of arts degree are described on each department’s website and in the areas of study sections of this catalog.

Doctorate Degrees
Doctor of Philosophy (Ph.D.) Degree
The degree of doctor of philosophy is awarded to students who have pursued graduate study without serious interruption, submitted an acceptable dissertation, passed all prescribed examinations, and satisfactorily met all requirements described below. The Missouri S&T graduate faculty attests that recipients of this degree have attained a high level of learning through extensive study in some specialized area of knowledge, and have developed the ability to conduct independent research. Students interested in pursuing the Ph.D. at Missouri S&T must first submit a complete application package. Please consult your prospective department’s website or entry in the areas of study sections of this catalog for further information about admissions requirements for particular programs.

Shared Doctoral Programs
Through its identification of faculty qualified to direct doctoral candidates on all four University of Missouri campuses, Missouri S&T provides a unique opportunity for doctoral students to attain a remarkable breadth of academic experience. Candidates admitted to doctoral status at Missouri S&T may plan, with the consent of their committee, either coursework or research on another University of Missouri campus. Advisory committee membership may also involve more than one campus, and dissertations may be pursued under the direction of an appropriate graduate faculty member on a campus other than Missouri S&T. Residency and other routine requirements of Missouri S&T must be followed. The dean of graduate studies should be involved in planning shared doctoral programs as early as possible, to prevent potential misunderstandings or complications.

Acceptance of Candidates for the Ph.D.
Technically, a student is considered a doctoral-level student only after he or she satisfactorily completes thirty credit hours of graduate study. Students must pass a Ph.D. qualifying examination before they can be formally considered candidates for the doctoral degree, and several departments require the qualifying examination to be passed by the end of the second semester after completion of the M.S. degree. All students wishing to pursue a doctoral degree must pass the qualifying examination no later than the fifth semester of enrollment as a graduate student in the doctoral program. The proposed Ph.D. program of study (Form 5, http://grad.mst.edu/currentstudents/forms/) must be submitted by the end of the semester in which the student passes his or her qualifying examination, but no later than six weeks into the fifth semester of enrollment. This examination may be taken after the student has been accepted to Missouri S&T but prior to the student’s initial enrollment, if the student desires. The department chair will report the results of the qualifying examination to the office of graduate studies using Form 4 (http://grad.mst.edu/currentstudents/forms/).

A student will be formally accepted as a candidate for a doctoral degree after (1) he or she passes the qualifying exam and (2) his or her program of study, Form 5, has been approved by the advisory committee, the department chair, and the dean of graduate studies.

After passing the qualifying exam, the doctoral candidate will consult with an advisor of his or her choice to select an advisory committee. The committee will consist of at least five members, and the chair of the committee and at least three other members should belong to the graduate faculty. The advisory committee must include at least one member from outside the candidate’s major department. One member of the committee should also be designated to represent the department most closely associated with any minor field of study elected by the student. The names of the proposed members of the advisory committee will be listed on Form 5 (http://grad.mst.edu/currentstudents/forms/) and sent by the student’s department chair to the office of graduate studies for formal appointment. Additional members and replacement members may be appointed using Form 5-A.

Doctoral candidates are encouraged to make effective use of their advisory committee by:

- submitting a written description of the proposed research to the members of the committee as soon as the dissertation topic is decided
- obtaining written approval of the committee indicating that the proposed research is of Ph.D. caliber
- submitting periodic progress reports to the committee and discussing them with individual committee members or with the committee as a group (the frequency of the reports and the method of discussion should be determined by the committee)

A person who has held the rank of assistant professor or higher at Missouri S&T is not eligible to become a candidate for the Ph.D. at this institution.

Proposed Program of Study for the Ph.D.
Any student admitted to a doctoral program who has not already received a master’s degree should consult with his or her advisor about a proposed program of study. An advisory committee (listed on Form

Graduate Catalog 2018-2019
The doctoral program will include at least 24 credit hours of graduate study, consisting of at least twelve credit hours of work outside their major area. A plan of training for research or scholarly work in multiple departments, as determined by the advisory committee, but no later than six weeks into the fifth semester of enrollment as a graduate student in the doctoral program.

A doctoral student who has already received a master's degree should also consult with his or her advisor about a proposed program of study, and complete and submit Form 5 to the office of graduate studies for approval before the student enrolls for a second semester. For Ph.D. students who have already earned a master's degree, Form 5 will designate all appropriate graduate work beyond the baccalaureate level to be applied to the doctoral program requirements. Courses listed on a doctoral program of study (Form 5) cannot be listed or have been listed on a program of study (Form 1) for a second, or subsequent master's degree.

Residency Requirement for the Ph.D.
Residency at Missouri S&T is defined as sustained intellectual interactions among the student and the academic community. The candidate for a Ph.D. degree will normally complete three years of residency, which is the equivalent of completing six academic semesters while enrolled as an on-campus student at Missouri S&T. Students holding a master's degree are automatically credited with two semesters of residency.

Students unable to meet the residency requirement given above, such as distance students, can meet this requirement through an alternative route. In consultation with their advisor, the student can utilize other experiences towards meeting the residency requirements. Such experiences include regular contact with the student's advisor, committee members, and other graduate students, participation in a seminar series, etc. Other experiences that would count towards earning residency are listed in a supplemental document available from the office of the dean of graduate studies. It is the responsibility of the student's faculty advisor to document suitable residency experiences each semester.

Ph.D. Qualifying Examination
A qualifying examination will be administered by the faculty of the candidate's major department no later than the fifth semester of enrollment as a graduate student in the doctoral program. The results of this examination will allow the student's advisory committee to assess the student's level of preparation for the Ph.D. degree, and will assist the committee in helping to plan the student's program of study (Form 5). The results of the qualifying examination will be reported on Form 4 and submitted by the department chair to the office of graduate studies.

Subjects of Study for the Ph.D.
The subjects of study for the Ph.D. may be chosen from one or more departments, as determined by the advisory committee, but shall constitute a definite plan of training for research or scholarly investigation in some particular field. Students must designate a major field of study, and are encouraged to select one minor field of study consisting of at least twelve credit hours of work outside their major area of study.

The doctoral program will include at least 24 credit hours of graduate research and a minimum of 24 credit hours of coursework (exclusive of 5000, 5002-5099, 6000, 6002-graduate research) as part of the degree requirements. Deviations from this requirement must receive special approval from the dean of graduate studies. Students are encouraged to enroll in at least fifteen credit hours of 6000-level lecture courses during the span of their doctoral program.

Correspondence and extension courses do not form part of the program for the Ph.D. degree, except as they constitute a part of a master's program. Correspondence and extension courses beyond those allowed for a master's degree may not be applied to a doctoral degree program. Graduate faculty recognize that distance sections of Missouri S&T approved courses number may be applied to the doctoral degree program.

Doctoral research will normally be conducted on the Missouri S&T campus. In special cases, all or part of the research may be conducted elsewhere, but must be supervised by a member of the Missouri S&T faculty. Students who conduct off-campus research must have the prior written approval of their advisor, the department chair, and the dean of graduate studies, as indicated on the non-resident research application (http://grad.mst.edu/currentstudents/forms/).

Transferring Credits for a Ph.D. Degree
Course work taken from another university may be transferred to the Ph.D. program. A student who has not earned a master's degree may transfer a maximum of 18 credit hours; students with a master's degree may transfer a maximum of nine credit hours. Such credits must have been registered as graduate courses when they were taken. Students must have earned at least a B grade for all courses to be transferred to a Missouri S&T graduate program, and these transferred courses must be entered as part of the students program on Form 5 or 5A. The Missouri S&T equivalent should be stated and a transcript that includes the course(s) to be transferred should accompany Form 5. Approval of Form 5 or Form 5A will allow the transferred course(s) to be entered on the students Missouri S&T transcript, but only after the registrar's office has received the students' official transcript(s) from his or her previous school(s).

Time Limits for Earning the Ph.D.
The Ph.D. degree will be granted only if all graduate credit counted toward the degree has been earned in the previous eight years, unless a formal request for an extension is initiated by the advisor and approved by the department chair and the dean of graduate studies. An extension, if granted, may involve revising the candidate's program of study to update coursework and research. Students who are enrolled in a documented Ph.D. distance program, such as the one available in systems engineering, must also complete their graduation requirements within eight years. Candidates who have already earned a master's degree or its equivalent (first thirty hours of graduate credit), or who passed the qualifying examination, must have earned all remaining credit toward their degree within the last six years.

Applying prior credits from a master's degree program or its equivalent toward a doctoral degree program is up to the discretion of the student's advisory committee.

Foreign Language Requirements for the Ph.D.
The decision as to any foreign language requirement rests with the department and the doctoral candidate's advisory committee, and descriptions of any foreign language requirement can be found on the departmental websites or in the Areas of Study section of this catalog.
Candidates may fulfill their foreign language requirement, if any, either before or after they take their comprehensive examination.

Ph.D. Comprehensive Examination

The office of graduate studies will authorize the student’s advisory committee to administer a comprehensive examination after the student has completed at least 50% of the coursework required for a doctoral degree, as listed on the student’s approved program of study (Forms 5 and 5-A). Some departments require students to complete 100% of their coursework before they are permitted to take the comprehensive examination; consult your department’s website or entry in the areas of study sections of this catalog for additional details. The format of the comprehensive examination may be either written or oral, or both.

With the approval of the student’s advisory committee, the examination may be administered by the candidate’s department, but the final judgment of the candidate’s performance will be left to the advisory committee.

The results of the comprehensive examination will be sent to the dean of graduate studies, using Form 6B (http://grad.mst.edu/currentstudents/forms/). A student will be considered to have passed the examination if all, or all but one, of the advisory committee members vote that the student pass.

If the student fails the comprehensive examination, the advisory committee will recommend additional work or other remedial measures to the candidate. A second comprehensive examination may be scheduled no sooner than twelve weeks after the student’s first attempt. A student who fails the examination a second time will no longer be eligible to receive a graduate degree from that program. However, the student is still eligible to pursue a graduate degree from any other graduate degree program willing to accept him or her.

Ph.D. Dissertation

The dissertation, embodying the results of an original investigation, must be written upon a subject approved by the student’s major advisor and be formatted in accordance with “Specifications for Theses and Dissertations,” a manual available online at: http://grad.mst.edu/currentstudents/thesisdissertationinformation/formatting/. Effective June 1, 2013, the final copy of the dissertation must be submitted electronically unless an indefinite hold is being placed on the dissertation.

Final Examination, or Ph.D. Dissertation Defense

The final examination is an oral defense of the dissertation and may be attended by any interested person. Attendees may question the candidate with the permission of the chair of the advisory committee.

The dean of graduate studies will authorize the student’s advisory committee to administer the final examination, which may be scheduled no sooner than twelve weeks after the completion of the comprehensive examination. Notice of the final examination, along with the dissertation abstract, shall be publicized by the office of graduate studies at least one week prior to the examination.

The advisory committee shall closely examine the dissertation for both scientific content and format, in order to determine that it meets the requirements for a doctoral degree and is worthy of acceptance by the graduate faculty of Missouri S&T. A report of the examination results will be sent to the office of graduate studies using Form 7 (http://grad.mst.edu/currentstudents/forms/).

A candidate will be considered to have passed the final examination if all, or all but one, of the advisory committee members vote that the student pass. If the student fails the final examination, the committee will recommend additional work or other remedial measures to be taken before another examination is scheduled. At the close of a successful final examination, the members of the examining committee will sign the Form 7 to signify that they have read and approved the dissertation. If the committee indicates that corrections must be made, the student must make such corrections and then seek approval of the revised dissertation from the committee members and obtain the necessary signatures.

The final approved copy of the dissertation is then taken to the office of graduate studies, where it is carefully checked to ensure that the document is properly formatted according to the specifications available online. After the office of graduate studies approves the document, it is submitted electronically (unless there is an indefinite hold) to the electronic thesis/dissertation (ETD) website. Liberal choices are allowed relative to the style manual used in the preparation of the dissertation. However, approval of the dissertation requires strict adherence to the style manual selected, and must reflect a level of quality suitable for professional publication. Upon departmental request, the student may present one copy of the approved dissertation to the department chair and one to the dissertation advisor, and may choose to retain one copy for his or her personal records.

Procedures for Earning the Ph.D.

All doctoral students must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to a Ph.D. program must adhere to the following procedures.

1. The student initiates his or her candidacy for the doctoral degree by meeting both of the following requirements
 A. The student passes a qualifying examination administered by the department in which the student intends to become a doctoral degree candidate.
 B. The student satisfactorily completes the first thirty hours of graduate study in his or her designated program.

 In the case of students who do not have a relevant master’s degree, requirement b) will normally be fulfilled when the student satisfactorily completes thirty credit hours of suitable graduate coursework toward his or her doctoral degree. Requirement (b) will normally be fulfilled automatically for students who have already earned a relevant master’s degree. In both cases, the department determines when the second requirement for candidacy is satisfied. Candidacy must be established prior to the beginning of the fifth semester (not counting summer sessions) of enrollment as a graduate student in a doctoral program.

2. The candidate consults with his or her academic advisor about possible members of the advisory committee. The advisor, with the approval of the department chair, submits Form 5 to the dean of graduate studies, requesting the formal appointment of the advisory committee.

3. The candidate solicits the aid of his or her committee members in preparing an outline of courses and research, and, with the help of his or her advisor, completes and submits Form 5 to the office of graduate studies.

4. The candidate completes 50% of the coursework outlined on the doctoral program of study (Form 5). At this point, the advisor requests the dean of graduate studies to authorize the advisory
committee to administer the Ph.D. comprehensive examination, using the request for authorization of Ph.D. comprehensive examination form (http://grad.mst.edu/currentstudents/forms/). (Some departments, including geological sciences and engineering, materials science and engineering, and mining and nuclear engineering, do not require this authorization.)

5. The candidate takes the Ph.D. comprehensive examination, and the advisory committee reports the results of the examination to the dean of graduate studies by completing and submitting Form 6B (http://grad.mst.edu/currentstudents/forms/). After the candidate passes the comprehensive examination, he or she must maintain continuous enrollment until the degree is completed or the candidacy is cancelled.

6. The candidate checks with the registrar to make application for graduation within four weeks of the beginning of his or her final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation through their Joe’SSS account.

7. The candidate, in consultation with his or her advisor, selects the date, time, and place of the final examination and informs the office of graduate studies electronically, so that the examination can be publicized at least one week in advance. Note: The candidate must be enrolled at the time of his or her examination. An on-campus candidate for a graduate degree may enroll during the intersession for the final examination only (course 6040) for no hours of credit and pay the examination fee.

8. The candidate takes the Ph.D. final exam, and the advisory committee reports the results of the examination to the office of graduate studies by completing and submitting Form 7 (http://grad.mst.edu/currentstudents/forms/), accompanied by a committee approved copy of the dissertation for format check.

9. Once the format check is complete the office of graduate studies will direct the student to submit the final copy of the dissertation electronically to the ETD website, providing the candidate has fulfilled all academic requirements and has paid all enrollment or examination fees and submitted a certificate of completion of the “Survey of Earned Doctorates” (https://sed.norc.org/doctorate/showRegister.do). (If an indefinite hold is placed on the dissertation the office of graduate studies will inform the student of submission requirements.)

10. Upon department request, the candidate may present one copy of the approved dissertation to the department chair and one to the advisor, and may retain one copy for his or her personal records.

11. The Board of Curators, upon the recommendation of the graduate faculty, grants the candidate the doctor of philosophy degree.

Doctor of Engineering (D.E.) Degree

The doctor of engineering degree, like the doctor of philosophy degree, represents the highest attainable educational level in engineering study and practice. This degree is awarded to candidates who have pursued a broad program of study, completed an acceptable engineering internship, passed all prescribed examinations, submitted satisfactory practice-oriented dissertation, and met all graduation requirements described here. The D.E. degree requires a minimum of ninety graduate credit hours.

Following admission to graduate study, a student can initiate candidacy for the D.E. degree by consulting with the advisor about the selection of an advisory committee. The committee should include the candidate’s major advisor plus at least four other faculty members. The committee members should be representative of the departments included in the candidate’s intended plan of study. This committee will aid the student in preparing the plan of study, which will include coursework, an engineering internship, an outline of the proposed dissertation project, and a program for completing residence requirements. The student is accepted as a candidate for the D.E. degree only after the dean of graduate studies approves the student’s plan of study.

A person who has held the rank of assistant professor or higher at Missouri S&T is not eligible to become a candidate for the D.E. degree at this institution.

Residency Requirements for the D.E.

Residency at Missouri S&T is defined as sustained intellectual interactions among the student and the academic community. The candidate for a D.E. degree will normally complete three years of residency, which is the equivalent of completing six academic semesters while enrolled as an on-campus student at Missouri S&T. Students holding a master’s degree are automatically credited with two semesters of residency.

Students unable to meet the residency requirement given above, such as distance students, can meet this requirement through an alternative route. In consultation with their advisor, the student can utilize other experiences towards meeting the residency requirements. Such experiences include regular contact with the student’s advisor, committee members, and other graduate students, participation in a seminar series, etc. Other experiences that would count towards earning residency are listed in a supplemental document available from the office of the dean of graduate studies. It is the responsibility of the student’s faculty advisor to document suitable residency experiences each semester.

Time Limits for Earning the D.E.

The doctor of engineering degree will be granted only if all graduate credit counted toward the degree has been earned in the previous eight years, unless a formal request for an extension is initiated by the advisor and approved by the department chair and the dean of graduate studies. An extension, if granted, may involve revising the candidate’s program of study to update coursework and research.

Qualifying Examination for the D.E.

A qualifying examination will be administered by the faculty of the candidate’s major department no later than the fifth semester of enrollment as a graduate student in the doctoral program. The results of this examination will allow the student’s advisory committee to assess the student’s level of preparation for the doctor of engineering degree, and will assist the committee in planning the student’s program of study (Form 5). The results of the qualifying examination will be reported on Form 4 (http://grad.mst.edu/currentstudents/forms/) and submitted by the department chair to the office of graduate studies.

Coursework for the D.E.

The coursework for D.E. students normally includes two areas of emphasis in engineering. A third technical area of emphasis should be selected from the physical sciences, computer science, mathematics, or another field of engineering. In addition, a non-technical group of courses, comprising nine to twelve credit hours, should also be included in the student’s program of study. These non-technical courses could be selected from such areas as foreign language, engineering management, or psychology. D.E. students are expected to take at least 65 hours of graduate coursework (not including graduate research credit), and most students average around 72 hours. The allocation of the credit hours between the three technical emphasis areas will be at the discretion of
the student's advisory committee; however, at least nine credit hours in each technical area must be included to provide students with the appropriate depth of study.

Correspondence and extension courses may not be applied to a Doctor of Engineering degree program, except as they may constitute part of a master's program.

Internship for the D.E.

The internship for the doctor of engineering degree involves a minimum of one year of planned and approved high-level engineering experience. The candidate and the major advisor will plan the internship in cooperation with the interning organization (normally an industrial concern or government laboratory). The candidate then prepares a detailed proposal that describes the goals of the internship, the tasks to be accomplished, and the facilities at the intended site. This proposal must be approved by the candidate's advisory committee, the major department chair, and the dean of graduate studies prior to the start of the internship. At the time the internships is approved, the candidate's internship advisor (the supervisor at the interning organization) will be added to the advisory committee (using Form 5-A). The internship advisor is to be selected on the basis of his or her thorough education and experience, qualifications that suggest doctoral equivalency credentials. The organization must allow visits to the internship site by the candidate's major advisor and/or advisory committee members. The internning organization must also agree that any results of the internship may be published by the candidate, although reasonable proprietary rights of the internning organization will be protected. Responsibility for arranging the internship, including site selection and financial compensation during the period of the internship, lies with the candidate.

Graduate credit earned from the internship that leads to the candidate's preparation for his or her dissertation work will apply toward the total required credit hours. Approximately 18 to 25 hours of graduate research credit for this phase of the degree will be regarded as an appropriate portion of the ninety total credit hours required for the doctor of engineering degree.

Comprehensive Examination for the D.E.

The D.E. student is required to pass a comprehensive examination during his or her candidacy. The comprehensive examination is planned and administered by the student's advisory committee, and has both a written and an oral component. The comprehensive examination covers coursework contained in the candidate's plan of study.

A candidate is considered to have passed if all, or all but one, of the advisory committee vote that the student pass. If the student fails the comprehensive examination, the advisory committee will recommend additional work or other remedial measures to the candidate. A second comprehensive examination may be scheduled no sooner than twelve weeks after the student's first attempt. A student who fails the examination a second time will no longer be eligible to receive a graduate degree from that program. However, the student is still eligible to pursue a graduate degree from any other graduate degree program willing to accept him or her.

Dissertation for the D.E.

The dissertation embodies the results of an original engineering investigation, and must be written upon a subject approved by the major advisor. Normally, the dissertation will relate directly to the candidate's engineering internship. The dissertation must represent significant, creative, and independent engineering work, and must be prepared in accordance with the “Specifications for Theses and Dissertations,” an online manual available at http://grad.mst.edu/currentstudents/thesisdissertationinformation/formatting/.

Final Examination, or Doctoral Dissertation Defense

The final examination is an oral defense of the dissertation and may be attended by any interested person. Attendees may question the candidate with the permission of the chair of the advisory committee. The dean of graduate studies will authorize the student's advisory committee to administer the final examination, which may be scheduled no sooner than twelve weeks after the completion of the comprehensive examination. Notice of the final examination, along with the dissertation abstract, shall be publicized by the office of graduate studies at least one week prior to the examination.

The advisory committee shall closely examine the dissertation for both scientific content and format, in order to determine that it meets the requirements for a doctoral degree and is worth of acceptance by the graduate faculty of Missouri S&T. A report of the examination results will be sent to the office of graduate studies using Form 7 (http://grad.mst.edu/currentstudents/forms/).

A candidate will be considered to have passed the final examination if all, or all but one, of the advisory committee members vote that the student pass. If the student fails the final examination, the committee will recommend additional work or other remedial measures to be taken before another examination is scheduled. At the close of a successful final examination, the members of the examining committee will sign the Form 7 to signify that they have read and approved the dissertation. If the committee indicates that corrections must be made, the student must make such corrections and then seek approval of the revised dissertation from the committee members and obtain the necessary signatures. The final approved copy of the dissertation is then taken to the office of graduate studies, where it is carefully checked to ensure that the document is properly formatted according to the specifications available online. After the office of graduate studies approves the document, it is submitted electronically (unless there in an indefinite hold) to the electronic thesis/dissertation (ETD) website. Liberal choices are allowed relative to the style manual used in the preparation of the dissertation. However, approval of the dissertation requires strict adherence to the style manual selected, and must reflect a level of quality suitable for professional publication. Upon departmental request, the candidate may present one copy of the approved dissertation to the department chair and one to the dissertation advisor, and may choose to retain one copy for his or her personal records.

Procedures for Earning the D.E.

All doctor of engineering students must have fulfilled all admissions requirements, including English proficiency test scores, if necessary. Students admitted to D.E. program must adhere to the following procedures.

1. The student takes and passes, as early in the program as possible, a qualifying examination administered by the faculty of his or her major department. The department chair reports the results of this qualifying examination to the dean of graduate studies using Form 4.

2. The D.E. candidate consults with his or her advisor to select an advisory committee of at least five members. This should be undertaken only after the candidate has completed thirty graduate credit hours or has already earned a relevant master's degree. However, a tentative program of study may be planned much earlier.
10. The D.E. candidate's graduate advisor, with the approval of the department chair, submits Form 5 to the dean of graduate studies, requesting the formal appointment of the advisory committee. Any changes in committee membership are to be recorded using Form 5-A.

11. The D.E. candidate solicits the aid of his or her committee members in preparing a plan of study and internship, using Form 5-DE. Form 5-DE should not be sent to the department chair or to the dean of graduate studies for approval until the student has passed the qualifying examination.

12. The D.E. candidate completes all the courses outlined on his or her program of study (Form 5-DE). At this point, the candidate's advisor requests the dean of graduate studies to authorize the advisory committee to administer the comprehensive examination, using the Request for Authorization of Ph.D. Comprehensive examination form (http://grad.mst.edu/currentstudents/forms/). Some departments, including geological sciences and engineering, materials science and engineering, and mining and nuclear engineering, do not require this authorization.

13. The D.E. candidate takes the comprehensive examination, and the advisory committee reports the results of the examination to the dean of graduate studies by completing and submitting Form 6B (http://grad.mst.edu/currentstudents/forms/). After passing the comprehensive examination, the candidate must maintain continuous enrollment until the degree is completed or the candidacy is cancelled.

7. The D.E. candidate completes his or her engineering internship. The candidate's industrial supervisor should be added to the advisory committee at the beginning of the internship (Form 5-A).

8. The D.E. candidate checks with the registrar to make application for graduation within four weeks of the beginning of the student's final semester, or within two weeks of the beginning of the summer session. The student must apply for graduation through their JoeSS account.

9. The D.E. candidate, in consultation with his or her advisor, selects the date, time, and place of the final examination and informs the office of graduate studies electronically, so that the examination can be publicized at least one week in advance. Note: The candidate must be enrolled at the time of his or her examination. An on-campus candidate for a graduate degree may enroll during the intersession for the final examination only (course 6040) for no hours of credit and pay the examination fee.

10. The candidate takes the D.E. final exam, and the advisory committee reports the results of the examination to the office of graduate studies by completing and submitting Form 7, (http://grad.mst.edu/currentstudents/forms/), accompanied by a committee approved copy of the dissertation for format check.

11. Once the format check is complete the office of graduate studies will direct the student to submit the final copy of the dissertation electronically to the ETD website providing the candidate has fulfilled all academic requirements and has paid all enrollment or examination fees and submitted a certificate of completion of the “Survey of Earned Doctorates” (https://sed.norc.org/doctorate/showRegister.do) (if an indefinite hold is placed on the dissertation the office of graduate studies will inform the student of submission requirements).

12. Upon departmental request, the candidate may present one copy of the approved dissertation to the department chair and one to the advisor, and may retain one copy for his or her personal records.

13. The Board of Curators, upon the recommendation of the graduate faculty, grants the candidate the doctor of engineering degree.

Graduate Certificate and Minor Programs

Graduate Certificate Programs

Missouri S&T offers a number of graduate certificates that are designed to appeal to those working professionals who are interested in furthering their education and who seek the knowledge to understand and contribute to an emerging area of their professional lives. Once admitted to a certificate program, the student must complete four of the designated courses (total of 12 credit hours); at least three courses (nine credit hours) must be taken from Missouri S&T. The student must have a cumulative GPA of 3.0 or higher in these four courses (12 credit hours) in order to receive a graduate certificate. Students admitted to a graduate certificate program will have non-degree student status, but will earn graduate credit for the courses they complete. If the four-course sequence is completed with a grade of B or better in each of the courses taken, the student, upon application, will be admitted to the master’s degree program sponsoring the graduate certificate, provided that all other program prerequisites and admission requirements are met. The certificate courses taken by students admitted to the M.S. program will apply toward their master's degree. Courses taken for a specific certificate cannot be counted toward an additional certificate. Those courses, however, may be used on an in-progress master’s program. An additional four courses (12 credit hours) sequence is required for each subsequent certificate. Once a graduate degree has been awarded, any courses used on that program of study cannot be used for additional certificates, unless the student was admitted into the graduate certificate program prior to completion of the graduate degree program.

Up to three credit hours of the courses 5000 or 6000 are allowed as part of all Missouri S&T graduate certificate programs. In order for a 5000/6000 course to be included in a graduate certificate program, a determination must be made by the offering department(s) that the focus of the 5000/6000 course is academically aligned with the general focus of the graduate certificate for which it is being used. The 5000/6000 course must be supervised by a full member of the graduate faculty and a letter grade (A, B, C, or F) must be assigned each time a 5000/6000 course is taken for the purpose of completing a graduate certificate. In determining whether the graduate certificate program has been successfully completed for the purpose of entry into a graduate degree program, grades received in 5000/6000 courses will be considered in the same manner as grades received in lecture courses.

Some graduate certificate programs are sponsored by more than one department. If this is the case, the entering student will identify one of the sponsoring departments as his or her “home” department. Upon successful completion of the certificate program, the student may then apply and be admitted to the master’s degree program in his or her “home” department. Please refer to the Master’s Degree Program requirements, paragraph 3, regarding the timeline for submitting Form 1 for the master’s degree.

Students who do not have all of the prerequisites necessary to take the courses in their chosen certificate program will be allowed to take “bridge” courses at either the graduate or the undergraduate level in order to prepare for the necessary certificate courses.
Once admitted to a certificate program, a student will be given three years to complete the program so long as he or she maintains at least a B average in the courses taken.

Students meeting the certificate requirements to be admitted into an M.S. program are not required to take the GRE or the GMAT. Students not meeting the certificate requirements may still apply to the M.S. program of their choice, but normal admission requirements (including minimum GRE or GMAT scores) must be met.

Additional information on graduate certificates at Missouri S&T is available at http://grad.mst.edu/programs/certificates/.

Procedures for Earning a Graduate Certificate

1. Students must apply and be admitted into each certificate program. There is no automatic admission to a certificate program. The application for admission to certificate programs is available at http://futurestudents.mst.edu/admissions/.

2. The student will consult with the program director about course scheduling and register for classes.

3. For students enrolled in and/or being awarded more than one certificate a Certificate Program Courses Form must be completed before the 2nd or subsequent certificate can be awarded. This form is available at http://grad.mst.edu/currentstudents/forms/

4. The student will complete the four course sequence, equivalent to 12 credit hours.

5. The student will make application for completion within four weeks of the beginning of the student’s final semester or within two weeks of the beginning of the summer session period. The student must apply for completion through their Joe’Ss account.

6. The Board of Curators, upon the recommendation of the graduate faculty, grants the candidate the certificate.

Designated Graduate Minors

Students enrolled in masters or doctoral degree programs at Missouri S&T may designate a graduate minor, if they choose. Designated graduate minors are offered by individual degree-granting departments. Requirements for the graduate minor are determined by the department offering the minor. Graduate minors can only be awarded when the major degree is awarded, and all requirements for the graduate minor must be completed while the candidate is working toward his or her major degree.

Any graduate student interested in pursuing a graduate minor should consult with his or her academic advisor. Applications for a designated graduate minor must be completed and submitted for approval to the minor-granting department, and must be approved at least one full semester prior to the candidate’s planned graduation date. The application form for designated graduate minors is available at http://registrar.mst.edu/forms/.
RESEARCH CENTERS AND INSTITUTES

This section contains information about some of the research centers and institutes which graduate students may choose to collaborate or coordinate with during their academic career. Please navigate this section by using the menu at the left and selecting the category that best represents the type of research you wish to view. For more comprehensive information please visit the individual department websites.

Center for Biomedical Research (CBR)
225 Schrenk Hall
Yinfa Ma (Director)

Research Investigators
D. Barua (Chemical & Biochemical Engineering); S. Barua (Chemical & Biochemical Engineering); R.K. Brow (Materials Science & Engineering); S. Chellappan (Computer Science); D.E. Day (Materials Science & Engineering); X. Huang (Mechanical & Aerospace Engineering); Y-W. Huang (Biological Sciences); C.S. Kim (Electrical & Computer Engineering); H-K. Lee (Mining & Nuclear Engineering); M.C. Leu (Mechanical & Aerospace Engineering); X. Liang (Chemical & Biochemical Engineering); Y. Ma (Chemistry); H. Shi (Chemistry); Z. Yin (Computer Science); C. Wang (mechanical & Aerospace Engineering); D.J. Westenberg (Biological Sciences)

The Center for Biomedical Research (CBR) is a multidisciplinary research center. The Center for Biomedical Research (CBR) provides a platform and opportunity for scientists (natural, social and behavioral), engineers, and humanists to collaborate on innovative research that improves human health and provides multidisciplinary educational opportunities for our students.

The objectives of the CBR are to:

- Promote interdisciplinary collaboration that enhances the rate of scientific discovery and technological advances to develop the next generation of biomaterials and biomedical devices
- Enhance facilities and equipment for research in biomaterials and biomedical devices
- Develop research and education programs to train the next generation of biomedical/biomaterials engineers, providing a future workforce for the vital biotechnology industry in Missouri and the US
- Promote technology transfer and entrepreneurship to commercialize new knowledge, which should improve patient outcomes and expand economic development in Missouri and the US

Key research and development areas include:

- Bioactive glass science and engineering
- Biomaterials for bone repair, wound healing and tissue engineering application
- Nanoparticles for drug delivery and cancer detection
- Biomarkers for early detection of cancer
- Biosensors and bioimaging devices to monitor tissue healing and healthcare
- Biofabrication of implants and medical devices

To contact us, please visit our web page at http://cbr.mst.edu/ or e-mail: cbr@mst.edu.

Center for Infrastructure Engineering Studies (CIES)
223 Engineering Research Lab
Kamal H. Khayat (Director)
The Vernon and Maralee Jones Endowed Professor of Civil Engineering

Staff
Jason Cox (Senior Research Specialist); Abigayle Sherman (Program/Project Support Coordinator); Gayle Spitzmiller (Administrative Assistant).

Researchers
Magdy Abdelrahman (CArE); Kwame Awuah-Offei (MNE); Rui Bo (ECE); K. Chandrashekhara (MAE); Genda Chen (CArE); Maggie Cheng (CS); Kristen M. Donnell (ECE); Mohamed A. Elgawady (CArE); Dimitri Feys (CArE); Mao Chen Ge (MNE); M. Tayeb Ghasr (ECE); Abhijit Gosavi (EMSE); Ivan Guardiola (EMSE); Xiaoming He (Math); Xianbiao Hu (CArE); Jie Huang (ECE); Abdulmohsin Imqam (GSE); Kamal Khayat (CArE); Dincer Konur (EMSE); Aditya Kumar (MSE); Nicholas Libre (CArE); Jenny Liu (CArE); Suzanna Long (EMSE); Hongyan Ma (CArE); Sanjay Madria (CS); John J. Myers (CArE); Jonghyun Park (MAE); Joontaek Park (ChemE); Ruwen Qin (EMSE); Thomas Schuman (Chem); Sahra Sedigh (ECE); Honglan Shi (Chem); Brian Keith Smith (EMSE); Lesley Sneed (CArE); Jianmin Wang (CArE); Chenglin Wu (CArE); Cheng Hsiao Wu (ECE); Ruwen Qin (EMSE); Thomas Schuman (Chem); Sahra Sedigh (ECE); Honglan Shi (Chem); Brian Keith Smith (EMSE); Lesley Sneed (CArE); Jianmin Wang (CArE); Chenglin Wu (CArE); Cheng Hsiao Wu (ECE); Donald C. Wunsch (ECE); Guirong Yan (CArE); Xiong Zhang (CArE); Y. Rosa Zheng (ECE); Reza Zoughi (ECE).

The Center for Infrastructure Engineering Studies (CIES) was created through the University of Missouri’s Mission Enhancement Program at the Rolla campus. The center provides research expertise in the area of buildings and civil infrastructure and infrastructure management. The mission of CIES is to provide leadership in research and education for solving the problems affecting the nation’s infrastructure systems. CIES is the primary conduit for communication among those on the Missouri S&T campus interested in infrastructure studies. The center provides coordination for collaborative, interdisciplinary efforts with emphasis on: (1) the development of advanced sustainable materials for infrastructure construction and rehabilitation; (2) deployment of advanced design methods to resist extreme events, such as earthquakes; and (3) development and use of novel, non-destructive techniques to assess damage and structural health monitoring of infrastructure.

Interdisciplinary research and development with projects tailored to address needs of federal agencies, state agencies, and private industry; technology transfer and continuing distance education to the engineering community and industry.
Cloud and Aerosol Sciences Laboratory (CASL)

Norwood Hall
Donald E. Hagen (Director)

Faculty

R. W. Alexander (Emeritus Prof. Phys.); D.J. Alofs (Emeritus Prof. M&AE and EM); J.C. Carstens (Emeritus Prof. Phys.); N. Ercal (Chem); B.N. Hale (Phys.); S. Kapila (Chem.); U.O. Koylu (M&AE); P. Nam (Chem); J.L. Schmitt (Assoc. Prof. Emeritus, Phys.); D.R. White, (Assoc. Prof. Emeritus, B.E.); P.D. Whitefield (Chem.); G. Wilemski (Phys.).

Global, regional, and local environmental concerns have propelled the atmospheric sciences to international prominence. Well known issues such as the local air quality, ozone, acid rain, photo-chemical smog, and global warming attest to the urgency of atmospherically related problems now facing society.

CASL is a multidisciplinary effort drawing on the solid base of engineering and sciences provided by Missouri S&T. Students from various academic departments perform their thesis research within the laboratory in partial fulfillment of the M.S. or Ph.D. degree requirements of their “home” department.

The program is directed toward a fundamental understanding of the role of aerosols, including clouds and fog, in our atmospheric environment. Current studies focus on the generation and environmental impact of anthropogenic combustion aerosols, basic nucleation processes of water and ice, cluster structure both in the gaseous phase and on substrates, homogenous binary nucleation, neutron scattering measurements on nanodroplet aerosols, particle formation in supersonic expansions, the heterogeneous chemistry and chemical composition of air borne aerosols and their impact on the atmosphere, and the behavior of aerosol particles in the human respiratory system.

CASL provides leadership in international and national research programs. It is the home for the Missouri S&T lead federal Center of Excellence for Aerospace Particulate Emissions Reduction Research, is a member of the FAA-NASA-Transport Canada Center of Excellence for Aviation Noise and Aircraft Emissions Mitigation, and leads the air related mission for the Missouri S&T Center for Emerging Contaminants. Its brief extends to particulate mitigation strategies for new combustor development.

The Laboratory houses a variety of instrumentation, much of it unique. This includes a finely tuned expansion chamber used to study nucleation phenomena, instrumentation designed to directly determine the chemical composition of particles on which droplets form, and an extensive mobile facility for both the on-ground and in-flight collection and analysis of combustion (e.g. jet exhaust) aerosols.

In addition to acquiring knowledge of cloud, aerosol, and atmospheric science, the laboratory imparts to students a familiarity with a wide variety of data acquisition, signal conditioning, and system engineering problems. Visit our website at http://cies.mst.edu.

Energetic Materials Research Center
Catherine Johnson, Assistant Professor johnsonce@mst.edu

This facility is the only one of its kind in a university environment. The Center has two blast-containment chambers, one rated for 1kg of explosives and the other rated for 4kg. In addition to workstations running advanced simulation software, the Center has explosion imaging equipment that includes an ultra-high speed Cordin 10-A framing camera (capable of 1,250,000 frames/sec), high-speed video cameras (a Phantom V2012, capable of 22,500 frames per second at full resolution and up to 1 million frames per second at lower resolutions), a gated ICCD camera (capable of single exposure down to 55 nanosecond exposure times) and flash x-ray equipment.

Energy Research and Development Center (ERDC)

110 Engineering Research Laboratory
Joseph D. Smith (Director)

The Energy Research and Development Center (ERDC) provides an environment for researchers from various Missouri S&T disciplines to collaborate on sponsored projects involving energy and its impact on society and the environment. The mission of the ERDC is to educate students in energy topics that address key challenges that face society related to energy issues involving industry and government, for the benefit of the university, the state of Missouri, and the nation. Topics of interest include developing “Hybrid Energy Systems” that combine legacy and renewable energy sources, development of drop-in compatible biofuels, application of alternative energy sources including wind and solar, plug-in hybrid vehicles, the bulk power system, high temperature electrolysis to produce hydrogen, cyber-security of energy management systems, synthetic fuel development, advanced nuclear energy systems such as small modular reactors, and petroleum exploration and extraction methods. More than 41 faculty researchers are affiliated with the Center. Researchers affiliated with the Energy R&D Center also closely collaborate with other research centers including Materials Research Center, Intelligent Systems Center, Center for Infrastructure Engineering Studies, and the Environmental Research Center. For more information visit the web site at http://energy.mst.edu or contact erdc@mst.edu.
Environmental Research Center for Emerging Contaminants (ERCEC)

201 Butler Carlton Hall
Don Oerther (Director)

The mission of the Environmental Research Center (ERC) is to provide the infrastructure and coordinated faculty base to conduct wide range of large-scale federally-funded research initiatives designed to protect public health from emerging contaminants. ERC investigators conduct research sponsored by a wide range of entities including the NSF, USEPA, USDA, USGS, Missouri Department of Natural Resources, American Water Works Association Research Foundation, as well as industry in Missouri and elsewhere.

Examples of current research areas in the ERC include: occurrence and control of antibiotics and antibiotic resistant bacteria at concentrated animal feed operations (CAFOs) and in drinking water; occurrence, fate and removal of estrogenic, endocrine disrupting chemicals, disinfection byproducts, pharmaceuticals, and cyanobacterial toxins in drinking water and wastewater treatment plants; reactions of indoor air pollutants in home and business environments; phytoremediation technology for treatment of organic contaminants in soil and groundwater; nutrient control using struvite precipitation; control of heavy metals with constructed wetlands; control of odor emissions from CAFOs; fate of mercury in incinerator flyash; treatment of MTBE and alternative fuel oxygenates; and transport of lead and zinc in Missouri rivers in the Old and New Lead Belts.

Laboratories associated with the Environmental Research Center maintain state-of-the-art instrumentation including: a wide variety of gas chromatographs with mass spectrometer and other detectors; high pressure liquid chromatographs with mass spectrometer and UV detectors; ion chromatograph; total organic carbon analyzer; atomic absorption spectrometers with graphite furnace and flame combustion; inductively couple plasma mass spectrometer with laser ablation; a wide variety of ultraviolet and visible spectrophotometers; stopped flow spectrophotometer; molecular biology tools including polymerase chain reaction (PCR) instrumentation and denaturing gradient gel electrophoresis (DGGE) and clone libraries; microscopes; respirometers; and wide variety of other instruments. Specialized research equipment and facilities include temperature control rooms; a trailer-mounted experimental water treatment system; a trailer-mounted mobile air pollution analysis laboratory; a rooftop greenhouse; pilot-scale air stripping system; pilot-scale advanced oxidation and ozonation systems; laminar flow hoods; anaerobic microbiology facilities; and a variety of other research equipment. The original Environmental Research Center (ERC) was established in 1965. Phone: 573-341-6908. E-mail address is erc@mst.edu or visit the website at: http://erc.mst.edu/.

Intelligent Systems Center (ISC)

320 Engineering Research Lab
Ming C. Leu (Director)
http://isc.mst.edu

Senior Research Investigators
Frank Liou, Sanjay Madria, Bruce McMillin, Jagannathan Sarangapani, Don Wunsch

Associate Investigators
Venkat Allada, Egemen Cetinkaya, Lianyi Chen, Maggie Cheng, Steve Corns, David Enke, Jie Gao, Abhijit Gosavi, Jie Huang, Wei Jiang, Jhi Young Joo, Jonathan Kimball, Edward Kinzel, Dan Lin, Heng Pan, Ruwen Qin, Pourya Shamsi, Simone Silvestri, Zeyi Sun, Xiaodong Yang, Zhaozheng Yin, Tansel Yucelen

The mission of the Intelligent Systems Center (ISC) is to provide an interdisciplinary research environment in which faculty from various departments can cooperate and conduct research on sponsored projects involving real physical systems with special emphasis on an intelligent (smart) system approach. ISC has integrated its primary research mission with Missouri S&T’s commitment to develop internationally recognized graduate research programs focused on key emerging and critical technologies.

The approaches that we are taking to accomplish ISC’s objectives are:

• Developing multidisciplinary research programs to address the emphasis areas of federal sponsoring agencies with the expertise of Missouri S&T faculty who are ISC members
• Obtaining both short- and long-term federal research grants and industrial contracts
• Developing advanced research facilities

The education of graduate students is one of ISC’s major activities. To this end ISC provides graduate research assistantships to selective graduate students through the Center Members. The interdisciplinary nature of ISC provides an excellent environment for ISC supported students to interact with fellow students from other departments. The students also gain valuable experience in working as a team and acquire oral and written communication and project organization skills. The interaction of graduate students with engineers from industries and program managers from federal agencies is very valuable.

Multidisciplinary research teams consisting of faculty members and graduate students from the departments of computer science, electrical and computer engineering, engineering management and systems engineering, and mechanical and aerospace engineering have been established to conduct research. ISC has also developed state-of-the-art laboratories to conduct research on virtual prototyping, additive manufacturing, smart structures, neural networks, energy systems, automatic inspection, MEMS, robotics, and structural health monitoring. Active research is in significant progress in the following thrust areas:

1. Intelligent Manufacturing Processes, Equipment and Systems
 1.1 Virtual Reality and Prototyping
 1.2 Additive/Rapid/Direct Digital Manufacturing
 1.3 Laser Micromachining
 1.4 Friction Stir Processing
 1.5 Composite Manufacturing
 1.6 Liquid Metal Processing
Materials Research Center (MRC)

2. Intelligent Cyber Physical Systems
 2.1 Energy Generation Systems
 2.2 Power Distribution Systems
 2.3 Fuel Cells and Batteries
 2.4 Transportation Systems
3. Advanced Simulation, Sensing, Control, and Communication
 3.1 Sensors and Sensor Networks
 3.2 Intelligent and Adaptive Control
 3.3 Communication Systems and Networks
4. Computational Intelligence and Embedded Systems
 4.1 Data Processing, Fusion and Management
 4.2 Design and System Support
 4.3 Trustworthy and Embedded Hybrid Systems
5. Cyber Security and Trustworthiness
 5.1 Cloud Systems and Software
 5.2 Critical Infrastructure
 5.3 Wireless Networks and Big Data Management
 5.4 Smart Health-Care and Social Systems

The Graduate Center for Materials Research was established for the purpose of multidisciplinary research on materials and to provide improved centralized laboratories and specialized equipment for faculty and students involved in materials research. The Center provides graduate students in many academic departments (e.g. Materials Science and Engineering, Chemical and Biological Engineering, Mechanical and Aerospace Engineering, Chemistry, Biological Sciences and Physics) with advanced training in materials related engineering and science research.

The research conducted in the Center ranges from fundamental science to applied engineering and includes the development, evaluation, application, and understanding of metals, polymers, biomaterials, electronic materials, ceramics and composites.

Accomplishments from the Center include: glass microspheres for treatment of liver cancer, transparent composites for windows/armor, environmentally friendly corrosion coatings, laser glasses, epitaxial chiral surfaces, biomineralization, fuel cell electrolytes and sealing materials, electrochemical biosensors, multi-layer nano-capacitors, enhanced magnetic materials, and thin film electromagnetic probes.

The Center is located in Straumanis-James Hall, a four-story building with 30,000 square feet of laboratory and office space. The Center contains the modern equipment needed for research on materials development, characterization and evaluation, and for measuring common mechanical, thermal, electrical, and optical properties. It contains specialized and adaptable experimental facilities for:

- Advanced Structural Ceramics
- Corrosion and Coatings
- Electrodeposition/Photocatalysis
- Electromagnetic Compatibility
- Glass Melting and Processing
- Integrated Computational Materials Engineering (ICME)
- Nanomaterials
- Steels and Metallic Alloys
- Sensors and MEMS Devices
- Characterization of materials by: x-ray diffraction, focused ion beam (FIB) microscopy, scanning and transmission electron microscopy, scanning tunneling and atomic force microscopy, thermal analysis, optical techniques, x-ray photoelectron spectroscopy

The Center has an active interest in industrial research and economic development suitable for graduate and undergraduate student education that falls within the technical expertise of the staff.

E-mail mrc@mst.edu or visit our website at http://mrc.mst.edu.

Graduate Catalog 2018-2019
Lusk (ExpEng), Norbert Maerz (GeoEng), Kyle Perry (ExpEng), Mingzhen Wei (PetEng), Xiong Zhang (CivEng).

Staff

Jeff Heniff (Research Engineering Technician II), Jay Schafler (Research Engineering Technician I), Stacey Fuller (Administrative Assistant), Jennifer Schafler (Secretary).

The Rock Mechanics and Explosives Research Center (RMERC) brings together leading investigators from different disciplines to research static and dynamic rock mechanics, rock fragmentation and excavation, and explosives technology. A particular emphasis is to foster innovative and responsive research in rock physics and all fields of science and engineering that deal with rock, including energy production, mining, geology, geophysics, petroleum, nuclear and related fields. The High Pressure Waterjet Laboratory of the RMERC has developed a world-renowned team of waterjet technology specialists. The RMERC has a linear rock cutting machine, compressive testing load frame, and also an array of rotary rock cutting machines, an electronics shop, and a comprehensive machine shop for its students and investigators.

Areas of current research include:

- Reagent design for mineral pressing applications, froth flotation, ionic liquids;
- Engineering geophysics, ground penetrating radar, electrical resistivity tomography;
- Modeling, simulation, and optimization for sustainable mining systems;
- Enhanced oil recovery and water management, particle-gels, hydrogel, and nano-fluidics;
- Numerical geomechanics, petroleum related geomechanics modeling;
- Waterjet technology, communication, mineral processing;
- Geophysical exploration of the Earth's interior, geophysics, seismology, rock physics;
- Rock mechanics, acoustic emissions, mine hazard prevention and controls, seismic based void detection;
- Space mining, rock excavation, mining method development, mine design;
- Mining health and safety, ground control, underground communications;
- Explosives engineering and technology, explosive taggants, shock physics;
- Geophysical subsurface imaging, seismic interpretation, seismic anisotropy;
- Lidar scanning, landslides, autonomous navigation;
- Energetics, rock dynamics, ground control, coal dust explosion suppression.

E-mail rockmech@mst.edu or visit our website at http://rockmech.mst.edu.
SPECIAL FACILITIES AND PROGRAMS

This section contains information about some of the special facilities and programs which graduate students may choose to collaborate or coordinate with during their academic career. Please navigate this section by using the menu at the left and selecting the category that best represents the type of research you wish to view. For more comprehensive information please visit the individual department websites.

Advanced Materials Characterization Laboratory
McNutt Hall and Straumanis-James Hall
F. Scott Miller (Director)
smiller@mst.edu
http://amcl.mst.edu

The Advanced Materials Characterization Laboratory was established in 2001 to provide advanced materials characterization instrumentation and expertise to Missouri S&T researchers as well as technological industries in Rolla and the state of Missouri. The laboratory combines advanced analytical resources from several departments on campus, as well as the Materials Research Center to provide a centralized point of contact for researchers.

The characterization equipment available in the AMCL includes: a dual-beam Focused Ion Beam/Scanning Electron microscope instrument, a field emission scanning electron microscope (SEM), and a transmission electron microscope (TEM), all of which are combined with energy dispersive X-ray Spectroscopy (EDS) systems, an e-beam lithography system, two x-ray diffractometers, an x-ray fluorescence analyzer, scanning tunneling and atomic force microscopes, an x-ray photoelectron spectrometer, and instruments for thermal analysis, including thermogravimetric analysis and differential scanning calorimetry.

Training in these methods and assistance in the use of the equipment are provided to faculty researchers, graduate and undergraduate students by the director and staff of the AMCL.

Center for Aerospace Manufacturing Technologies
292C Toomey Hall
Douglas A. Bristow (Director)
http://campus.mst.edu/camt
Project Investigators
Douglas Bristow, K. Chandrashekhara, Ed Kinzel, Frank Liou, Robert Landers, Ming Leu, Joseph Newkirk, David Van Aken

The mission of the Center for Aerospace Manufacturing Technologies (CAMT) is to serve as a center of excellence to research, develop, evaluate and demonstrate new and optimal methodologies and tools for the rapid and cost-effective manufacture of aerospace components and products and to promote new education and training programs for the evolving aerospace manufacturing workforce, resulting in significant technological advancement and national economic impact.

CAMT was established in May 2004 at Missouri S&T in partnership with Boeing through major funding from the Air Force Research Laboratory in Dayton, Ohio, with the following objectives:

- Research, develop, evaluate, demonstrate and transfer advanced technologies of critical importance to the Air Force and the aerospace supply chain in the United States.
- Create knowledge, methodologies and tools to improve affordability, rapidity, quality, productivity, reliability, and safety in aerospace manufacturing.
- Disseminate the generated results to the aerospace supply chain through direct technology transfer as well as education, training and outreach activities.
- Serve as a role model of university-industry-government collaborative relationship.

CAMT has an array of technologies devoted to advancing manufacturing fabrication and assembly. The interdisciplinary teams, along with advanced equipment and facilities, have created a substantial technology force at Missouri S&T. Realizing the value and importance of CAMT to the entire U.S. aerospace industry, the CAMT Industrial Consortium was established in 2007. Through this, CAMT benefits all consortium members, and its R&D activities are directed by the consortium members.

Center of Excellence for Aerospace Particulate Emissions Reduction Research
G34 Shrenk Hall
Philip D. Whitefield, (Director)
pwhite@mst.edu
http://coe.mst.edu

The Missouri S&T COE is a university/industry consortium coordinated by Missouri University of Science and Technology conducting critical research that is providing the tools to characterize, measure, and predict propulsion particulate emissions in current and future aircraft. These tools will be validated both in the field and in realistic laboratory test environments that integrate propulsion altitude cells with state-of-the-art diagnostic systems and numerical modeling, and will be used as much needed consistent standards for current and future engine design by the U.S. and for characterizing the aircraft component of combustion emission in the assessment of local air quality in and around our airports.

The Missouri S&T COE was a founding member and the lead entity for emissions characterization in the Partnership for Air Transportation Noise and Emissions Reduction (PARTNER) a leading aviation cooperative research organization, and a FAA/NASA/Transport Canada/US DoD/US EPA-sponsored Center of Excellence. The Missouri S&T COE is also a founding member and the lead entity for emissions characterization in the Aviation Sustainability CENTer (ASCENT), the new FAA/NASA/Transport Canada/US DOD/US EPA-sponsored Center of Excellence for Alternative Jet Fuels and Environment. Our objectives are to characterize the emissions (both small particles and condensable
gaseous species) from aircraft and airports through measurements, understanding and model the microphysical processes associated with particle formation, and determine the health effects of emissions. The characterization of emissions from aircraft and airports requires comprehensive measurement of small particles and condensable gaseous species. In fact, it requires measurement of both the emissions of individual airplanes as they contribute to the total aircraft segment of the emissions budget of an airport, and the emissions at the fence line of the airport due to all airport operations.

The major tasks of the COE are:

- Analyze and Correlate Particle Concentration Data
- Study quantifying emission indexes
- Develop Field Testing Data

Visit our website at: http://coe.mst.edu or e-mail pwhite@mst.edu. (pwhite@mst.edu)

Experimental Mine
Bridge School Road
Dr. Paul Worsey (faculty member responsible)

The Experimental Mine, situated on Bridge School Road 1.5 miles from the main campus, consists of 25 acres of surface and underground facilities which provide excellent opportunities for mineral engineering teaching and research. The surface land includes several dolomite quarries. The underground workings consist of four shafts and 1,500 feet of single-level drifts.

This excellent teaching facility is equipped with a variety of mine-related equipment which offers practical hands-on experience in critical topics. This includes air compressors, rock drills, mucking machine, slusher and motor, diamond core drill, blasting seismography, extensometers, and surveying instruments. A complete ventilating fan system is connected to the underground area, appropriately installed for experimental data collection. The mine classroom has internet access and is equipped with an overhead projector, surround sound, and other teaching facilities.

Recent faculty and students research has been conducted in the areas of rock blasting, mine ventilation and atmospheric control, rock mechanics, and pipeline transportation. The quality of facilities is indicated by the frequency of requests for government and industrial use of the premises. Student projects, however, retain priority on this equipment and the working areas.

E-mail mining@mst.edu or visit our web site at: http://mining.mst.edu/research/depexpmine/.

High Pressure Waterjet Laboratory
Rock Mechanics & Explosives Research Center
Grzegorz Galecki (Director)
ggalecki@mst.edu

State-of-the-art equipment provides support for studying and providing solutions for special needs in manufacturing, mineral processing, nanomaterials, and military, aerospace, and environmental industries.

Processes utilizing high pressure waterjets include high-precision waterjet cutting, depth-cut control, surface preparation of steel, titanium and other materials, accelerated excavation, comminution, multi-axis milling in mining and manufacturing, and erosion prevention.

Other topics investigated with the high pressure waterjet include fundamental studies of two- and three-phase flow, the mechanics of fluid jet generation, high speed phenomena, and the physics of fluid impact.

This laboratory is available to serve campus needs. Please call for rates.

For more information please visit our website http://rockmech.mst.edu/, call 573-341-4365, or email ggalecki@mst.edu.
Institute for Applied Chemistry and Nuclear Magnetic Resonance

Schrenk Hall
Klaus Woelk (Director)

The Institute for Applied Chemistry and Nuclear Magnetic Resonance was established by the Chemistry Department in 1990.

The purpose of this Institute is to provide a research group that can focus on problems relating to applied chemistry. In addition, the funding partially supports the operation of the Nuclear Magnetic Resonance (NMR) Laboratory. The NMR instrumentation is multi-disciplinary and is used by many researchers on campus.

Members of the Institute include: Dr. R. G. Brow, Dr. A. Choudhury, Dr. N. Leventis, Dr. M. Nath, Dr. P. Reddy, Dr. T. Schuman, Dr. C. Sotiriou-Leventis, Dr. P. Stavropoulos, Dr. M. Van De Mark, and Dr. K. Woelk

The Institute promotes the study of materials and chemical solutions to practical problems in the areas of polymers, coatings, solvents, surfactants, thin films, and environmental science. The specific interest is the behavior of polymers and biopolymers, coatings, composites, and conducting materials, as well as the discovery of new types of materials by use of chemical synthesis and novel techniques. The transport of molecules in colloidal and polymer systems is being studied by several researchers. The structure and dynamics of surfactant-based systems, including micelles, microemulsions, liquid crystals, and colloidal dispersions, are being studied as well. The development of chemical processing methods and the production of nano-scale and ceramic materials are also of interest.

Institute for Chemical and Metallurgical Process Development

Straumanis-James Hall
Matthew J. O'Keefe (Director)
mjokeefe@mst.edu

The structure, properties, and performance of materials are influenced by the processes used during synthesis and fabrication. Development of the theoretical and practical requirements of these chemical and metallurgical processes are the focus of the institute. Drawing upon traditional hydro, pyro, and electrometallurgical processing operations, the institute investigates a wide range of materials that are of technological importance. Emphasis areas include, but are not limited to, electrochemical processing, corrosion, environmentally benign materials and processes, thin films and coatings, and surface modification technologies. Characterization and analysis of materials and processes using advanced experimental and computational techniques and state of the art equipment are emphasized.

Laboratory for Atomic, Molecular and Optical Research

Physics
Michael Schulz (Director)

The Laboratory for Atomic, Molecular and Optical Research is composed of Missouri S&T faculty members performing research in atomic molecular and optical physics. This scientific area is concerned with the few body problem, the structure of atoms and molecules and their interaction with each other, with electromagnetic fields, and with quantum-field effects.

The laboratory provides an environment which enhances this research activity, and which fosters cooperation and collaboration. The laboratory also provides a structure for formal cooperative programs, group funding, and other collective scientific activities.

Basic studies in the atomic, molecular and optical sciences have made major contributions to many of the new technologies that exist today. Laboratory faculty and staff members continue to contribute to the development of advanced concepts in such wide ranging areas as ultrafast laser physics, atomic interaction dynamics for electron, positron, and ion impact, coherence effects, relativistic quantum-field theory, and atomic processes important in controlled nuclear fusion.

Visit http://physics.mst.edu or email schulz@mst.edu.

Laboratory for Information Technology Evaluation

Bureau of Mines #1
Fiona Nah (Director)

The Laboratory for Information Technology Evaluation’s (LITE) mission is to evaluate and explore the impact of information technologies on people, society, organizations, and culture through the utilization of diverse research tools and methodologies. Software such as Morae allow for the recording and analysis of a user’s interactions with a computer-based system. Additional devices allow researchers to study an individual’s psychophysiological responses, including facial expressions, eye gaze, skin conductance, and electroencephalographic (EEG) activity. LITE also promotes research and scholarship opportunities, and maintains industry connections, particularly within the Human-Computer Interactions (HCI) and User Experience (UX) field.

For more information, visit http://lite.mst.edu or email nahf@mst.edu (rhall@mst.edu).

Mineral Processing Laboratory

Rock Mechanics & Explosives Research Center
Grzegorz Galecki, Associate Professor
ggalecki@mst.edu

The Mineral Processing Laboratory provides support for research and teaching needs of Mining & Nuclear Engineering department. The laboratory has state-of-the-art equipment, including unique specialized...
Graduate degree programs are offered in:

- Taken by non-degree candidates for personal enhancement.
- Numerous graduate certificate programs. Most of the courses can also be applicable to M.S. or Ph.D. degrees. In addition, the Center offers courses in the late afternoon or in the evening, are credit courses for engineers and scientists in the St. Louis area. The courses, usually offered in the late afternoon or in the evening, are credit courses applicable to M.S. or Ph.D. degrees. In addition, the Center offers numerous graduate certificate programs. Most of the courses can also be taken by non-degree candidates for personal enhancement.

For information please visit our website http://rockmech.mst.edu/, call 573-341-4365, or email ggalecki@mst.edu.

Missouri Institute for Computational and Applied Mathematical Sciences

Rolla Building
Stephen L. Clark (Director)

The interweaving of computational sciences and mathematics remains one of the most significant driving forces in the development of science and technology. The institute promotes the development of multidisciplinary research communities engaging applied mathematicians, computational scientists and engineers in innovative research on important scientific and technological problems. In pursuit of its mission, the institute supports research, provides educational opportunities at all levels, and serves as a resource for the state in support of high-technology industrial development.

For more information email mathstat@mst.edu.

Missouri S&T Global - St. Louis
Graduate Center of Missouri S&T in West County
Victor Birman (Director)

Missouri S&T Global - St. Louis, located at 12837 Flushing Meadows Drive, offers Missouri S&T graduate courses and degrees to working engineers and scientists in the St. Louis area. The courses, usually offered in the late afternoon or in the evening, are credit courses applicable to M.S. or Ph.D. degrees. In addition, the Center offers numerous graduate certificate programs. Most of the courses can also be taken by non-degree candidates for personal enhancement.

Graduate degree programs are offered in:

- Aerospace Engineering (MS)
- Business Administration (MBA)
- Chemical Engineering (MS)
- Civil Engineering (MS)
- Computer Engineering (MS)
- Computer Science (MS)
- Electrical Engineering (MS)
- Engineering Management (MS)
- Environmental Engineering (MS)
- Explosives Engineering (MS)
- Geotechnics (ME)
- Industrial-Organizational Psychology (MS)
- Information Science and Technology (MS)
- Manufacturing Engineering (ME)
- Mechanical Engineering (MS)
- Mining Engineering (MS)
- Systems Engineering (MS)
- Technical Communication (MS)

Requirements for the M.S. degree at Missouri S&T Global - St. Louis are identical to those on the Rolla campus. Courses are taught by Missouri S&T faculty and by Missouri S&T-approved adjunct faculty (prominent engineers and scientists).

The center was established in 1964, as a part of the continuing education programs at Missouri S&T. Over 3,000 engineers obtained M.S. degrees at the Center.

Further information can be obtained at:
12837 Flushing Meadows Dr., Suite 210
St. Louis, MO 63131
Phone 314-835-9822
E-mail dbenenat@mst.edu
Website http://global-stl.mst.edu/

Natural Hazards Mitigation Institute
Neil Anderson (Director)
nanders@mst.edu

The State of Missouri is subject to natural hazards that cause widespread damage to residential, corporate and public structures, and transportation facilities and other infrastructure. Natural hazards include earthquakes, floods, tornados, high velocity straight winds, forest fires, ground collapse, expansive soil failure, and dam and levee failure. Such hazards result in significant economic costs and even loss of life.

Many of these natural hazard events have common attributes:

- The onset of these disruptive natural forces occur within a short time frame, often with little immediate warning, threatening both lives and property.
- The widespread impact of the event extends over an area and its contents, whether people, domestic dwellings, transportation or civil infrastructure.
- The multiplicative influence of weaknesses in geology and soil stratigraphy can compound structural damage.
- The impact of man’s activities can contribute to the problem or can impede access to the area, slowing the needed mitigation and remediation of damage.

The complex and multifaceted nature of these natural hazards, which nevertheless have a common central theme, requires a coordinated and multi-disciplinary approach to develop a strategy to provide protection to people and vulnerable structures before an event, to minimize injury and damage during the event and to ease the requirements for remediation after it is over. This requires a deep understanding and awareness of the areas at risk, if mitigation, response and remediation procedures are to be effectively developed.

The Missouri S&T Natural Hazards Mitigation Institute (NHMI) is charged with mitigating and remediating the detrimental effects of natural hazards both within the State of Missouri and nationally, through...
throughout the region:
The center delivers the following services to educators and leaders high quality professional learning to maximize student success.

- Faculty in the Missouri S&T teacher education program, and are available to surrounding regions as well. The Center also provides statewide system of support, services provided by the center are available to surrounding counties. The Center's services to educators for some of the surrounding counties. The Center officially serves 63 school districts in the counties of Crawford, Dent, Franklin, Howell, Iron, Maries, Oregon, Phelps, Pulaski, Reynolds, Shannon, Texas, and Washington. As a part of a seamless statewide system of support, services provided by the center are available to surrounding regions as well. The Center also provides services to educators for some of the surrounding counties. The Center's programs and services are available free of charge to students and faculty in the Missouri S&T teacher education program, and are available at cost recovery only to all Missouri S&T faculty and staff.

The South Central Regional Professional Development Center (SCRPDC) is a part of the statewide system of support for K-12 public school districts. The Center officially serves 63 school districts in the counties of Crawford, Dent, Franklin, Howell, Iron, Maries, Oregon, Phelps, Pulaski, Reynolds, Shannon, Texas, and Washington. As a part of a seamless statewide system of support, services provided by the center are available to surrounding regions as well. The Center also provides services to educators for some of the surrounding counties. The Center's programs and services are available free of charge to students and faculty in the Missouri S&T teacher education program, and are available at cost recovery only to all Missouri S&T faculty and staff.

The mission of SCRPDC is to "Build the Capacity of Educators through high quality professional learning to maximize student success." The center delivers the following services to educators and leaders throughout the region:

- Conduct, lead, coordinate and otherwise facilitate interdisciplinary research in the broad area of natural hazards including likelihood of occurrence, cause, effects, mitigation and remediation.
- Provide and disseminate public service information regarding probability of natural hazard occurrences, their potential outcomes, and precautionary measures which can minimize detrimental effects of natural hazards.
- Prepare, sponsor, coordinate and otherwise facilitate the development and offering of educational courses (academic and training) in the broad area of natural hazards.

Rocks Mechanics Laboratory
Room 238, McNutt Hall
Maochen Ge, Associate Professor
gem@mst.edu
This facility contains several compressive/tensile strength testing machines, including a Terra-Tek computer controlled stiff testing machine rated to 600,000 lbs. These machines are complimented by triaxial cells, strain transducers, load cells and control, data acquisition, computation and hard copy systems. Additional equipment includes ultrasonic pulse velocity test equipment for P and S waves, rock bolt testing equipment including direct shear machine, pull test equipment and instrumentation. The lab also has an Unholtz-Dickie vibration test machine capable of 500 lbs force with a 1” stroke, and SP2000 motion analysis system, and a Rockwell hardness testing machine.

South Central Regional Professional Development Center
1100 W 10th Street, Suite E103 PCRMC Annex
John Lewis (Director)
The South Central Regional Professional Development Center (SCRPDC) is a part of the statewide system of support for K-12 public school districts. The Center officially serves 63 school districts in the counties of Crawford, Dent, Franklin, Howell, Iron, Maries, Oregon, Phelps, Pulaski, Reynolds, Shannon, Texas, and Washington. As a part of a seamless statewide system of support, services provided by the center are available to surrounding regions as well. The Center also provides services to educators for some of the surrounding counties. The Center's programs and services are available free of charge to students and faculty in the Missouri S&T teacher education program, and are available at cost recovery only to all Missouri S&T faculty and staff.

The Center strives to increase the performance of schools throughout the region by providing high quality profession learning with a sustained focus on increasing student learning. This work is delivered both regionally and on-site in schools, is research based, and if implemented with fidelity is designed to positively impact student achievement. In order to accomplish our mission, SCRPDC organizes and implements workshops, role-alike network groups, study groups, on-going school improvement initiatives, consultation, small and large group facilitation, coaching, observation/feedback, and technical support. The center serves in a leadership capacity for the professional learning throughout the region. Contact us at rpdc@mst.edu, or visit our website at http://rpdc.mst.edu.

Student Design and Experiential Learning Center
116 Kummer Design Center
Chris Ramsay (Assistant Vice Provost for Student Design)
Learn. Succeed. Have Fun!
Experiential learning is the foundation of a broad-based Missouri S&T education.

The Student Design and Experiential Learning Center (SDLEC) serves as the support center for 20 multi-disciplinary, student-managed design teams.

The SDLEC is housed in the Kummer Student Design Center, a facility that provides design team members with advanced computer design labs and software, a complete manufacturing and testing center, business offices and logistical assets, along with the technical, marketing, communication and fundraising support necessary to prepare students for successful careers even before graduation.

Team membership is open to, and encouraged of, S&T students of all academic majors, not just engineering. Team-based learning blends traditional classroom instruction with the critical "outside-the-box" thinking necessary to be successful in a fast-paced development project.

Design team participants enjoy:

- 24-7 facility access
- Strong faculty, staff, business and community support
- Networking opportunities with employers and university competitors
- Specialized training
- Global experience
Virtual Surface Mining Simulator

Room 249, McNutt Hall
Samuel Frimpong, Professor and Robert H. Quenon Endowed Chair
Frimpong@mst.edu

This facility, the only one of its kind in a university environment, contains physical Dragline and Shovel-Truck Simulators supplied by Immersive Technologies and a Shovel Simulator from Joy Global Inc. within a state-of-the-art technological environment for research and education. These simulators provide virtual environments for simulating heavy machinery in surface mining environments, advanced education and training of heavy mining machinery operators, risks and hazards control and mitigation, planning and deployment of heavy equipment in rugged terrains, and tracking and improving key performance indicators (KPIs).

Wei-Wen Yu Center for Cold-Formed Steel Structures

Butler-Carlton Civil Engineering Hall
Roger A. LaBoube (Director)
Wei-Wen Yu (Founding Director)

To meet an ever-increasing demand for technical assistance from steel and construction industries and to create more economic designs and applications, the Missouri S&T Wei-Wen Yu Center for Cold-Formed Steel Structures (CCFSS) was established to provide an integrated approach for handling research, teaching, and technical services on cold-formed steel structures at Missouri S&T. The Center brings together technical resources from universities, trade associations, research laboratories, steel producers, manufacturing companies, consulting engineers, building officials, governmental agencies, and others.

The Center is currently co-sponsored by the American Iron and Steel Institute, Cold-Formed Steel Engineering Institute, Metal Building Manufacturers Association, Rack Manufacturers Institute, Steel Deck Institute, Steel Framing Industry Association, and the Missouri University of Science & Technology.

Since 1968 Missouri S&T has conducted numerous research projects on cold-formed steel structures. These projects have been supported by the American Iron and Steel Institute, National Science Foundation, the American Society of Civil Engineers, Metal Building Manufacturers Association, Metal Lath/Steel Framing Association, the Steel Deck Institute, the Chromium Centre in South Africa, The Nickel Development Institute in Canada, the Specialty Steel Industry of the United States, and individual companies.

With regard to teaching, Missouri S&T is one of few universities to offer a graduate course on cold-formed steel structures. In addition to the regular course, Missouri S&T has regularly conducted short courses and international specialty conferences to provide continuing education programs for the engineering profession.
GRADUATE CERTIFICATES

Graduate Certificate (Discipline)

Actuarial Science (Mathematics and Statistics)
Advanced Control Systems (Electrical Engineering)
AI, Machine Learning and Automation in Business (Information Science & Technology)
Applied Workplace Psychology (Psychology)
Automation Engineering and PLC (Electrical Engineering)
Big Data Management and Analytics (Computer Science)
Big Data Management and Security (Computer Science)
Business Analytics and Data Science (Information Science & Technology)
Business Essentials (Business Administration)
Business Intelligence (Information Science & Technology)
Business Project Management (Business Administration)
CAD/CAM and Rapid Product Realization (Manufacturing Engineering)
Composite Materials and Structures (Aerospace Engineering / Mechanical Engineering)
Computational Intelligence (Systems Engineering / Computer Engineering / Computer Science)
Contemporary Structural Engineering (Civil Engineering)
Control Systems (Mechanical Engineering)
Cyber Security (Computer Science)
Cybersecurity and Information Assurance Management (Information Science & Technology)
Digital Media and Web Design (Information Science & Technology)
Digital Supply Chain Management (Information Science & Technology)
Electric Machine and Drives (Electrical Engineering)
Electrical Power Systems Engineering (Electrical Engineering)
Electronic and Social Commerce (Information Science & Technology)
Energy Conversion and Transport (Aerospace Engineering / Mechanical Engineering)
Engineering Management (Engineering Management)
Engineering Mechanics (Mechanical Engineering)
Entrepreneurship & Technological Innovation (Business Administration)
Explosives Engineering (Explosives Engineering)
Explosives Technology (Explosives Engineering)
Finance (Business Administration)
Financial Engineering (Engineering Management / Systems Engineering)
Financial Mathematics (Mathematics)
Financial Technology (Business Administration)
Geoenvironmental Engineering (Civil Engineering)
Geotechnical Earthquake Engineering (Civil Engineering)
Geotechnics (Geotechnics)
Human-Computer Interaction and User Experience (Information Science & Technology)
Human Systems Integration (Engineering Management / Information Science & Technology)
Information Assurance and Security Officer Essentials (Computer Engineering / Computer Science)
Information System Project Management (Information Science & Technology)
Information Systems and Cloud Computing (Computer Science)
Infrastructure Renewal (Civil Engineering)
Lean Six Sigma (Engineering Management)
Management and Leadership (Business Administration)
Management for Sustainable Business (Economics)
Manufacturing Automation (Mechanical Engineering)
Manufacturing Systems (Manufacturing Engineering)
Military Construction Management (Engineering Management)
Military Geological Engineering (Geological Engineering)
Mining Engineering (Mining Engineering)
Mobile Business and Technology (Information Science & Technology)
Model Based Systems Engineering (Systems Engineering)
Network Centric Systems (Computer Engineering / Systems Engineering)
Project Engineering & Construction Mgmt (Civil Engineering / Engineering Management)
Project Management (Engineering Management)
Safety Engineering (Chemical and Biochemical Engineering / Engineering Management)
Software Design and Development (Computer Science)
Statistical Methods in Psychology (Mathematics and Statistics / Psychology)
Statistics (Mathematics and Statistics)
Systems and Software Architecture (Computer Science)
Systems Engineering (Systems Engineering)
Technical Communication (Technical Communication)
Wireless Networks and Mobile Systems (Computer Science)

The Provost is responsible for the administration of all graduate work at Missouri S&T. In cases where your program can be demonstrably improved, the Provost can approve departures from the graduate faculty rules. Each department may have its own rules beyond the general ones listed and should be contacted if further information is desired at: http://grad.mst.edu/.
GRADUATE DEGREE PROGRAMS

The Missouri University of Science and Technology offers master of engineering (ME), master of science (MS), master of arts (MA, available as a cooperative degree program with the corresponding departments of the University of Missouri-St. Louis; a maximum of 12 graduate semester hours may be taken at Missouri S&T), master of science for teachers (MST), master of business administration (MBA), doctor of philosophy (PhD), and doctor of engineering (DE) degrees. Missouri S&T also offers two graduate minors (MI). Studies fall into the general areas of business, economics, engineering, English, science and technology.

AEROSPACE ENGINEERING (MS, PhD)
APPLIED AND ENVIRONMENTAL BIOLOGY (MS)
APPLIED MATHEMATICS (MS)
BUSINESS ADMINISTRATION (MBA)
CERAMIC ENGINEERING (MS, PhD)
CHEMICAL ENGINEERING (MS, PhD, DE)
CHEMISTRY (MS, MST, PhD)
CIVIL ENGINEERING (MS, PhD, DE)
COMPUTER ENGINEERING (MS, PhD)
COMPUTER SCIENCE (MS, PhD)
ECONOMICS (MA)
ELECTRICAL ENGINEERING (MS, PhD, DE)
ENGINEERING MANAGEMENT (MS, PhD)
ENGLISH (MA)
ENVIRONMENTAL ENGINEERING (MS)
EXPLOSIVES ENGINEERING (MS, PhD) MI
EXPLOSIVES TECHNOLOGY (MS)
GEOLOGICAL ENGINEERING (MS, PhD, DE)
GEOLOGY AND GEOPHYSICS (MS, PhD)
GEOTECHNICS (ME)
INDUSTRIAL ORGANIZATIONAL PSYCHOLOGY (MS)
INFORMATION SCIENCE & TECHNOLOGY (MS)
MANUFACTURING ENGINEERING (MS, ME)
MATERIALS SCIENCE AND ENGINEERING (MS, PhD)
MATHEMATICS (MST, PhD)
MECHANICAL ENGINEERING (MS, PhD, DE)
METALLURGICAL ENGINEERING (MS, PhD)
MINING ENGINEERING (MS, ME, PhD, DE)
NUCLEAR ENGINEERING (MS, PhD, DE)
PETROLEUM ENGINEERING (MS, PhD, DE)
PHYSICS (MS, MST, PhD)
SYSTEMS ENGINEERING (MS, PhD)
TECHNICAL COMMUNICATION (MS) MI

Aerospace Engineering

The aerospace engineering program in the department of mechanical and aerospace engineering offers comprehensive graduate education in a number of areas. Aerodynamics, gas dynamics, hypersonics, aerospace system design, aerospace propulsion, aerospace structures, plasma aerospace applications, multidisciplinary optimization, and flight dynamics and control are the major areas of emphasis. A wide variety of interdisciplinary programs meeting specific objectives are available. The aerospace engineering program offers the master of science and doctor of philosophy degrees. The department also offers several graduate certificate programs in both aerospace engineering and mechanical engineering. Details of certificate programs can be found under the mechanical engineering program listing.

Typical examples of research activities are: analysis and design of composite structures, structural acoustics, aeroacoustics, smart structures, active and passive vibration control, optimization of systems based on structural dynamics or structural performance, astrodynamics, guidance and control of aircraft and missiles, robust multivariable control, microsatellite design, fabrication, and test, neural network architecture for control, estimation theory, real-time flight simulation, non-equilibrium shock wave structure, propulsion research with emphasis on how fuel variables influence combustion, atomization of liquid fuels in supersonic flow, flame stability in combustion systems, scramjet and supersonic combustion scramjet studies, computational fluid dynamics, laser interaction problems, free turbulent mixing, unsteady high angle of attack flow configurations, computer simulation of separated flows, low-speed and high-speed aerodynamics, aerodynamics of high-lift devices, aerospace system design, and viscous effects in transonic flows.

The mechanical and aerospace engineering department has many well-equipped laboratories located on the main campus, and a subsonic-flow laboratory in an off-campus facility. Some of the specially equipped laboratories on campus include: a supersonic-flow laboratory with a Mach 4 blow-down wind tunnel, a hot-wire anemometer system, a Schlieren system; an airflow test facility; an acoustics and vibration laboratory; a laser diagnostics laboratory equipped with state-of-the-art lasers to conduct experiments related to aerodynamics and combustion; a composite materials testing laboratory with state-of-the-art material testing system; low velocity impact facility and high speed photography equipment; and extensive computer facilities including a personal computer laboratory, advanced computer graphics laboratory, computer learning center with engineering work stations. The flight simulator program at Missouri S&T incorporates a fixed-base real-time flight simulator without-the-window display.

The master of science thesis program consists of a minimum of 30 credit hours, including the following requirements: at least 21 credit hours of lecture courses, at least 6 credit hours of MECH ENG 6099, at least 9 credit hours of lecture courses in the MAE department (of
which at least 3 credit hours must be at the 6000-level), at least 3 credit hours of mathematics, statistics, or computer science (AERO ENG 5830 Applied Computational Methods may be used to satisfy this requirement), and at least 6 credit hours of 6000-level lecture courses. A master of science non-thesis program consists of a minimum of 30 credit hours, including the following requirements: at least 24 credit hours in the MAE department and at least 9 credit hours of 6000-level lecture courses (of which at least 6 credit hours must be in the MAE department). Note that no course below the 5000-level may be applied to the degree requirements.

A student holding an M.S. degree and pursuing the doctor of philosophy degree must complete at least 60 total credit hours, including the following requirements: at least 24 credit hours of lecture courses, at least 36 credit hours of MECH ENG 6099, at least 12 credit hours of course work in the MAE department, at least 3 credit hours of mathematics, statistics, or computer science (AERO ENG 5830 Applied Computational Methods may be used to satisfy this requirement), and at least 9 credit hours of 6000-level courses (of which at least 6 credit hours must be in the MAE department). In addition to these course requirements, a candidate must prepare a dissertation based on analytical, numerical, and/or experimental research. Note that no course below the 5000-level may be applied to the degree requirements.

A student holding a B.S. degree and pursuing the direct doctor of philosophy degree must complete at least 90 total credit hours, including the following requirements: at least 45 credit hours of lecture courses, at least 45 credit hours of MECH ENG 6099, at least 21 credit hours of course work in the MAE department, at least 6 credit hours of mathematics, statistics, or computer science (AERO ENG 5830 Applied Computational Methods may be used to satisfy this requirement), and at least 15 credit hours of 6000-level courses (of which at least 9 credit hours must be in the MAE department). In addition to these course requirements, a candidate must prepare a dissertation based on analytical, numerical, and/or experimental research. Note that no course below the 5000-level may be applied to the degree requirements.

A candidate for the degree of doctor of philosophy must pass a qualifying examination. The candidate is considered to have passed the qualifying examination if the candidate has taken at least four courses and has a GPA ≥ 3.5 at the end of the candidate’s fourth semester. At least two courses must be in the MAE department, one of which must be at the 6000-level.

S N Balakrishnan, Curators Distinguished Professor
PHD University of Texas Austin
Control of aerospace and mechanical systems, flight and orbital mechanics, optimization identification and estimation, numerical methods and stochastic processes, neural networks, wavelets.

Victor Birman, Professor
PHD Technion, Haifa, Israel
Director Engineering Education Center in St. Louis. Composite material structures, smart structures.

K Chandrashekhara, Curators Distinguished Professor
PHD Virginia Polytechnic Institute
Composite materials, smart structures, structural dynamics, finite element analysis, composite manufacturing and experimental characterization.

Kyle Jordan DeMars, Assistant Professor
PHD University of Texas Austin
Stochastic estimation and control theory; information theory; nonlinear uncertainty propagation and rectification; autonomous guidance, navigation, and control of aerospace vehicles; orbit determination, data association, conjunction assessment, and collision avoidance; attitude dynamics, determination, and control; autonomous sensor management; high-fidelity dynamical and observational modeling.

L R Dharni, Curators Distinguished Professor
PHD Clemson University
Curators’ Professor of Engineering Mechanics and Aerospace Engineering and Senior Investigator in Graduate Center for Materials Research. Micromechanics of bi-material interfaces, composite materials, fracture mechanics, fatigue and failure analysis of welded structures, wear and friction in composites, fracture and failure of laminated glass.

Lian Duan, Assistant Professor
PHD Princeton University
Direct numerical simulation and large eddy simulation, high speed transitional and turbulent flows, chemically reacting flows, laminar flow control and turbulent drag reduction, and large-scale, high performance computing.

Walter Eversman, Curators Distinguished Professor Emeritus
PHD Stanford University
Noise control, acoustics, vibrations, aircraft structural dynamics and aeroelasticity, systems and control.

Daoru Han, Assistant Professor
PHD University of Southern California
Plasma aerospace applications; space propulsion; plasma-material interactions; plasma physics and rarefied gas dynamics; high-performance computing.

Serhat Hosder, Associate Professor
PHD Virginia Polytechnic Institute
Computational fluid dynamics, aerodynamics, multidisciplinary design and optimization, uncertainty and error quantification in computational simulations, robust design, micro/nano flows, hypersonic flows, numerical methods.

K M Isaac, Professor
PHD Virginia Polytechnic Institute
Associate Chair for Aerospace Engineering. Fluid dynamics and combustion, aero-structure interaction and control, intelligent aircraft, active flow control, wave-riders, microfluidics, MEMS, flow and combustion in porous media, multiphase flow, emissions from combustion and evaporative systems, lean premixed combustion, combustion instability, active 116 - Graduate Faculty combustion control, atomization and sprays, particle image velocimetry (PIV) and CFD applications in fluid dynamics and combustion problems.

Gearoid P MacSithigh, Associate Professor
PHD University of Minnesota
Finite elasticity, viscoelasticity, liquid crystal hydrodynamics, solid and continuum mechanics.

Henry J Pernicka, Professor
PHD Purdue University
Astrodynamics, orbital mechanics, spacecraft design, spacecraft mission design, satellite attitude dynamics, nonlinear analysis, dynamics and control, optimization.
David W Riggins, Curators Distinguished Teaching Professor
PHD Virginia Polytechnic Institute
Fluid dynamics, computational fluid dynamics, hyper/sonic propulsion systems, computational analysis of jet mixing, flow losses and mixing enhancement in combustors, aircraft gas turbine scramjet propulsion systems, and scramjet performance.

Charles S Wojnar, Assistant Professor
PHD California Institute of Technology
Aerospace structures, active materials, mechanics of materials, continuum mechanics, micromechanics, manufacturing, experimental and computational solid mechanics.

AERO ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

AERO ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mech Eng 5001).

AERO ENG 5131 Intermediate Thermofluid Mechanics (LEC 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 3131 or Aero Eng 3131. (Co-listed with Mech Eng 5131).

AERO ENG 5139 Computational Fluid Dynamics (LEC 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 1570 or 1970 or 1971; one course in fluid mechanics. (Co-listed with Mech Eng 5139).

AERO ENG 5169 Introduction to Hypersonic Flow (LEC 3.0)

AERO ENG 5171 V/Stol Aerodynamics (LEC 3.0)

AERO ENG 5212 Introduction to Finite Element Analysis (LEC 3.0)
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisites: Math 3304; senior or graduate standing. (Co-listed with Mech Eng 5212).

AERO ENG 5220 Advanced Mechanics of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 2210, Math 3304. (Co-listed with Mech Eng 5220).

AERO ENG 5222 Introduction to Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Linear elasticity, some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Eng Mech 5211. (Co-listed with Mech Eng 5222).

AERO ENG 5229 Smart Materials and Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Mech Eng 5229, Elec Eng 5270 and Civ Eng 5118).

AERO ENG 5234 Stability of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 2210; Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Mech Eng 5234).

AERO ENG 5236 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concept of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5236).

AERO ENG 5238 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints components and structures, design to prevent fatigue. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5238).

AERO ENG 5282 Introduction to Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5282).
AERO ENG 5307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems. Natural frequencies, resonances, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Mech Eng 5307).

AERO ENG 5309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 3411 & 3313, or Aero Eng 3613 & Math 3304. (Co-listed with Mech Eng 5309).

AERO ENG 5313 Intermediate Dynamics of Mechanical and Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisites: Aero Eng 3313 or Aero Eng 3613. (Co-listed with Mech Eng 5313).

AERO ENG 5353 Aerelasticity (LEC 3.0)
Study of phenomena involving interactions among inertial, aerodynamic, and elastic forces and the influence of these interactions on aircraft and space vehicle design. Some aerelastic phenomena are: divergence, control effectiveness, control reversal, flutter, buffeting, dynamic response to rapidly applied loads, aerelastic effects on load distribution, and static and dynamic stability. Prerequisites: Aero Eng 3251 and 3171.

AERO ENG 5361 Flight Dynamics-Stability And Control (LEC 3.0)
Review of static stability, dynamic equations of motion, linearized solutions, classical control design and analysis techniques, introduction to modern control. Prerequisite: Aero Eng 3361.

AERO ENG 5449 Robotic Manipulators and Mechanisms (LAB 1.0 and LEC 2.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Mech Eng 3313; Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972 or Comp Sci 1570. (Co-listed with Mech Eng 5449).

AERO ENG 5478 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Elec Eng 5870 and Comp Eng 5820).

AERO ENG 5481 Mechanical and Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 4479 or Aero Eng 3361. (Co-listed with Mech Eng 5481).

AERO ENG 5519 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 2519. (Co-listed with Mech Eng 5519).

AERO ENG 5525 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 3525. (Co-listed with Mech Eng 5525).

AERO ENG 5527 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 3521. (Co-listed with Mech Eng 5527).

AERO ENG 5535 Aerospace Propulsion Systems (LEC 3.0)
Study of atmospheric and space propulsion systems with emphasis on topics of particular current interest. Mission analysis in space as it affects the propulsion system. Power generation in space including direct and indirect energy conversion schemes. Prerequisite: Aero Eng 4535.

AERO ENG 5570 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3313 or Physics 3211 or Nuc Eng 3221 or Elec Eng 3600. (Co-listed with Mech Eng 5570, Nuc Eng 4370, Physics 4543).

AERO ENG 5614 Spaceflight Mechanics (LEC 3.0)
Further topics in orbital mechanics. Time equations, Lambert’s problem, patched-conic method, orbital maneuvers, orbit determination, orbit design, re-entry problem. Prerequisite: Aero Eng 3613.

AERO ENG 5715 Concurrent Engineering (LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 3313 or Aero Eng 3131 and Civ Eng 2210 (Co-listed with Mech Eng 5715).
AERO ENG 5758 Integrated Product Development (LAB 1.0 and LEC 2.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, cost, and product support. Using a 3-D solid modeling program, students will design, analyze, and send the data base to the automated machine shop where the parts will be manufactured. The parts will then be assembled, tested and analyzed for their performance. Prerequisites: Aero Eng 3251 or Mech Eng 3708 for Design; Mech Eng 3313 for Assembly; Accompanied or preceded by Mech Eng 5653 for Manufacturing; Eng Mgt 5711 or 5714 for Cost/Product Support.

AERO ENG 5760 Probabilistic Engineering Design (LEC 3.0)
The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 3708 or Aero Eng 3361. (Co-listed with Mech Eng 5760).

AERO ENG 5830 Applied Computational Methods (LEC 3.0)
Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 1570 or 1970 or 1981; Math 3304. (Co-listed with Mech Eng 5830).

AERO ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects of projects in the department. Consent of instructor required.

AERO ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mech Eng 5001).

AERO ENG 6010 Seminar (LEC 0.0-1.0)
Discussion of current topics. (Co-listed with Mech Eng 6010).

AERO ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

AERO ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

AERO ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

AERO ENG 6123 Viscous Fluid Flow (LEC 3.0)
Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Mech Eng 6123).

AERO ENG 6131 Gas Dynamics I (LEC 3.0)
A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Mech Eng 6131).

AERO ENG 6135 Turbulent Flows - Theory, Measurements and Modeling (LEC 3.0)
Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Mech Eng 6135).

AERO ENG 6137 Physical Gas Dynamics I (LEC 3.0)
Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and Nonequilibrium gas properties and gas flows are included. Prerequisite: Mech Eng 5131 or Aero Eng 5131. (Co-listed with Mech Eng 6137).

AERO ENG 6212 Advanced Finite Element Analysis (LEC 3.0)

AERO ENG 6222 Theory of Elasticity (LEC 3.0)
AERO ENG 6284 Analysis of Laminated Composite Structures (LEC 3.0)
An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Mech Eng 6284).

AERO ENG 6285 Mechanics Of Composite Materials (LEC 3.0)
Effective moduli of spherical, cylindrical and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Mech Eng 6285).

AERO ENG 6307 Advanced Vibrations (LEC 3.0)
Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems and random excitations. Prerequisite: Mech Eng or Aero Eng 5307. (Co-listed with Mech Eng 6307).

AERO ENG 6313 Advanced Aerospace Mechanics (LEC 3.0)
Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena, the calculus of variations, stability of systems, to include approximate techniques. Prerequisite: Mech Eng or Aero Eng 5313. (Co-listed with Mech Eng 6313).

AERO ENG 6447 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Eng Mgt 6410 and Comp Sci 6202).

AERO ENG 6458 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Elec Eng 6360, Mech Eng 6458 and Sys Eng 6215).

AERO ENG 6479 Analysis And Synthesis Of Mechanical And Aerospace Systems (LEC 3.0)
A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mech Eng 5481 or Aero Eng 5481. (Co-listed with Mech Eng 6479).

AERO ENG 6481 Advanced Topics in Decision and Control (LEC 3.0)
This course will deal with latest topics in the areas of decision and control. Course may be repeated if topics vary. Prerequisites: Aero Eng 5481 or Mech Eng 5481 or equivalent. (Co-listed with Mech Eng 6481).

AERO ENG 6525 Heat Transfer by Conduction (LEC 3.0)
A study of conduction of heat transfer in solids by analytical and other methods. Prerequisite: Mech Eng 5525 or Aero Eng 5525. (Co-listed with Mech Eng 6525).

AERO ENG 6527 Heat Transfer by Convection (LEC 3.0)
An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mech Eng 5525 or Aero Eng 5525. (Co-listed with Mech Eng 6527).

AERO ENG 6529 Heat Transfer by Radiation (LEC 3.0)
A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Mech Eng 6529).

AERO ENG 6614 Advanced Astrodynamics (LEC 3.0)
Analysis of spacecraft motion using different dynamic models and perturbations. Using the state transition matrix and differential corrections technique for trajectory computation. Introduction to the three-body problem. Use of computational and numerical methods to solve astrodynamics problems. Prerequisite: Aero Eng 5614.

Biological Sciences
Graduate study in the department of biological sciences encompasses an interdisciplinary approach to problems in applied and environmental biology. The program emphasizes research designed to understand responses and adaptations in biological systems at cellular and molecular levels. Areas of particular interest include microbiology, cell biology, applied plant genetics, toxicology and bioinformatics. Faculty research programs are distinguished by their close association with other science and engineering disciplines on the Missouri S&T campus.

Graduate study in biological sciences is characterized by close interactions with faculty members. While courses of study are individualized, they include seminars, laboratory rotations and specialized courses in multiple disciplines. Emphasis is placed on research efficiency and communication skills.

Equipment and Facilities
The department's office, teaching and research laboratories, equipment rooms (including imaging, histology, lab preparation, and bioanalytical facilities), faculty offices, student study hall and conference room are housed in Schrenk Hall. The University maintains a Field Station near campus, adjacent to the Bohigian Conservation Area, for education and research use. Equipment required to support graduate research in the biological sciences is available within the department or in the laboratories of collaborators in other disciplines. The Missouri S&T Animal Research Facility (managed by the department) provides access to vertebrate animals for research. The 1,780 square foot facility includes colony rooms, a room for sterile surgery, a cage-washing room, and other support rooms. Faculty and students requiring additional analytical instruments have access to such equipment through the research centers at Missouri S&T. The Department of Biological Sciences is also
equipped with instruments for cell and molecular biology, cryostat, confocal microscope, epifluorescent microscopes with CCD cameras and digital imaging software, high speed centrifuges with fixed angle and swinging bucket rotors, laminar flow hoods, microcentrifuges, gel dryer, evaporative centrifuge, thermocyclers, electroporator, protein and DNA gel-electrophoresis units, UV cross-linker, semi-dry and submarine nucleic acid/protein transfer units, numerous general use incubators, growth chambers, shaking incubators, UV-trans-illuminator, assorted teaching and research microscopes, nanopure water purification system, UV-Vis spectrophotometers, scintillation counters, microtiter plate reader, semi-automatic cell-harvester, media prep room with autoclaves, -70°C freezers, and automated media dispenser. Equipment for environmental microbiology includes a Coy anaerobic glove bag.

Course Study

Degree Requirements M.S. - with thesis

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 6202</td>
<td>Problems In Applied And Environmental Biology</td>
</tr>
<tr>
<td>BIO SCI 5010</td>
<td>Graduate Seminar</td>
</tr>
<tr>
<td>BIO SCI 5099</td>
<td>Graduate Research</td>
</tr>
<tr>
<td>BIO SCI 6223</td>
<td>Research Proposal Writing</td>
</tr>
</tbody>
</table>

Degree Requirements M.S. - without thesis

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 6202</td>
<td>Problems In Applied And Environmental Biology</td>
</tr>
<tr>
<td>BIO SCI 5010</td>
<td>Graduate Seminar</td>
</tr>
</tbody>
</table>

Elective courses are chosen with guidance from the advisor and advisory committee. A minimum of 30 credit hours is required for a M.S. degree. Up to 6 credit hours may be taken at the 3000-level in courses offered by other departments. Candidates for the M.S. degree with thesis conduct original research that is defended in a final oral examination. Non-thesis M.S. degree candidates take a comprehensive written final examination.

David Duvernell, Professor
PHD Virginia Tech
Population genetics, evolutionary ecology.

Ronald L. Frank, Associate Professor
PHD Ohio State University
Molecular genetics, molecular biology.

Chen Hou, Associate Professor
PHD University of Missouri-Columbia
Metabolic basis of aging, energetic basis of animal growth and reproduction.

Yue-Wern Huang, Professor
PHD University of Wisconsin Madison
Toxicology, nanobiotechnology, biomedical science.

Melanie R Mormile, Professor
PHD University of Oklahoma, Norman
Environmental microbiology.

Dev K. Niyogi, Associate Professor
PHD University of Colorado Boulder
Ecology, limnology.

Julie A Semon, Assistant Professor
PHD Tulane University
Adult stem cells, tissue engineering.

Katie B Shannon, Associate Teaching Professor
PHD Harvard Medical School
Cell biology, mitosis, cytokinesis, cell cycle regulation, genetics, biochemistry, genomics.

Matthew Scott Thimgan, Assistant Professor
PHD The University of North Carolina at Chapel Hill
Biochemistry, genetics and anatomy of the sleep-loss response, sleep biomarkers.

David J Westenberg, Associate Professor
PHD University of California-Los Angeles
Molecular microbiology, microbial diversity, microbial physiology.

BIO SCI 5000 Special Problems (IND 0.0-6.0)
Graduate problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

BIO SCI 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 5010 Graduate Seminar (RSD 0.0-6.0)
Presentation and discussion of current topics in Applied and Environmental Biology.

BIO SCI 5040 Oral Examination (IND 0.0)
(Variable) After completion of all other program requirements, oral examinations for on-campus M.S./PH.D students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BIO SCI 5099 Graduate Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

BIO SCI 5210 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Chem Eng 5200, MS&E 5310).

BIO SCI 5240 Tissue Engineering (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with MS&E 5210).
BIO SCI 5313 Pathogenic Microbiology (LEC 3.0)
A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio Sci 2213 or Civ Eng 2601.

BIO SCI 5323 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with COMP SCI 5700).

BIO SCI 5333 Genomics (LEC 3.0)
This course offers a general overview of the field of genomics. Topics covered include genome sequencing and annotation, transcriptomics, proteomics, metabolomics, genomic variation, and an overview of human, and several animal, plant, and microbial genome projects. Prerequisite: BIO SCI 4323.

BIO SCI 5343 Biology of Aging (LEC 3.0)
We will discuss the proximate and ultimate mechanisms of aging, and review a few leading theories of aging with the emphases on oxidative stress and life history tradeoffs. We will take the comparative approach to study aging across species, and the interventions that extend animals' lifespan, and explore why they may or may not work on humans. Prerequisites: Bio Sci 2213.

BIO SCI 5353 Developmental Biology (LEC 3.0)
Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisite: Bio Sci 2213.

BIO SCI 5423 Advanced Biodiversity (LEC 3.0)
This course focuses on the enhancement and reduction of biodiversity and modern techniques of measuring and monitoring it. Topics include biogeography, community structure, competition, predation, food webs, geology-biology relationships, environmental change, and human impact. Additional costs and a week-long field trip are required. Prerequisite: Bio Sci 2233 or Bio Sci 2263.

BIO SCI 5433 Neurobiology (LEC 3.0)
An intermediate course in cellular neurobiology. Emphasis will be placed on the unique properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of neurons, synaptic transmission, neurochemistry, signal transduction, neuropathology and neurodevelopment. Prerequisite: Bio Sci 2213.

BIO SCI 5463 Global Ecology (LEC 3.0)
This class covers ecological topics at large scales, emphasizing global scales. Topics include global energy balance, biogeochemical cycles of water, carbon, nitrogen, and other biologically important elements, and global biodiversity. Students will focus on primary literature related to global ecology. Prerequisite: Bio Sci 2263.

BIO SCI 5533 Pharmacology (LEC 3.0)
The basic principles of drug action, pharmacokinetics, pharmacodynamics and toxicity. We will emphasize the actions of drugs used to treat cardiovascular and nervous system disorders. Students will review the primary literature to prepare both written and oral reports on drug actions. Prerequisite: Bio Sci 2213.

BIO SCI 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BIO SCI 6202 Problems In Applied And Environmental Biology (LEC 0.0-3.0)
Overview of major areas of research in applied biology and environmental science with a focus on interdisciplinary approaches used on S&T campus in ongoing research. Prerequisite: Acceptance to Graduate Program.

BIO SCI 6210 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with CHEM ENG 6300, MS&E 6310).

BIO SCI 6223 Research Proposal Writing (LEC 3.0)
Students will learn best practices of grant proposal writing. Students will conduct background research, prepare an annotated bibliography, brainstorm specific aims, and critique each other's writing. The course will conclude with a presentation by the student of their finished proposal. Prerequisites: Graduate standing.

BIO SCI 6240 Tissue Engineering II (LEC 3.0)
The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with MS&E 6210).

BIO SCI 6273 Techniques In Applied And Environmental Biology (LEC 3.0)
Students will have the opportunity for hands on experience with the various techniques used in the modern biology laboratory. Techniques will include gene cloning, DNA sequencing, protein purification, growth and development of various model organisms, data acquisition. Prerequisite: Graduate standing.
\textbf{BIO SCI 6313 Environmental Microbiology} (LEC 3.0)
Topics to be explored in this course will include but are not limited to microbial growth and metabolic kinetics, life in extreme conditions, biogeochemical cycling, bioremediation of contaminants, waterborne pathogens and environmental biotechnology. Prerequisite: Must be a graduate student.

\textbf{BIO SCI 6353 Advanced Cancer Cell Biology} (LEC 3.0)
Graduate level biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. In addition to lecture, will include a weekly section to examine primary cancer literature. Prerequisite: Bio Sci 2213.

\textbf{BIO SCI 6363 Advanced Freshwater Ecology} (LEC 3.0)
The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate student standing.

\textbf{BIO SCI 6373 Advanced Stem Cell Biology} (LEC 3.0)
This course will cover the fast-moving field of stem cell biology. Topics include: development and organogenesis, regeneration and repair, stem cell types and sources, pluripotency and reprogramming, stem cells and cancer, therapeutics, and ethics. Research proposal and additional readings required for graduate credit.

\textbf{BIO SCI 6383 Advanced Toxicology} (LEC 3.0)
We will discuss the toxicity and mechanisms of action of natural and man-made toxicants. The impact of toxicants on both human health and the environment will be considered. Students will be assigned to independent literature search and write a report. Prerequisites: Bio Sci 2213 and Bio Sci 2223.

\textbf{BIO SCI 6413 Molecular Cell Biology} (LEC 3.0)
Advanced study of the biology of eukaryotic cells, including biomembranes and membrane transport, subcellular organelles, cellular energetics, protein sorting, cytoskeletal elements, cell to cell signalling, regulation of the cell cycle, and tissue organization. Prerequisite: Bio Sci 2213 or equivalent.

\textbf{BIO SCI 6423 Astrobiology} (LEC 3.0)
The origins of life on early earth and the possibility of life on extraterrestrial bodies will be explored in this course through lectures and journal article discussions. In addition, the means to study extraterrestrial environments will be considered. Prerequisite: Graduate standing.

\textbf{BIO SCI 6463 Bioremediation} (LEC 3.0)
"During this course, the use of microorganisms and other living organisms for the remediation of contaminated environments will be explored along with the techniques necessary for monitoring their activities. Prerequisite: Graduate standing.

\textbf{BIO SCI 6513 Advanced Microbial Metabolism} (LEC 3.0)
A survey of the diverse metabolic properties of microorganisms. Course material will emphasize major metabolic pathways and how they relate to microbial diversity and microbial ecology. Prerequisite: Bio Sci 3313 or an equivalent course.

\textbf{BIO SCI 6523 Advanced Biomolecules} (LEC 3.0)
Demonstration of the principles of modern biochemistry as they relate to the structure and function of the major macromolecules of the cell. An emphasis will be placed on reading and interpreting scientific literature and scientific writing. Prerequisite: Bio Sci 2213 or Chem 4610 or an equivalent course.

\textbf{BIO SCI 6666 Advanced Nanotechnology in Biomedicine} (LEC 3.0)
Applications of nanotechnology in life science is termed nanobiotechnology. This course describes recent development of nanotechnology in basic biological research as well as biomedical applications. In addition to attending regular lectures, graduate students will be assigned to an independent research project and present the information in the class. Prerequisites: Bio Sci 2213 and Bio Sci 2223 and graduate standing.

\section*{Business Administration}

The business and information technology department offers a unique master of business administration (MBA). The MBA is a professional degree that combines core business knowledge with specialization tracks that include the newest technology trends, all in an environment of team based project work, business plan development, live simulations, and employer networking. In addition to influential presentation skills and advanced problem solving competencies, MBAs develop advanced strategic thinking skills that are required of the leaders of today and tomorrow.

\section*{Financial Assistance}

Financial assistance is available to graduate students in the form of assistantships and fellowships. Research opportunities for advanced students exist. For application forms, contact the department.

\section*{Additional Information}

Contact us at 573-341-7216, bit@mst.edu or visit http://bit.mst.edu.

\section*{Admissions Requirements}

In addition to the requirements set by the office of admissions and the office of graduate studies, specific requirements for admission to the MBA program are as follows:

- Successful completion of an undergraduate degree from a recognized college or university with a GPA (grade point average or international equivalent) of 3.0/4.0 or better.
- Submission of scores from the Graduate Record Exam (GRE) or the Graduate Management Admissions Test (GMAT).
- TOEFL or IELTS scores must be submitted if English is not the candidate's natural language.

Please note that meeting the above requirements does not guarantee admission into the MBA program, but, rather, is used by the admissions committee in the decision-making process
Degree Requirements

In today’s business environment, management requires the ability to leverage information across business functions and knowledge across internal and external boundaries. Students work in teams on comprehensive business cases, live simulations and real company assigned projects throughout the MBA program.

The Missouri S&T MBA requires a total of 36 graduate credit hours (5000-level and above) and is offered in two (2) parts: the MBA Core (21 credits) and electives (15 credits). The MBA core classes include BUS 6121, BUS 6622, BUS 6723, BUS 6224, BUS 6425, BUS 6426, and BUS 6827.

Courses below the 5000-level will not count toward the MBA degree, even if they are taken to fulfill prerequisites. A maximum of 6 credit hours may be taken outside the Business and Information Technology department, except where taking one of the approved Graduate Certificates listed below requires otherwise.

The business and information technology department offers a variety of graduate certificates. Each certificate program consists of four courses and is open to persons holding a bachelor’s, master’s or Ph.D degree in areas such as business, social sciences, technology, engineering, or related disciplines who have the required pre-requisites for the courses in the program. A student must maintain an average cumulative grade point of 3.0 or better on a 4.0 scale in the certificate courses in order to receive the graduate certificate.

Students may apply to be admitted only to a graduate certificate program. If admitted, the student will have non-degree graduate status but will earn graduate credit for the courses completed. If a student completes the four graduate certificate courses with a grade of B or better in each of the courses taken, the student may be admitted to the master of business administration or to the master of science in information science and technology if the student so chooses. A student must, however, follow the normal application process and meet other program prerequisites. The graduate certificate credits will count toward the student’s MBA or M.S. degree.

The current list of approved graduate certificates includes:

- Business analytics and data science
- Business intelligence
- Business project management
- Cybersecurity and information assurance management
- Digital media and web design
- Digital supply chain management
- Electronic and social commerce
- Enterprise resource planning
- Entrepreneurship and technological innovation
- Finance
- Financial Technology
- Human-computer interaction and user experience
- Information system project management
- Management and leadership
- Mobil business and technology
- Military construction management (offered by engineering management program)
- Military geological engineering (offered by geological sciences and engineering programs)

Additional graduate certificates may be approved for the department.

Details about some of the graduate certificates are listed below; others are listed in the information science and technology section of the catalog.

Business Project Management

This certificate aims to equip students with a set of tools that will allow them to achieve Project Management Institute (PMI) standards in the project management area to successfully manage resources and to analyze, evaluate and improve complex projects. Specifically, the ability to:

- Identify operations problems and implement solutions for improved strategic competitiveness
- Make sound decisions, plan, and control the key resources of an organization - money and people
- Critically analyze, evaluate, improve, or adapt existing technical and/ or managerial systems
- Organize and manage complex projects

A student admitted to this graduate certificate must complete four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 6425</td>
<td>Supply Chain and Project Management</td>
</tr>
<tr>
<td>BUS 6723</td>
<td>Artificial Intelligence, Robotics, and Information Systems Management</td>
</tr>
<tr>
<td>ENG MGT 5320</td>
<td>Project Management</td>
</tr>
<tr>
<td>ENG MGT 6322</td>
<td>Case Studies in Project Management</td>
</tr>
</tbody>
</table>

Entrepreneurship and Technological Innovation

Change and growth in Missouri and America require the training, nourishing, and flourishing of entrepreneurs. Many college students, however, do not yet recognize the entrepreneurial spirit in themselves. Recent entrepreneurship research indicates that many of the skills and much of the knowledge of successful entrepreneurs can be developed and taught in the classroom. The department of business and information technology has created this certificate to spark the entrepreneurial spirit in the students of Missouri S&T, and provide them with a solid foundation on which to build.

To that end, the program focuses on the following competencies:

- Recognizing opportunity
- Assessing opportunity
- Planning under uncertainty
- Fostering innovations
- Mastering creativity
- Building and managing networks
- Leveraging resources
- Mitigating and managing risk
- Focus and adaptability
- Design thinking
- Implementing new ideas

A student admitted to this graduate certificate must complete four courses:
incorporates management theories, technological savvy, and leadership know how to harness technology to expedite the process. The certificate understands the managerial process and how to inspire others, but also the tool used by efficient and effective managers. These leaders not only understand technology is becoming ever more critical in business as the future, by enabling them to manage through the use of technology. This certificate is designed to prepare students to be the leaders of Management and Leadership.

A student admitted to this certificate must complete four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 5980</td>
<td>Business Models for Entrepreneurship and Innovation</td>
</tr>
<tr>
<td>MKT 5310</td>
<td>Digital Marketing and Promotions</td>
</tr>
</tbody>
</table>

Two courses from the following list:

- BUS 5580 Strategic Management
- BUS 6150 Advanced Customer Focus and Satisfaction
- IS&T 5251 Technological Innovation Management and Leadership
- IS&T 5886 Prototyping Human-Computer Interactions
- IS&T 6335 Mobile Technology for Business
- IS&T 6654 Advanced Web and Digital Media Development

Finance

This certificate provides in-depth exposure to finance, including managerial and corporate finance, as well as investments and financial statement analysis and modeling. Skills will be enhanced in financial theory, financial markets, and decision-making in investments, with career options as budget analysts/financial analysts, risk management specialists, capital advisors, and investment underwriters, among others. A student admitted to this graduate certificate must complete four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 6827</td>
<td>Managerial Finance</td>
</tr>
</tbody>
</table>

Three courses from the following list:

- FINANCE 5160 Corporate Finance II
- FINANCE 5260 Investments I
- BUS 5230 Financial Statement Analysis
- FINANCE 5310 Financial Modeling

Financial Technology

This certificate deals with the aim of making financial systems more efficient. It exists at the intersection of information systems and finance. FinTech is a range of disruptive technological approaches within the money, market, marketplace, and financial infrastructure spheres. From cryptocurrencies and blockchain to enterprise software and asset management via robo-advisors, financial service functions are increasingly based on growing and innovative technology. A student admitted to this certificate must complete four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINANCE 5310</td>
<td>Financial Modeling</td>
</tr>
<tr>
<td>IS&T 5420</td>
<td>Business Analytics and Data Science</td>
</tr>
</tbody>
</table>

One course from the following list:

- FINANCE 5160 Corporate Finance II
- FINANCE 5260 Investments I
- BUS 5230 Financial Statement Analysis

One course from the following list:

- IS&T 5520 Data Science and Machine Learning with Python
- IS&T 6450 Information Visualization
- BUS 6723 Artificial Intelligence, Robotics, and Information Systems Management
- IS&T 6780 Adv Human and Organizational Factors in Cybersecurity
- ERP 5210 Performance Dashboard, Scorecard and Data Visualization

Management and Leadership

This certificate is designed to prepare students to be the leaders of the future, by enabling them to manage through the use of technology. Understanding technology is becoming ever more critical in business as a tool used by efficient and effective managers. These leaders not only understand the managerial process and how to inspire others, but also know how to harness technology to expedite the process. The certificate incorporates management theories, technological savvy, and leadership skills to create a student who is ready for the challenges of a fast-paced managerial position.

A student admitted to this graduate certificate must complete four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 6121</td>
<td>Teambuilding and Leadership</td>
</tr>
</tbody>
</table>

Three courses from the following list:

- IS&T 5168/PHILOS 4368 Law and Ethics in E-Commerce
- IS&T 5251 Technological Innovation Management and Leadership
- IS&T 6261 Advanced Information Systems Project Management
- BUS 5470 Human Resource Management
- BUS 5580 Strategic Management
- BUS 6111 Advanced Business Negotiations
- BUS 6150 Advanced Customer Focus and Satisfaction
- ENG MGT 5320 Project Management

Carla Pauline Bates, Assistant Teaching Professor

PHD University of Missouri-Columbia Learning styles, learning technologies.

Robert T Berry, Adjunct Professor

PHD University of Kansas Project management, business negotiations, general management.

Darryl Lee Brinkmann, Adjunct Instructor

MASTER Sangamon State University General management, human resource management.

Langtao Chen, Assistant Professor

PHD Georgia State University Data analytics, human-computer interaction, social media, health informatics, machine learning, gameful design.

Yu Hsien Chiu, Associate Teaching Professor

MASTER University of Wisconsin-Milwaukee Enterprise resource planning, accounting information systems.

Craig C Claybaugh, Associate Professor

PHD University of Wisconsin-Milwaukee Enterprise resource planning, information technology vendor-client relationships, online trust, social networking.

Cassandra Carlene Elrod, Associate Professor

PHD University of Missouri-Rolla Marketing in higher education, operations management, supply chain management, continuous improvement, project management, quality, and lean enterprise.

Li-Li Eng, Associate Professor

Hanjing Fang, Assistant Professor

PHD Mississippi State University

Barry B Flachsbart, Professor

PHD Stanford University Large databases, manufacturing information systems, information systems project management, team building and leadership, machine learning and artificial intelligence.
Nobuyuki Fukawa, Associate Professor
PHD Louisiana State University
Consumer behavior, marketing research, marketing strategy.

Richard H Hall, Professor
PHD Texas Christian University
Human-computer interaction with a focus on learning technologies.

Edward J Harvey, Lecturer
MBA University of Missouri-Columbia
General management, human resource management.

Michael Gene Hilgers, Professor
PHD Brown University
Modeling and simulation, leaning technologies, and human-computer interaction.

Bi-Hu Lea, Associate Professor
PHD Clemson University
Enterprise resource planning, performance dashboards, accounting information systems, data visualization, business process integration, and supply chain management.

Yu Liu, Assistant Professor
PHD University of Oregon
Empirical corporate finance, investment, OTC market, public finance, and political economics.

Fiona Fui-Hoon Nah, Professor
PHD University of British Columbia
Management information systems, E-commerce, mobile commerce, human-computer interaction.

Keng Leng Siau, Professor
PHD University of British Columbia
Artificial intelligence/machine learning, business intelligence/analytics, design science, mobile, and ubiquitous business.

Sarah Margaret Stanley, Assistant Professor
PHD Saint Louis University
Brand relationships, advertising effectiveness, social marketing and its effects on consumer brand choice.

Nathan W Twyman, Assistant Professor
PHD University of Arizona
Deception detection, human-computer interactions, human risk assessments, auditing, security, and forensic systems.

Wen-Bin Yu, Associate Professor
PHD University of Louisville
Business intelligence, text mining, data mining, demand forecasting, simulation, and agent bases systems.

Hongxian Zhang, Assistant Professor
PHD University of Texas at San Antonio
Corporate finance, investments, public pension funds.

BUS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

BUS 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 5040 Oral Examination (IND 0.0)
After completion of all other requirements, oral examinations for on-campus M.B.A./Ph.D. students may be processed during intersession. Off-campus M.B.A. students must be enrolled in oral examination and must have paid an oral examination fee at the time defense/oral examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BUS 5080 Practicum (IND 0.0-6.0)
This course is similar to the Bus 5085 Internship course. The difference is that this course is intended for students who are already employed by an organization for whom they wish to continue working. Prerequisite: Bus Core.

BUS 5085 Internship (IND 0.0-6.0)
Students apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employer. Activities will vary depending on the student's background and the setting. Requires major report and formal presentation to sponsoring organization. Prerequisite: Graduate standing.

BUS 5099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

BUS 5105 Graduate Management and Business Law Essentials (LEC 1.5)
This course is an introduction to the essentials of management and business law for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

BUS 5115 Introduction to Individual and Group Dynamics in Business (LEC 3.0)
This course will cover contemporary theories of business leadership styles and group dynamics. Leadership theories, group dysfunction/ function, positive group interactions, change impacts, the importance of business ethics as well as the role of gender and culture on the group will be examined.

BUS 5205 Graduate Accounting Essentials (LEC 1.5)
This course is an introduction to the essentials of financial and managerial accounting for running a business. It’s designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.
BUS 5230 Financial Statement Analysis (LEC 3.0)
Analysis and interpretation of financial statements for profitability analysis, credit analysis, and other business analyses that rely on financial data. Introduces emerging roles of accounting analytics. Illustrates data analytics concepts and techniques to detect earning management, predict fraud, and to provide insights into other business strategies. Prerequisite: FINANCE 2150 or Graduate Standing.

BUS 5305 Graduate Operations Management Essentials (LEC 1.5)
This course is an introduction to the essentials of operations management for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

BUS 5360 Business Operations (LEC 3.0)
This course examines the concepts, processes, and institutions that are fundamental to an understanding of business operations within organizations. Emphasis is on the management and organization of manufacturing and service operations and the application of quantitative methods to the solution of strategic, tactical and operational problems. Prerequisites: BUS 1210 or ENG MGT 2211; at least Junior standing; and one of the following: STAT 1111, STAT 1115, STAT 1116, STAT 3111, STAT 3113, STAT 3115, or STAT 3117.

BUS 5470 Human Resource Management (LEC 3.0)
The course examines employee selection, performance appraisal, training and development, compensation, legal issues, and labor relations. Prerequisite: Bus 1110.

BUS 5580 Strategic Management (LEC 3.0)
Study of the formulation and implementation of corporate, business and functional strategies designed to achieve organizational objectives. Case studies and research reports may be used extensively. Prerequisites: MKT 3110 or Eng Mgt 3510; Finance 2150 or Eng Mgt 3200; Senior standing.

BUS 5705 Graduate Management Information Systems Essentials (LEC 1.5)
This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Graduate Degree.

BUS 5730 Machine Learning and Artificial Intelligence for Business (LEC 3.0)
Explores various approaches to machine learning and artificial intelligence, along with their numerous applications in business. Describes some of the many technological approaches to business problems that are considered part of machine learning and artificial intelligence, such as neural networks and deep learning. Prerequisites: IS&T 1750; or Graduate Standing, understanding of management information systems.

BUS 5805 Graduate Mathematics and Statistics Essentials (LEC 1.5)
This course is an introduction to the essentials of mathematics and statistics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

BUS 5896 Project Research (IND 0.0-9.0)
The research project will involve students applying research techniques and discipline specific knowledge working on a project designed by the advisor, often working with a business organization. Requires major report and formal presentation to sponsoring organization. Prerequisite: Permission of the instructor.

BUS 5910 Privacy and Information Security Law (LEC 3.0)
Explores issues concerning the use, disclosure, and protection of information (personal, organizational, health, and financial) from a legal perspective. A focus on understanding, planning, protecting, and responding to data breaches and other information risk and threats. Case studies based on litigation are reviewed and analyzed. Assumes MIS familiarity.

BUS 5980 Business Models for Entrepreneurship and Innovation (LEC 3.0)
This course uses problem based learning to expand student insight into the nature, development, and application of business models. It increases the practical skills and knowledge required to generate original models of value creation for both entrepreneurial start-ups and corporate innovation. Prerequisite: Senior or graduate standing.

BUS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

BUS 6001 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 6099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

BUS 6111 Advanced Business Negotiations (LEC 3.0)
The purpose of this course is to understand the practices and processes of negotiation for negotiating successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. A negotiation project is also required. Prerequisite: Graduate status.

BUS 6121 Teambuilding and Leadership (LEC 3.0)
This class will teach students how to work well in teams and lead teams and organizations. Management, networking, presentation skills, and sustainable business practices will be covered. MBA core. Prerequisite: Graduate standing.
BUS 6150 Advanced Customer Focus and Satisfaction (LEC 3.0)
Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. Individual focused research is included. Prerequisites: MKT 3110 or MKT 3105 or ENG MGT 3510. (Co-listed MKT 6150).

BUS 6624 Managerial Accounting and Control (LEC 3.0)
This course covers managerial accounting and its critical role in decision making, monitoring, and controlling business processes. MBA core. Prerequisite: Graduate standing.

BUS 6425 Supply Chain and Project Management (LEC 3.0)
This course covers supply chain management and its critical role in developing and maintaining effective and efficient processes in the organization, including operations and project management processes and principles. MBA core. Prerequisite: Graduate standing.

BUS 6426 Integration of Business Areas (LEC 3.0)
Students will acquire knowledge to integrate the business functions to maximize performance efficiency and effectiveness. It will be covered through case studies and readings. MBA core. Prerequisite: Graduate standing.

BUS 6622 International Marketing (LEC 3.0)
This course focuses on the challenges faced by business managers as they deal with a competitive global market. The course will examine various topics related to international marketing such as cultural differences, economic differences, differences in product and technical standards, global advertising, and international pricing and segmentation. MBA core. Prerequisite: Graduate standing.

BUS 6675 Advanced International Business (LEC 3.0)
Business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Research project required. Prerequisites: MKT 3110 or MKT 5105 or Eng Mgt 3510.

BUS 6723 Artificial Intelligence, Robotics, and Information Systems Management (LEC 3.0)
The course, designed for business executives, covers management of information to revitalize business processes, improve business decision-making, embrace emerging and disruptive technologies, and gain competitive advantages. The course also covers implications of AI, automation, machine learning, and robotics on business and society. MBA core. Prerequisite: Graduate standing.

BUS 6827 Managerial Finance (LEC 3.0)
This course covers the use of financial tools to manage the organization. The main focus is the strategic decision-making process of modern managers responsible for major financial decisions. Topics include financial policy, capital investment analysis, dividend policy, capital structure, and other contemporary corporate finance issues. MBA core. Prerequisite: Graduate standing.

BUS 6887 Research Methods in Business and IS&T (LEC 3.0)
This course covers quantitative and qualitative research methods for exploring the interaction between people and information technologies. The course covers techniques and tools for carrying out literature reviews, forming research goals, designing research, conducting data analyses; and preparing manuscripts and live presentations. (Co-listed with IS&T 6887).

Ceramic Engineering

The ceramic engineering program in the department of materials science and engineering offers comprehensive graduate education in a number of areas including structural ceramics, electronic materials, high temperature materials, and glass. Further information on these opportunities and facilities available to carry out research in ceramic engineering may be found under materials science and engineering.

Degree Requirements

M.S. and Ph.D. degrees are offered in ceramic engineering. The total number of hours required for the M.S. in ceramic engineering is 30. A minimum of 6 hours of 6000-level lectures and a minimum of 11 hours of graduate research on the Missouri S&T campus are required. A maximum of 6 hours of 4000-level lecture credit may be accepted.

The minimum number of hours (beyond the bachelor’s degree) required for the Ph.D. in ceramic engineering is 72. At least 12 hours of coursework outside of ceramic engineering is recommended, a minimum of 24 hours will be dissertation research, and a minimum of 24 hours must be course work. Students will also be required to take and pass qualifying and comprehensive exams in accordance with Missouri S&T rules.

Richard K Brow, Curators Professor
PHD Pennsylvania State University
Curators’ Professor of Ceramic Engineering, and Senior Investigator, Graduate Center for Materials Research.

Fatih Dogan, Professor
PHD Technical University of Berlin

William G Fahrenholz, Curators Professor
PHD University of New Mexico
Director, Graduate Center for Materials Research.

Gregory E Hilmas, Curators Professor
PHD University of Michigan-Ann Arbor
Interim Chair of Materials Science and Engineering.

Wayne Huebner, Professor
PHD University of Missouri-Rolla

Aditya Kumar, Assistant Professor
PHD Ecole Polytechnique Federale de Lausanne (EPFL)

David Lipke, Assistant Professor
PHD Georgia Institute of Technology

Robert Schwartz, Professor
PHD University of Illinois

Jeffrey D Smith, Associate Professor
PHD University of Missouri-Rolla
Jeremy Lee Watts, Research Assistant Professor
PHD Missouri S&T

CER ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CER ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CER ENG 5002 Cooperative Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted at work supervisor's evaluation.

CER ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CER ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CER ENG 5115 X-Ray Diffraction Analysis (LEC 2.0 and LAB 1.0)
Theory and practical aspects of x-ray diffraction analysis are covered including diffraction theory, qualitative and quantitative analysis techniques, electronic databases, and operation of modern powder diffractometers. Students cannot receive credit for both Cer Eng 3417 and Cer Eng 5115. Prerequisite: Preceded or accompanied by Cer Eng 3410.

CER ENG 5220 Advanced Mechanical Properties of Ceramics (LEC 3.0 and LAB 1.0)
An advanced course to treat the theory and testing practice related to design based on the mechanical properties of ceramics. The course also includes a laboratory consisting of experiments for the characterization of the mechanical properties of ceramics. Prerequisites: Graduate standing.

CER ENG 5230 Glass Science And Engineering (LEC 3.0)
The development, manufacturing methods, applications, and properties of flat, fiber, container, chemical, and special purpose glasses. Composition/property relationships for glasses and nucleation-crystallization processes for glass-ceramics are also covered. Prerequisite: "C" or better grade in Cer Eng 2120.

CER ENG 5250 Refractories (LEC 3.0)
The manufacture, properties, uses, performance, and testing of basic, neutral and acid refractories. Prerequisite: Cer Eng 3230.

CER ENG 5260 Dielectric And Electrical Properties Of Oxides (LEC 3.0)
The processes occurring in inorganic materials under the influence of an electric field are considered from basic principles. Emphasis is placed on application to real systems. Prerequisite: "C" or better grade in Cer Eng 4210.

CER ENG 5310 Advanced Ceramic Processing (LEC 3.0)
Materials, processing and design of microelectronic ceramics are covered. Introduction to devices, triaxial ceramics, high aluminas, tape fabrication, metallizations, thick film processing and glass-to-metal seals. Prerequisites: Cer Eng 3210 & 3325.

CER ENG 5810 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Met Eng 5810).

CER ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CER ENG 6001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CER ENG 6050 Continuous Registration (IND 0.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CER ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

CER ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CER ENG 6220 Optical Properties Of Materials (LEC 3.0)
The objective of this course is to give the student a fundamental understanding of the structure-optical property relationships exhibited by isotropic and anisotropic materials. Topics will include the wave/particle nature of light, how light interacts with materials, color, and applications such as lasers, fiber optic communication systems, electro-optics, and integrated optics. Prerequisites: Physics 2135 or 2111 and Math 2222.
CER ENG 6230 Composite Materials (LEC 3.0)
The objective of this course is to give the students an understanding of the processing, design, and mechanical behavior of composite materials. The course will treat both fiber reinforced and laminate-based composites with an emphasis on the macromechanical behavior of these composites with respect to their architecture. Prerequisite: Graduate Standing.

CER ENG 6240 Advanced Topics On The Vitreous State (LEC 3.0)
Modern aspects of the structure and dynamics of inorganic vitreous materials will be reviewed and applied towards understanding the macroscopic properties of glasses. Prerequisite: Graduate standing.

CER ENG 6260 Advanced Electrical Properties of Ceramics (LEC 3.0 and LAB 1.0)
The application of ceramic chemistry and physics to the development and evaluation of electronic, dielectric, magnetic, and optical properties. Emphasis is placed on the relationships between properties and crystal structure, defects, grain boundary nature, and microstructure. Prerequisite: Grade of "C" or better in Physics 2305.

CER ENG 6310 Sintering And Microstructure Development (LEC 3.0)
Theory and practice of densification, microstructure evolution, effect of processing and material factors, grain boundary migration, grain growth. Prerequisite: Graduate standing.

CER ENG 6410 Advanced Integrated Computational Materials Engineering (LEC 2.0 and LAB 1.0)
Students will learn of different computational tools for studying materials at different length scales. The bridging between different modeling scales will be discussed. This course has a computational laboratory to build models and run simulations. Students will complete a final project by integrating two length-scale models. Prerequisite: A grade of "B" or better grade in Math 3304.

Chemical & Biochemical Engineering

The department of chemical and biochemical engineering occupies the 68,000 square foot state-of-the-art Bertelsmeyer Hall. The department has excellent research laboratories and computer facilities equipped to handle cutting edge research and all chemical engineering related computational, modeling, and simulation requirements.

Special areas for instruction and research are maintained and include excellent and modern facilities for computer simulation and modeling; control and optimization; bioconversion; multiphase reactors engineering, catalysis; reaction mechanisms and kinetics; fluid mechanics and mixing; thermodynamics; polymers and polymeric materials; freeze drying; adsorption/desorption processes; membrane technology; interfacing phenomena; enhancement oil recovery; transport phenomena; chromatography; characterization of biomolecules; synthesis of nano-particles; nano-film coating; drug delivery; supercritical fluid technology, energy, bioenergy, hybrid energy and environmental applications including CO₂ capture.

The department of chemical and biochemical engineering offers M.S. and Ph.D. degrees in chemical engineering.

A baccalaureate degree in chemical engineering with a minimum undergraduate grade point average of 3.0/4.0 or equivalent is required for admission to the graduate program.

The department specializes in research in the areas of fluid mechanics, supercritical fluid technology, reaction engineering, biochemical engineering, mass and heat transfer in porous media, transport and interfacial phenomena, computer-aided design, particle characterization, catalysis, statistical mechanics and nanotechnology.

All students, except for those in their first semester and in their last semester for PhD candidates, need to register for 1 credit hour of CHEM ENG 6015 Lecture Series. Lecture Series can be used for a total of 3 hours towards the students 6000 level requirement.

The master of science thesis program consists of a minimum of 30 semester hours, including 18-24 hours of coursework, in which CHEM ENG 5100, CHEM ENG 5110, and CHEM ENG 5220 are required. In addition, a thesis from research that is equivalent to 6-12 credit hours in the major area must be prepared and defended.

A master of science non-thesis program consists of 30 semester hours of coursework, including CHEM ENG 5100, CHEM ENG 5150, CHEM ENG 5110, CHEM ENG 5220 and a minimum of 24 hours of coursework within the department. The program of study must include nine credit hours of 6000 level courses.

A candidate for the Ph.D. degree normally follows a program of 72 semester hours beyond the BS degree or 42 semester hours beyond the MS degree. Research for M.S. and Ph.D. may be coordinated, or a Ph.D. may be pursued without an M.S. degree. The Ph.D. coursework must satisfy the departmental core course requirements for the M.S. degree with an additional 6 credit hours of 6000-level coursework for a minimum of 12, 6000-level credit hours. In addition to these course requirements, a candidate must prepare and defend a dissertation based on analytical and/or experimental research.

All Ph.D. students must pass the qualifying exam which consists of written and oral assignments specified by the department.

At least three members of the advisory committee have to be ChE faculty. The comprehensive examination, consisting of a written and oral presentation of a research proposal, should be taken in the semester following the completion of their course work and no later than six months prior to the final examination. The final examination, consisting of the dissertation defense, is conducted according to the rules of the graduate faculty, College of Engineering and Computing, and the department.

Muthanna Hikmat Al Dahhan, Professor
DSc Washington University
Department Chair. Multiphase reaction and reactor engineering flow systems; transport-kinetic integration; advanced measurement and computational techniques; applications to green technology and sustainable development in energy, products, and environment.

Baojun Bai, Associate Professor
PHD New Mexico Institute of Mining
Enhanced oil recovery target, conformance control, surfactants, biosurfactants, carbon sequestration.

Dipak Barua, Assistant Professor
PHD North Carolina State University
Computational systems biology, cell singling systems.
Sutapa Barua, Assistant Professor
PHD Arizona State University
Nanoparticles for uniform drug delivery, early detection of cancer cells, treatment of devastating diseases.

Hank Foley, Joint Appointment with University of Missouri-Columbia
PHD Penn State University
Catalysis and reaction engineering.

Daniel Forciniti, Professor
PHD North Carolina State University
Applications of molecular theories to problems in biochemical engineering and science. Bioseparation. Protein characterization and computer simulations of biological systems.

Chang-Soo Kim, Professor
PHD Kyungpook National University
Functional integration and structural integration of advanced microsystems, biosensors.

Xinhua Liang, Associate Professor
PHD University of Colorado-Boulder
Surface science and catalysis, nano-structured films and devices, energy and environmental applications.

Douglas K Ludlow, Professor
PHD Arizona State University
Surface characterization, catalysts, adsorption.

Christi Luk, Associate Teaching Professor
PHD University of Tulsa
Engineering education pedagogy, sustainable engineering.

Parthasakha Neogi, Professor
PHD Carnegie Mellon University
Interfacial and transport phenomena.

Joontaek Park, Assistant Professor
PHD University of Florida
Dynamics and rheology of complex fluids/soft matters.

Fateme Rezaei, Assistant Professor
PHD Monash University - Melbourne, Australia
Adsorption, energy efficient separation processes, process design, modeling and optimization; PSA/TSA; and hybrid materials and process for separation and reaction.

Ali Rownaghi, Assistant Teaching Professor
PHD University Putra - Malaysia
Sustainable energy; catalysis; separations.

Peter J Ryan, Associate Teaching Professor
PHD University of Massachusetts-Amherst
Process and control engineering, process analysis, design and optimization, six-sigma optimization, process simulation.

Joseph D Smith, Professor
PHD Brigham Young University
Laufer Chair of Energy. Hybrid energy generation, gas flare design, process modeling, and control.

Jee-Ching Wang, Associate Professor
PHD Pennsylvania State University
Molecular modeling and simulation, nanofluid and nanoparticle technology, interfacial phenomena and dynamics, transport in porous media, parallel computing and new simulation techniques.

David J Westenberg, Associate Professor
PHD University of California-Los Angeles
Molecular microbiology, microbial diversity, microbial physiology.

Silviya Petrova Zustiak, Joint Appointment with St. Louis University
PHD University of Maryland Baltimore County
Tissue engineering, synthetic biomaterials.

CHEM ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

CHEM ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM ENG 5100 Intermediate Transport Phenomena (LEC 3.0)
The similarities of flow of momentum, heat and mass transfer and the applications of these underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5110 Intermediate Chemical Reactor Design (LEC 3.0)
A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Chem Eng 3150 or graduate standing.

CHEM ENG 5120 Interfacial Phenomena In Chemical Engineering (LEC 3.0)
The course deals with the effects of surfaces on transport phenomena and on the role of surface active agents. Topics include fundamentals of thermodynamics, momentum, heat and mass transfer at interfaces and of surfactants. Some applications are included. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.
CHEM ENG 5130 Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Eng Mgt 4312).

CHEM ENG 5140 Intermediate Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Methods to design safety systems or alter the chemical process to reduce or eliminate the risks are covered. Prerequisite: Graduate Standing.

CHEM ENG 5150 Intermediate Chemical Process Flowsheeting (LAB 1.0 and LEC 2.0)
The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Projects on special topics and presentations related to the course materials will be included. Prerequisite: graduate standing.

CHEM ENG 5161 Intermediate Molecular Engineering (LEC 3.0)
Molecular aspects of chemical thermodynamics, transport processes, reaction dynamics, and statistical and quantum mechanics. Prerequisites: Chem Eng 3120 or graduate standing.

CHEM ENG 5170 Physical Property Estimation (LEC 3.0)
Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5190 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 4110 or Elec Eng 3320 or Elec Eng 3340 or graduate standing. (Co-listed with Elec Eng 5350).

CHEM ENG 5200 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 5210, MS&E 5310).

CHEM ENG 5210 Intermediate Biochemical Reactors (LEC 3.0)
Application of chemical engineering principles to biochemical reactors. Emphasis on cells as chemical reactors, enzyme catalysis and production of monoclonal antibodies. Projects on special topics and presentations related to the course materials will be included. Prerequisite: Preceded or accompanied by Chem Eng 3150 or graduate standing.

CHEM ENG 5220 Intermediate Engineering Thermodynamics (LEC 3.0)
Review thermodynamic principles for pure fluids and mixtures. Emphasis on applications for the chemical industry and use of fundamental relations and equations of state. Prerequisite: Senior or graduate standing.

CHEM ENG 5241 Intermediate Process Safety in the Chemical and Biochemical Industries (LEC 3.0)
This course covers risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Chem Eng 3150 or graduate standing.

CHEM ENG 5250 Isolation and Purification of Biologicals (LEC 3.0)
Isolation and purification of biologicals with emphasis on biopharmaceuticals. Principles and applications of chromatography, lyophilization, and product formulation. Use of ultrafiltration and diafiltration in the processing of protein products. Disposable technology. Prerequisites: Chem Eng 3131 and Chem Eng 3141.

CHEM ENG 5300 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Physics 4523, Met Eng 5810, Cer Eng 5810).

CHEM ENG 5305 Hazardous Materials Management (LAB 1.0 and LEC 2.0)
Major themes: hazard indentification and characterization; safety, health and environmental management; and the protection of safety, health and environment. Students will have an understanding of work place and environmental hazards in order to be able to facilitate their management and control. The course will include an intensive 30 hour hands-on workshop. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5310 Structure And Properties Of Polymers (LEC 3.0)
A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5320 Introduction to Nanomaterials (LEC 3.0)
Introduction to the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Prerequisite: Chem Eng 2300, or Met Eng 1210 or Chem 1320.

CHEM ENG 5330 Alternative Fuels (LEC 3.0)
Global energy outlook and available resources are discussed. Alternative energy options and their technologies are covered. Associated environmental concerns and technology are assessed. Special emphases are placed on renewable energies, transportation fuels, energy efficiencies, and clean technologies. Prerequisite: Chem Eng 3130 or senior or graduate standing.
CHEM ENG 5340 Principles Of Environmental Monitoring (LEC 3.0)
This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 3100 and Physics 2135, or graduate standing.

CHEM ENG 5350 Environmental Chemodynamics (LEC 3.0)
Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 6010 Graduate Seminar (RSD 1.0-3.0)
Discussion of current topics. One of these topics will be expanded to write an in depth report. Prerequisites: Graduate standing.

CHEM ENG 6015 Lecture Series (LEC 1.0)
Attendance of lecture series and submission of in-depth report on one of the covered topics is required for a grade. The course can be taken multiple times for a grade, with the same requirement each time, and up to three times to be counted for 6000 level course requirement. Prerequisites: Graduate standing.

CHEM ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus Ph.D. students may be processed during intersession. Off-campus Ph.D. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CHEM ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

CHEM ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CHEM ENG 6100 Advanced Chemical Engineering Thermodynamics (LEC 3.0)
Extension of thermodynamic principles as applied to nonideal systems. Use of existing thermodynamic data and correlations with emphasis on applications of chemical engineering problems in energy, mass and momentum transfer.

CHEM ENG 6110 Advanced Transport Phenomena (LEC 3.0)
Course is concerned with all aspects of transport phenomena. Complete expressions for heat, mass and momentum transfer in all three coordinate systems are applied under both laminar and turbulent conditions. Prerequisite: Chem Eng 5100.

CHEM ENG 6120 Applied Mathematics In Chemical Engineering (LEC 2.0 and LAB 1.0)
An introduction to numerical methods for ordinary and partial differential equations arising in chemical engineering, bioengineering, and environmental engineering applications. Topics include finite difference and finite element methods; other numerical and analytical methods if time permits.

CHEM ENG 6140 Applied Optimization In Chemical Engineering (LEC 3.0)
An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

CHEM ENG 6150 Molecular Modeling and Simulation (LEC 3.0)
Study of molecular-based modeling and simulation methodologies and their connections with each other and to multiscale modeling and other engineering approaches. Molecular Dynamics, Monte Carlo, Brownian Dynamics, statistical mechanics, and application cases in engineering and science are included. Prerequisite: Chem Eng 6100.

CHEM ENG 6180 Advanced Applications of Computational Fluid Dynamics (LEC 3.0)
Advanced applications of CFD analyses is presented to investigate mass, momentum and heat transport in complex geometries with general initial and boundary conditions. Students will gain practical experience using commercial CFD codes and learn and apply a general algorithm for solving challenging industrial problems using tutorials. Prerequisites: Chem Eng 4150 and Chem Eng 5100.

CHEM ENG 6300 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with BIO SCI 6210, MS&E 6310).

CHEM ENG 6310 Nanomaterials (LEC 3.0)
Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with MS&E 6230).

CHEM ENG 6330 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env Eng 6611 and Civ Eng 6611).

Chemistry

Our chemistry department is doing some of the most impactful research at the university and around the world. The department's 21 regular research faculty comprise one of the highest external research grant-generating departments at S&T. Our emphasis on excellence in research and creativity has moved our programs to the forefront of science. The department supports a broad range of research performed by internationally recognized faculty competing at the leading edge of technological research.

The department provides programs in analytical, inorganic, organic, physical, and biochemistry, as well as in more specialized areas including polymer and coatings, electrochemistry, bioanalytical chemistry, cancer biology, colloids, corrosion, environmental chemistry, kinetics, organometallic chemistry, reaction mechanisms, atmospheric sciences, solid state chemistry, chemical instrumentation design and development, spectroscopy and theoretical chemistry. A number of our faculty are involved in efforts which have been organized into several centers or institutes including the Missouri S&T Coatings Institute, the Materials Research Center, the Cloud and Aerosol Sciences Laboratory and the Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring. Financial support is available from research grants for advanced students.

The department of chemistry, along with the department of biological sciences, is housed in Schrenk Hall complete with modern research, teaching and computer laboratories. The department has a number of support personnel to provide technical assistance with laboratory teaching and computer laboratories. The department provides programs in analytical, inorganic, organic, physical, and biochemistry. The department of chemistry includes a Nicolet Nexus 470 FT-IR FTIR, Varian INOVA 400 MHz FT/NMR spectrometer with multinuclear liquid, diffusion, and variable-temperature capabilities, Bruker 200 MHz FT/NMR with multinuclear liquid and toroidal cavity capabilities, Beckman DU 640B and Carey 50 UV-Visible spectrophotometers, Hewlett Packard 5989A Mass Spectrometer (GC/MS & DIP/MS inputs), Hitachi LaChromme Elite D-2000 HPLC with Diode Array & Refractive Index detectors, PerkinElmer 2380 Atomic Absorption spectrometer, Bruker-AXS D8 Single-crystal X-ray Diffractometer, Beckman PACE/MQD capillary-electrophoresis, Shimadzu HPLC/GPC, EG&G potentiostat/galvanostats, TA Instruments Q2000 Differential Scanning Calorimeter, TA Instruments Q50 Thermogravimetric Analyzer, NexION 300 ICP-MS, and AB SCIEX 4000 QTRAP mass spectrometer, Tecnai F20 TEM, S-570 SEM, PerkinElmer 2400 Elemental Analysis (C-H-N), PerkinElmer LS 30 Fluorescence spectrophotometer, Hewlett Packard 5890 series II Gas Chromatographs, Electrothermal Engineering Ltd. M-2341 Melting Point apparatus, Sartorius ME-5 series Ultra Micro Balance, Dymax Model 5000 UV Curing Oven, CEM MDS-2000 Microwave Reactor Oven, Nicolet Magna-IR 750, Bruker-AXS D8 Single-crystal X-ray Diffractometer, Hitachi M-8000 mass spectrometer, EG&G low-temperature Mössbauer spectrometer, Applied Color Systems 1800 color-matching/formulating computing spectrophotometer, PerkinElmer, Par 273, Rame-Hart 250-F1 Goniometer/Tensiometer, Full-Spectrum Laser MLE-40 Laser Cutter, Netzsch LFA447 Flash Diffusivity Analyzer, TA Instruments AR2000 Rheometer with Small-Angle Light Scattering attachment, TA Instruments Q800 Dynamic Mechanical Analyzer, and Applied Separations Helix Super-Critical Fluid Processor. The department houses an extensive collection of additional mass spectrometers, a wide variety of additional chromatographs (GC, LC, IC), infrared spectrometers, dispersive optical spectrometers (UV/VIS, IR, AA), fluorescence/luminescence spectrophotometers, centrifugal partition chromatographs, refrigerated-ultra centrifuges, calorimeters, salt-spray chambers, and radiation counters, as well as access to the campus centralized computing facility which includes numerically-intensive computing support. Neutron diffraction is on hand at the High Flux Reactor of the Missouri S&T. This also supports nuclear chemistry. Facilities for studying very fast combustions and explosions, as well as a variety of new and innovative techniques for characterizing high-energy materials, are provided in the Rock Mechanics and Explosives Research Center.

Amitava Choudhury, Assistant Professor
PHD Indian Institute of Science
Cathode materials for Li-ion batteries; porous solids for hydrogen storage, thermoelectric materials.

Richard Dawes, Assistant Professor
PHD University of Manitoba
The spectroscopy and dynamics of small molecules primarily of interest to combustion and atmospheric

Nuran Ercal, Professor
PHD Hacettepe University, Turkey
Richard K. Vitek/FCR Endowed Chair in Biochemistry. The effect of N-acetylcysteineamide (NACA), in various oxidative stress related conditions, including metal toxicity, radiation, medicinal drug-induced toxicity, and degenerative eye disorders; developing NACA eye drops as an alternative to surgery for oxidative stress-induced eye disorders; developing HPLC techniques for thiol-containing compounds in biological samples.

Gary Grubbs, Assistant Professor
PHD University of North Texas
Physical chemistry in the area of rotational spectroscopy. Gas phase materials research, instrument design and construction, in situ

Shubhender Kapila, Professor
PHD Dalhousie University, Halifax
Missouri Soybean Research Professor of CEST. Environmental photochemistry of halogenated molecules; separations mass spectrometry; supercritical fluids; ultra trace determination of organics; chemistry of obscurant smokes.
Nicholas Leventis, Curators Professor
PHD Michigan State University
Nanstructured polymers; mechanically strong aerogels; electrochemistry in magnetic fields; redox active organic/inorganic polymers and composites for electrochromics, electrocatalysis and sensors.

Gary John Long, Professor
PHD Syracuse University
Synthesis, magnetic and electronic spectral properties of transition metal complexes; organoiron complexes and hard magnetic materials; neutron diffraction and x-ray crystallography.

Yinfa Ma, Curator Teaching Professor
PHD Iowa State University
Environmental analysis; bioanalysis and bioseparations; early cancer screening by using different markers and different techniques for early cancer diagnosis; single molecule detection of molecule-cell interactions; single molecule immunoassay; investigation of alternation of glycosylation of glycoproteins at cell surfaces.

Paul Ki Souk Nam, Associate Professor
PHD University of Missouri-Columbia
Biofuel and bioproduct development-microalgae and agricultural product utilization; environmental monitoring and remediation-endocrine disruptors, emerging contaminants, aerosol/particulate matter, carbon sequestration; supercritical fluid reaction, extraction and chromatography; explosive and chemical agent detection and neutralization; synthesis and characterization of enantio-enriched peptides and oligomers; thermal treatment for material characterization and recycle.

Manashi Nath, Assistant Professor
PHD Indian Institute of Science
Growth of functional nanowires and nanotubes of inorganic materials; exploring the semiconductor family with emphasis on making superconducting nanowires and nanotubes of type II superconductors; developing protocols for device fabrication with these functional nanowires.

V Prakash Reddy, Associate Professor
PHD Case Western Reserve University
Organofluorine chemistry, carbocations, superacids, asymmetric Friedel-Crafts reactions, environmentally benign (green) chemistry, and protein-modifications.

Thomas Schuman, Associate Professor
PHD University of Alabama-Huntsville
Interface control; non-chrome, corrosion inhibitors are being evaluated for aluminum alloys and steel; adhesion promotion to plastic substrates; ink-receptive coatings for ink-jet papers; membranes for protection of acoustic sensors; organometallic nanocomposites; development of industrial agricultural products; high energy storage density dielectric.

Honglan Shi, Associate Research Professor
PHD Missouri S&T
Environmental analysis and bioanalytical techniques, including water emerging contaminants, soil contaminants, bioanalytical analysis, analytical instrument and test kits designs; analytical methods development by using state-of-the-art instruments including LC-MS, GC-MS, ICP-MS, ICP-OES, HPCE, HPLC, GC, and IC.

Chariklia Sotiriou-Leventis, Professor
PHD Michigan State University
Supramolecular chemistry; organic nanomaterials.

Pericles Stavropoulos, Associate Professor
PHD Imperial College, London, UK
C1 interconversions catalyzed by transition metal compounds and metalloenzymes; methane activation and carbon dioxide reduction; inorganic materials with magnetic and catalytic properties.

Jay A Switzer, Professor
PHD Wayne State University
Electrodeposition of epitaxial thin films and superlattices; chiral surfaces; spintronic metal oxides; energy conversion and storage; semiconductor electrochemistry; materials for solid-state memory; catalysis.

Michael R Van De Mark, Associate Professor
PHD Texas A&M University
Colloidal unimolecular polymer (CUP) synthesis (a 3-9 nanometer diameter particle suspended in water), characterization, and utilization; polymer synthesis, micro-phase structure of ionomeric polymers, modification of oleophilic and hydrophilic micro-domains within gel structures; organic oxidative electrochemical synthesis and photochemistry.

Risheng Wang, Assistant Professor
PHD New York University
Biochemistry; structural DNA nanotechnology; nanomaterials; fabrication and characterization of nanostructures; DNA based biomedical; and electronic applications.

Philip D Whitefield, Professor
PHD University of London (UK)
Department Chair. Aerospace emissions. Chemical and physical characterization of aerosols; aerosols generated by aerospace and other civilian and military activities; environmental problems presented by aerosol production, e.g. local air quality at airports, rocket impact on stratospheric ozone, and their impact on power plant efficiency, e.g. evaluation of fuel additives.

Jeffrey G. Winiarz, Associate Professor
PHD SUNY at Buffalo
Development of polymeric photonic materials and devices using photosensitization by way of the inclusion of surface-passivated semiconductor nanocrystals.

Klaus Hubert Woelk, Associate Professor
PHD University of Bonn-Germany
In situ high-temperature and high-pressure NMR spectroscopy; properties of organic material in oil and gas shale; toroid-cavity rotating-frame NMR microscopy; hydrothermal biomass conversion.

CHEM 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 1100 or an equivalent training program approved by S&T. Consent of instructor required.

CHEM 5001 Special Topics (LEC 1.0 and LAB 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
CHEM 5099 Master Research (IND 0.0-6.0)
Master level research with the intent to lead to the preparation of a master degree thesis. Not more than six (6) credit hours allowed for graduate credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report culminating in a thesis is required of the student. Prerequisite: Must meet departmental training requirements for laboratory safety. Consent of instructor required.

CHEM 5100 Laboratory Safety & Hazardous Materials (LEC 1.0)
A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies. Prerequisites: Graduate standing.

CHEM 5210 Fundamentals of Organic Reactions (LEC 3.0)
An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Graduate students are required to demonstrate a higher level of learning on assessments. Prerequisite: Chem 2220.

CHEM 5220 Synthetic Organic Chemistry (LEC 3.0)
A systematic study of organic reactions, their mechanisms and synthetic applications. Graduate students are expected to demonstrate a higher level of proficiency during assessments. Prerequisite: Chem 2220.

CHEM 5250 Industrial Chemical Processes (LEC 3.0)
Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 3130 or Chem 2210, or graduate standing. (Co-listed with Chem Eng 5096).

CHEM 5310 Introduction to Inorganic Chemistry (LEC 3.0)
A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates. Graduate students are required to demonstrate a higher level of proficiency during assessments.

CHEM 5410 Advanced Chemical Thermodynamics (LEC 3.0)
A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Credit will not be given for both Chem 5410 and Chem 4410. Prerequisites: Chem 3420.

CHEM 5420 Elemental Quantum Chemistry (LEC 3.0)
A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 2222; Physics 2135 or Physics 2111.

CHEM 5430 Advanced Chemical Kinetics (LEC 3.0)
Introductory graduate treatment of special topics of physical chemistry including statistical mechanics and kinetics. Prerequisites: Chem 3430.

CHEM 5510 Introduction to Chemical Analysis (LEC 3.0 and LAB 1.0)
Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Graduate students are expected to achieve a higher level of proficiency on application and assessments compared to Chem 4510 students. Prerequisites: Chem 1100, Chem 2510, Chem 2220, Chem 3430.

CHEM 5610 Biochemistry (LEC 3.0)
A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Credit may not be given for both Chem 5610 and Chem 4610. Prerequisite: Chem 2220.

CHEM 5619 Biochemistry Laboratory (LAB 2.0)
Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Credit may not be given for both Chem 5619 and Chem 4619. Prerequisites: Preceded or accompanied by Chem 5610 and Chem 1100 or an equivalent training program approved by S&T.

CHEM 5620 Biochemical Metabolism (LEC 3.0)
A continuation of Chem 5610. Catabolism and anabolism of carbohydrates, lipids, proteins, and nucleic acids. Photosynthesis, oxidative phosphorylation and membranes. Credit may not be given for both Chem 5620 and Chem 4620. Prerequisite: Chem 4610 or 5610.

CHEM 5630 Biochemical Nanotechnology (LEC 3.0)
This course will educate on the interdisciplinary areas of bio-nanotechnology. Student will investigate the potential of nanoscience in advanced applications including DNA/protein nanotechnology, drug delivery, environmental biosensor and emerging biotechnology industries. Credit may not be given for both Chem 5630 and Chem 4630. Prerequisite: At least junior standing.

CHEM 5710 Environmental Monitoring (LEC 3.0)
This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with specific examples. Credit may not be given for both Chem 5710 and Chem 4710. Prerequisites: Chem 2220, Physics 2111.

CHEM 5810 Introduction to Polymeric Materials (LEC 3.0)
A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Credit may not be given for both Chem 5810 and Chem 4810. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with MS&E 5810).
CHEM 5819 Polymer Synthesis and Characterization Lab (LAB 1.0)
Laboratory experiments dealing with polymerization syntheses and solution, bulk and solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Credit may not be given for both Chem 5819 and Chem 4819. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810 or Chem Eng 5310, preceded or accompanied by Chem 1100 or Chem 5100 or an equivalent training program approved by S&T. (Co-listed with MS&E 5819).

CHEM 5850 Introduction to Coating Chemistry (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Credit may not be given for both Chem 5850 and Chem 4850. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with MS&E 5850).

CHEM 6000 Special Problems (IND 0.0-6.0)
Problems or reading on specific subjects or projects in the department. Consent of instructor required.

CHEM 6001 Special Topics (LEC 0.0 and IND 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM 6010 Seminar (RSD 1.0)
Discussion of current topics.

CHEM 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CHEM 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

CHEM 6101 Introduction to Chemistry Research (LEC 1.0)
An introduction to chemical research topics of interest to the department presented by different faculty members. Special emphasis will also be placed on a discussion of ethics, plagiarism, codes of conduct, research notebooks, publishing, and presentations. Prerequisite: Graduate Student Status.

CHEM 6200 Advanced Synthetic Organic Chemistry (LEC 3.0)
A discussion of a large number of synthetically useful reactions involving enolates and enamines; nucleophilic additions to carbonyl compounds; functional group interconversions, thermal pericyclic reactions; organometallic compounds; carbocations, carbenes and free radicals as reactive intermediates; aromatic substitutions; and multistep synthesis. Prerequisite: Chem 4210 or Chem 4220.

CHEM 6240 Physical Organic Chemistry (LEC 3.0)
An advanced course in theoretical organic chemistry treating molecular orbital theory, free energy relationships, transition state theory, and other fundamental topics. Prerequisite: Chem 4210.

CHEM 6250 Spectrometric Identification of Organic Compounds (LEC 3.0)
Overview of MS and IR techniques in the characterization of organic compounds; CD/ORD; 1H, 13C, and heteronuclear NMR spectroscopy in the structural analysis; applications of APT, DEPT, 1H-1H COSY, HETCOR, HMOC, HMBC, INADEQUATE, TOCSY, NOE and NOESY, and dynamic NMR. Prerequisite: Chem 2220.

CHEM 6320 Solid State Chemistry (LEC 3.0)
The aim of this course is to build a comprehensive understanding of the chemistry of solids and its application to the materials world. Emphasis will be given on the synthesis, crystal structure and various properties of solids including electrical, optical and magnetic. Students will gain knowledge about how to correlate a property with structure. Prerequisites: Chem 2310, Chem 2320, and Chem 3410.

CHEM 6330 Nanomaterials Synthesis, Properties and Applications (LEC 3.0)
Chemistry of nanomaterials. Understanding the fundamentals of nanoscience and technology. Studying the different synthesis strategies for nanomaterials and their characterization. Understanding the properties of nanomaterials and their possible applications. Introducing the concept for device fabrication. Prerequisite: Chem 4310.

CHEM 6350 X-ray Crystallography (LAB 2.0 and LEC 2.0)
Molecular and crystal structure determination by single crystal x-ray diffraction methods. Brief coverage of relation to neutron and electron diffraction.

CHEM 6360 Bioinorganic Chemistry (LEC 3.0)
Metallobiomolecules, including metalloenzymes and other metalloproteins; oxygen carriers; iron transport and other iron proteins; copper proteins; cancer agents and cures; nitrogen-fixation, etc. Prerequisite: Chem 4310.

CHEM 6380 Inorganic Materials Chemistry (LEC 3.0)
Chemical processing of solid materials. Introduction to point groups, space groups, and x-ray diffraction. Bonding in solids - from molecular orbital theory to band theory. Nonstoichiometric materials and Kroger-Vink notation. Optical and electrical properties of semiconductors. Epitaxial growth. Quantum effects in nanophase materials. Prerequisite: Chem 4310 or permission of instructor.
CHEM 6420 Quantum Chemistry I (LEC 3.0)
A rigorous introduction to the fundamental concepts and principles of quantum chemistry. Application to translational, vibrational, and rotational motion; one-electron systems. Prerequisite: Chem 3420 or equivalent.

CHEM 6430 Chemical Kinetics (LEC 3.0)
An introduction to the deduction of mechanisms of homogeneous chemical reactions from rate-data. Selected topics, such as photochemistry, free-radical mechanisms, catalysis, and explosion reactions. Prerequisite: Chem 3430.

CHEM 6450 Spectroscopy (LEC 3.0)
Introduction to the interaction of electromagnetic radiation with matter. Emphasis on the ultraviolet, visible, and radio portions of the spectrum. Prerequisite: Chem 3420 or equivalent.

CHEM 6480 Physical Chemistry Of Surfaces (LEC 3.0)
Adsorption at liquid interfaces and properties of surface films. Physical and chemical adsorption on solid surfaces. Catalysis.

CHEM 6510 Separations (LEC 3.0)
An in-depth study of all types of analytical and preparativescale separations. A special emphasis will be placed on chromatography and chromatographic theory. Prerequisite: Chem 4510 or equivalent.

CHEM 6550 Chemical Spectroscopy (LEC 3.0)
A study of the electronic, vibrational, rotational and nuclear magnetic resonance spectra of atoms and molecules. A basic understanding of the underlying theoretical principles and the interpretations of results is stressed. Prerequisite: Chem 4510, Chem 3420 or equivalent courses.

CHEM 6555 Principles And Applications Of Mass Spectrometry (LEC 3.0)
The course covers fundamental physical principles of mass spectrometry, instrumentation, interpretation of spectra, and applications in environmental, polymer, biomedical, and forensic fields. Prerequisite: Chem 4510 or equivalent.

CHEM 6570 Electrochemistry (LEC 3.0)
Introduction to the fundamentals, methods and applications of electrochemistry. Fundamentals cover the thermodynamics/kinetics of electrode reactions, and the modes of mass transport in the electrolyte. Methods cover potentiometric, amperometric, and a.c. techniques. Applications focus on analysis and study of materials. Prerequisite: Chem 3430.

CHEM 6580 Mass Spectrometry of Macromolecules (LEC 3.0)
This course will provide an overview of mass spectrometric applications in biomacromolecules and synthetic polymers; particular areas of emphasis are proteomics, genomics, pharmaceutical screening, characterization of biochemical complexes and synthetic polymers. Prerequisite: Chem 4510 or equivalent.

CHEM 6620 Intermediary Metabolism And Biosynthesis (LEC 3.0)
The course covers the biosynthesis and metabolism of nucleic acids, carbohydrates, lipids and proteins. Prerequisite: Chem 4620.

CHEM 6650 Free Radicals In Biochemistry (LEC 3.0)
The study of the basic principles of free radical chemistry and biochemistry. Prerequisites: Chem 2210, Chem 2220 and Bio Sci 2113.

CHEM 6680 Polymer Physical Chemistry and Analysis (LEC 3.0)
A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810/5810; Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with MS&E 6820).

Civil, Architectural, and Environmental Engineering

The department offers specialization in architectural engineering, construction engineering management, environmental, geotechnical, materials, structural and water resources engineering. Recent and ongoing funded research includes liquefaction of soils, earthquake mitigation of highway structures, stream stability and storm water detention in urban watersheds, sediment transport, river mechanics, constitutive modeling of reinforced and prestressed structures, blast protection of critical infrastructure real-time instrumentisation of civil infrastructure, biofiltration, phytoremediation of organic contaminants, remediation of contaminated buildings, impact and occurrence of endocrine disruptors, compact low-energy wastewater treatment, fate of metals in fly ash, plants and soil systems, green infrastructure, creep compliance of asphalt mixtures, durability of concrete, resilient modulus of granular material.

Examples of faculty expertise includes phytoremediation and natural treatment systems, site assessment and investigations, biofiltration and bioreactors, fate and transport of heavy metals wastewater treatment technologies, indoor air pollution assessment and control, building systems and environmental controls, satellite survivability, orbital debris protection systems, building collapse, rubble modeling, explosive and blast loads on buildings, penetration mechanics, properties of construction materials (aggregate, asphalt, concrete), pavement design and analysis, fluid mechanics, computational fluid mechanics and hydraulics, urban stream morphology, sediment transport mechanics, river mechanics, environmental fluid mechanics, hydrodynamics, geotechnical earthquake engineering, laboratory testing and evaluation of soil materials, and liquefaction of silts.

The basic prerequisite for admission to graduate study in the department is a Bachelor of Science degree in Engineering from an ABET accredited school or equivalent. Students who have a degree from a non-accredited school, or hold a Bachelor of Science degree in a field other than engineering, may be required to take engineering prerequisites to prepare for graduate courses. Specific prerequisites will depend on the student's academic background and intended area of specialization. Degree
The Missouri Local Transportation Resource Center provides a resource center available for use by local agencies throughout the state of Missouri. Its regular activities include the Proactive Training and Customized Transportation Education Programs (PTP and CTEP, respectively), ongoing development of transportation lending and distribution lending libraries, management of MoDOT’s Cooperative Purchasing Program, production of a quarterly newsletter, and functioning as a transportation technical assistance resource for individuals and agencies around the state.

Contemporary Structural Engineering Certificate

Choose one course from each of the following three groups (analysis, design, and structural system) and the fourth course from any of the three groups.

I. Structural Analysis Courses:

- CIV ENG 5203/ARCH ENG 5203: Applied Mechanics In Structural Engineering
- CIV ENG 5205/ARCH ENG 5205: Structural Analysis II
- CIV ENG 5207/ARCH ENG 5207: Computer Methods of Structural Analysis
- CIV ENG 5208/ARCH ENG 5208: Structural Dynamics

II. Structural Design Courses:

- CIV ENG 5210/ARCH ENG 5210: Advanced Steel Structures Design
- CIV ENG 5220/ARCH ENG 5220: Advanced Concrete Structures Design
- CIV ENG 5222/ARCH ENG 5222: Prestressed Concrete Design
- CIV ENG 5231/ARCH ENG 5231: Infrastructure Strengthening with Composites

III. Structural System Courses:

- CIV ENG 5206/ARCH ENG 5206: Low-Rise Building Analysis and Design
- CIV ENG 5213: Advanced Design in Steel and Lightweight Structures
- AERO ENG 5234/MECH ENG 5234: Stability of Engineering Structures
- ENG MGT 5314

IV. Combined Structural Courses:

- CIV ENG 5203/ARCH ENG 5203: Applied Mechanics In Structural Engineering
- CIV ENG 5205/ARCH ENG 5205: Structural Analysis II
- CIV ENG 5206/ARCH ENG 5206: Low-Rise Building Analysis and Design
- CIV ENG 5207/ARCH ENG 5207: Computer Methods of Structural Analysis
- CIV ENG 5208/ARCH ENG 5208: Structural Dynamics
- CIV ENG 5210/ARCH ENG 5210: Advanced Steel Structures Design
- CIV ENG 5220/ARCH ENG 5220: Advanced Concrete Structures Design
- CIV ENG 5222/ARCH ENG 5222: Prestressed Concrete Design
Geoenvironmental Engineering Certificate
A minimum of two of the following geotechnical courses must be taken:

- CIV ENG 5744 Geosynthetics in Engineering
- CIV ENG 5715 Intermediate Soil Mechanics
- CIV ENG 5729 Foundation Engineering II

A minimum of two of the following environmental courses must be taken:

- CIV ENG 5360 Water Resources And Wastewater Engineering
- CIV ENG 5640 Environmental Law And Regulations
- CIV ENG 5630 Remediation of Contaminated Groundwater and Soil
- CIV ENG 5650 Public Health Engineering
- CIV ENG 5670 Solid Waste Management
- CIV ENG 5642 Sustainability, Population, Energy, Water, and Materials

Geotechnical Earthquake Engineering Certificate
The following courses are required:

- CIV ENG 5716 Geotechnical Earthquake Engineering
- CIV ENG 6713 Dynamics of Earth Materials

Two of the following three courses are required:

- CIV ENG 5715 Intermediate Soil Mechanics
- CIV ENG 5729 Foundation Engineering II
- CIV ENG 6712 Computer Modeling in Geotechnical Engineering

Infrastructure Renewal Certificate
Two of the following courses are required:

- CIV ENG 5231 Infrastructure Strengthening with Composites
- AERO ENG 5282 Introduction to Composite Materials & Structures
- CIV ENG 5744 Geosynthetics in Engineering

One of the following courses is required:

- CIV ENG 5210 Advanced Steel Structures Design
- CIV ENG 5220 Advanced Concrete Structures Design
- CIV ENG 5222 Prestressed Concrete Design

One of the following courses is required:

- CIV ENG 5208 Structural Dynamics
- CIV ENG 5445 Construction Methods
- CIV ENG 5729 Foundation Engineering II
- AERO ENG 6284 Analysis of Laminated Composite Structures

Project Engineering and Construction Management Certificate
(Offered in both civil engineering and engineering management disciplines)
Two of the following courses are required:

- CIV ENG 5445 Construction Methods
- CIV ENG 5449 Engineering and Construction Contract Specifications
- CIV ENG 6442 Construction Administration, Planning and Control
- CIV ENG 6445 Advanced Construction Engineering

Two of the following courses are required:

- ENG MGT 5111 Management for Engineers and Scientists
- ENG MGT 5210 Economic Decision Analysis
- ENG MGT 5220 Project Management
- ENG MGT 6323 Global Project Management

Stuart W Baur, Associate Professor
PHD University of Missouri-Rolla
Integrated building systems, advanced technologies in building systems, green construction, rehabilitation of historic structures, materials and methods of construction.

Jerry R Bayless, Professor Emeritus
MS Missouri School of Mines

Joel G Burken, Curators Distinguished Professor
PHD University of Iowa
Phytoremediation of organic contaminants and heavy metals, biological waste water treatment, constructed wetlands, green infrastructure, biomass energy.

Genda Chen, Professor
PHD State University of New York-Buffalo
Structural health monitoring, interface mechanics and deterioration of composite structures, adaptive passive dampers and systems, multi-hazards assessment and mitigation, forensic study, seismic analysis and retrofit, soil-structure interaction, bridge engineering.

Wen Deng, Assistant Professor
PHD Iowa State University
Multiphase flow, chemical and thermal transport, microbial growth in porous and fractured media, geoenergy recovery, waste sequestration and environmental remediation.

Kamal Khayat, Professor
DE University of California-Berkeley
Hongyan Ma, Assistant Professor
PHD Hong Kong University of Science and Technology
Hydration kinetics of cementics materials, microstructural characterization and modeling of cement paste measuring and multi-scale modeling of transport properties of concrete, molecular simulation of C-S-H.

Cesar Mendoza, Associate Professor
PHD Colorado State University
Sediment transport, river mechanics, environmental fluid mechanics, hydrodynamics, and mathematical modeling.

Glenn Morrison, Professor
PHD University of California-Berkeley
Environmental engineering, assessment and control of air pollution, indoor air chemistry, transport and surface interactions, remediation of contaminated buildings.

John J Myers, Professor
PHD University of Texas-Austin
High performance concrete (HPC) behavior and durability performance (PC and RC); development of infrastructure systems and monitoring techniques; fiber-reinforced polymers (FRP) in structural repair and strengthening applications with an emphasis related to structural behavior, blast resistance, bond, substrate characterization, and durability performance.

Daniel B Oerther, Professor
PHD University of Illinois-Urbana
Environmental biotechnology, urban sustainability, global development, ensuring universal access to water and sanitation, combating the obesity epidemic, and eliminating extreme poverty.

David N Richardson, Associate Professor
PHD University of Missouri-Rolla
Properties of construction materials (aggregate, asphalt, and concrete), pavement analysis and design.

William P Schonberg, Professor
PHD Northwestern University
Department Chair. Armor/anti-armor, penetration mechanics, spacecraft shielding against meteoroid and orbital debris impacts, hypervelocity impact phenomena, building failure and collapse, design and construction of Moon and Mars habitats.

William Eric Showalter, Associate Teaching Professor
PHD Purdue University
Construction engineering and management, cost effectiveness, sustainable design and construction.

Lesley Haynes Sneed, Associate Professor
PHD Purdue University
Reinforced and pre-stressed concrete structural members and systems, structural models and experimental methods, innovative methods of repair and strengthening of structures subjected to seismic loading or other extreme hazards, structural hazard mitigation, design codes and construction specifications for structural concrete.

Jianmin Wang, Associate Professor
PHD University of Delaware
Fate and transport of heavy metals in natural and engineered systems; water and wastewater treatment processes; water chemistry and interfacial phenomena.

Chenglin Wu, Assistant Professor
PHD, PHD University of Texas-Austin, Missouri University of Science and Technology
Resilient infrastructural systems in multi-hazard environments, structural health monitoring, structural damage detection, wireless sensor networks, advanced signal processing, nonlinear system identification and damage detection, model updating of structural FEMs, structural vibration control and smart materials and structures.

Guirong Yan, Assistant Professor
PHD Harbin Institute of Technology, China
Resilient infrastructural systems in multi-hazard environments, structural health monitoring, structural damage detection, wireless sensor networks, advanced signal processing, nonlinear system identification and damage detection, model updating of structural FEMs, structural vibration control and smart materials and structures.

ARCH ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ARCH ENG 5001 Special Topics (LAB 1.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ARCH ENG 5203 Applied Mechanics In Structural Engineering (LEC 3.0)
A study of basic relationships involved in the mechanics of structures. Topic include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge building floors and shell roofs. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Civ Eng 5203).

ARCH ENG 5205 Structural Analysis II (LEC 3.0)
Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 3201 or Arch Eng 3201. (Co-listed with Civ Eng 5205).

ARCH ENG 5206 Low-Rise Building Analysis And Design (LEC 3.0)
Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ -Arch Eng 3210 or Civ-Arch Eng 3220. (Co-listed with Civ Eng 5206).
ARCH ENG 5207 Computer Methods of Structural Analysis (LEC 3.0)
Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Civ Eng 5207).

ARCH ENG 5208 Structural Dynamics (LEC 3.0)
This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: Mech Eng 2350 or equivalent; Civ/Arch Eng 3201 or equivalent. (Co-listed with Civ Eng 5208).

ARCH ENG 5210 Advanced Steel Structures Design (LEC 3.0)
The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool aid in the design will be emphasized. Prerequisite: Arch Eng 3210 with a grade of "C" or better. (Co-listed with Civ Eng 5210).

ARCH ENG 5220 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool aid in the design will be emphasized. Prerequisite: Arch Eng 3220 with a grade of "C" or better. (Co-listed with Civ Eng 5220).

ARCH ENG 5222 Prestressed Concrete Design (LEC 3.0)
Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Arch Eng 3220 with a grade of "C" or better. (Co-listed with Civ Eng 5222).

ARCH ENG 5231 Infrastructure Strengthening with Composites (LEC 3.0)
The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Arch Eng / Civ Eng 3201, Arch Eng / Civ Eng 3220. (Co-listed with Civ Eng 5231).

ARCH ENG 5260 Analysis And Design Of Wood Structures (LEC 3.0)
A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Arch Eng 3201 with a grade of "C" or better. (Co-listed with Civ Eng 5260).

ARCH ENG 5270 Structural Masonry Design (LEC 3.0)
Review of the theory and practice of analyzing low-rise masonry structures, materials and assembly types, constructability considerations, structural masonry components, repair and strengthening, and model code requirements to ensure adequate load resisting buildings. Prerequisites: Arch Eng 3201 or Civ Eng 3201. (Co-listed with Civ Eng 5270).

ARCH ENG 5442 Construction Planning and Scheduling Strategies (LEC 3.0)
The goal of this course is to assist participants in gaining an understanding of schedule control techniques and the application of tools such as Primavera Software. Content areas to be addressed include: development of baseline schedules, progress monitoring and updating, recovery schedules, resource application and leveling. Prerequisite: Civ Eng or Arch Eng 4448. (Co-listed with Civ Eng 5442).

ARCH ENG 5445 Construction Methods (LEC 3.0)
Introduction to construction planning selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Arch Eng 4448 with a grade of "C" or better. (Co-listed with Civ Eng 5445).

ARCH ENG 5446 Management Of Construction Costs (LEC 3.0)
Management of construction projects from inception to completion: estimates, role of network preplanning, project monitoring and control. Prerequisite: Arch Eng 4448 with a grade of "C" or better. (Co-listed with Civ Eng 5446).

ARCH ENG 5448 Green Engineering: Analysis of Constructed Facilities (LEC 3.0)
Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 4448 or Arch Eng 4448; and Junior Standing. (Co-listed with Civ Eng 5448).

ARCH ENG 5449 Engineering and Construction Contract Specifications (LEC 3.0)
Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Arch Eng 4448 with a grade of "C" or better. (Co-listed with Civ Eng 5449).

ARCH ENG 5642 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 5642 and Civ Eng 5642).
ARCH ENG 5665 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 2601 or Mech Eng 5571 or Graduate Status. (Co-listed with Civ Eng 5665 and Env Eng 5665).

ARCH ENG 5729 Foundation Engineering II (LEC 3.0)
Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Civ Eng 4729 with a grade of "C" or better. (Co-listed with Civ Eng 5729).

ARCH ENG 5850 Residential Renewable Energy Systems (LAB 1.0 and LEC 2.0)
Applications of renewable energy systems for residential use will be covered, including system selection and sizing. Economic and life cycle analysis will be used to evaluate solar, geothermal and wind power systems. Prerequisites: Senior standing and consent of instructor, or Mech Eng 2527 or Civ Eng 3842.

ARCH ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ARCH ENG 6801 Advanced Concrete Science and Technology (LEC 3.0)
The course covers advanced notions of concrete science and technology. It discusses various aspects related to cement manufacturing, cement hydration and microstructure, use of supplementary cementitious materials and chemical admixtures, rheology and workability, mechanical properties, dimensional stability, durability, and sustainability of concrete. Prerequisites: Civ Eng 5113 or equivalent; or consent of the instructor with Graduate Standing. (Co-listed with Civ Eng 6801).

CIV ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 5010 Seminar (LEC 1.0)
Discussion of current topics. Prerequisite: Senior standing.

CIV ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Comp Eng 5070, Elec Eng 5070).

CIV ENG 5112 Bituminous Materials (LEC 2.0 and LAB 1.0)
Properties, types, and grades of bituminous materials are presented. Emphasis is placed on usage, distress, surface treatment design, and asphalt concrete mix properties, behavior, design manufacture, and construction. Prerequisite: Preceded or accompanied by Civ Eng 3116.

CIV ENG 5113 Composition And Properties Of Concrete (LEC 3.0)
Properties of plastic and hardened concrete and the influence of cements, aggregates, water and admixtures upon these properties. The microstructure of cement gel and other factors are related to the behavior of hardened concrete under various types of loading and environments, drying shrinkage, creep and relaxation, fatigue, fracture, and durability. Introduction to statistical quality control of concrete production. Prerequisite: Civ Eng 3116 with a grade of "C" or better.

CIV ENG 5117 Asphalt Pavement Design (LEC 3.0)
Structural design of flexible pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 3116 with a grade of "C" or better.

CIV ENG 5118 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior Standing and Math 3304. (Co-listed with Aero Eng 5229, Mech Eng 5229 and Elec Eng 5270).

CIV ENG 5156 Concrete Pavement Design (LEC 3.0)
Design of rigid pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 3116 with a grade of "C" or better.

CIV ENG 5203 Applied Mechanics In Structural Engineering (LEC 3.0)
A study of the basic relationships involved in the mechanics of structures. Topics include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge, building floors, and shell roofs. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5203).

CIV ENG 5205 Structural Analysis II (LEC 3.0)
Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 3201 or Arch Eng 3201. (Co-listed with Arch Eng 5205).
CIV ENG 5206 Low-Rise Building Analysis and Design (LEC 3.0)
Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ -Arch Eng 3210 or Civ-Arch Eng 3220. (Co-listed with Arch Eng 5206).

CIV ENG 5207 Computer Methods of Structural Analysis (LEC 3.0)
Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5207).

CIV ENG 5208 Structural Dynamics (LEC 3.0)
This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: Mech Eng 2350 or equivalent; Civ/Arch Eng 3201 or equivalent. (Co-listed with Arch Eng 5208).

CIV ENG 5210 Advanced Steel Structures Design (LEC 3.0)
The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multi-story buildings, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 3210 with a grade of "C" or better. (Co-listed with Arch Eng 5210).

CIV ENG 5220 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 3220 with a grade of "C" or better. (Co-listed with Arch Eng 5220).

CIV ENG 5222 Prestressed Concrete Design (LEC 3.0)
Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Civ Eng 3220 with a grade of "C" or better. (Co-listed with Arch Eng 5222).

CIV ENG 5231 Infrastructure Strengthening with Composites (LEC 3.0)
The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Civ Eng / Arch Eng 3201, Civ Eng / Arch Eng 3220. (Co-listed with Arch Eng 5231).

CIV ENG 5250 Air Transportation (LAB 1.0 and LEC 2.0)
Runway configuration, airfield capacity, geometrics and terminal layout and design. Aircraft performance; navigation and air traffic control; airport planning and design; airline operations; aviation systems planning. Prerequisite: Civ Eng 3500 with a grade of "C" or better.

CIV ENG 5260 Analysis And Design Of Wood Structures (LEC 3.0)
A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5260).

CIV ENG 5270 Structural Masonry Design (LEC 3.0)
Review of the theory and practice of analyzing low-rise masonry structures, materials and assembly types, constructability considerations, structural masonry components, repair and strengthening, and model code requirements to ensure adequate load resisting buildings. Prerequisites: Arch Eng 3201 or Civ Eng 3201. (Co-listed with Arch Eng 5270).

CIV ENG 5300 Unsteady Flow Hydraulics (LEC 3.0)
The study of unsteady flow and its effect on closed water systems and in open channels. Prerequisites: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5311 Hydraulics Of Open Channels (LEC 3.0)
The phenomena accompanying the flow of water in open channels, such as uniform and varied flow, critical conditions, backwater curves, hydraulic jump, hydraulic drop and applications are studied in detail. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5332 Transport Processes in Environmental Flows (LEC 3.0)
Dynamics, mixing and contaminant transport in surface water bodies, including rivers and lakes. Buoyancy modifications to the mixing and dynamics of pollutant discharges and surface water bodies. Transport of sediments. Exchange processes at the air/water and sediment/water interfaces. Prerequisite: At least a "C" in Civ Eng 3330.

CIV ENG 5333 Intermediate Hydraulic Engineering (LEC 3.0)
Application of fluid mechanics principles to the design. Kinematics of fluid motion, conservation of mass, linear and angular momentum, and energy. Requirements for similarity of fluid flow. Introduction to dynamics of fluid flows and viscous incompressible flows. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5335 Water Infrastructure Engineering (LAB 1.0 and LEC 2.0)
Fundamental principles underlying comprehensive water infrastructure development; sanitary sewers, sanitary treatment facilities, stormwater sewers, stormwater detention, water power development, and hydraulic structures. The student is responsible for the planning and design of a water infrastructure development project. Prerequisite: Civ Eng 3330 with a grade of "C" or better.
CIV ENG 5337 River Mechanics And Sediment Transport (LEC 3.0)
Formation of rivers and the laws governing river regulation and improvements, including navigation and flood protection. Principles governing sediment transport. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5338 Hydrologic Engineering (LEC 3.0)
A study of current up-to-date hydrologic techniques involving design of hydrologic input for bridges, culverts, reservoirs. Techniques involve extreme value statistics, model hydrographs, routing, etc. Prerequisite: Civ Eng 3334 with a grade of "C" or better.

CIV ENG 5360 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal/systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 3333, 3335, 3615. (Co-listed with Env Eng 5360).

CIV ENG 5404 Legal Aspects Of Boundary Surveying (LEC 3.0)
The U.S. Public Land Survey System (USPLSS): original GLO survey instructions and procedures. Resurveys on the USPLSS law, standards, procedures with emphasis on Missouri. Rights in real property; statute, case and administrative law applied to boundaries. Simultaneous and sequence conveyances. Unwritten rights in real property. Riparian boundaries. Writing and interpreting boundary descriptions. Land surveyor duties and responsibilities. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5406 Surveying Systems (LEC 3.0)
Celestial observations for azimuths. Introduction to State Plane Coordinate systems. Theory and calculations. Route surveying and geometrics, horizontal, spiral and vertical curves. Surveying aspects of residential and commercial subdivision design: lot layout, rights of way, easements, setbacks, platting, planning and zoning constraints, application of surveying software. Instrumentation: total stations, electronic levels, instrument calibrations. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5445 Construction Methods (LEC 3.0)
Introduction to construction planning, selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Civ Eng 4448 with a grade of "C" or better. (Co-listed with Arch Eng 5445).

CIV ENG 5446 Management Of Construction Costs (LEC 3.0)
Management of construction projects from inception to completion: estimates, role of network preplanning, project monitoring and control. Prerequisites: Civ Eng 4448 with a grade of "C" or better. (Co-listed with Arch Eng 5446).

CIV ENG 5448 Green Engineering: Analysis Of Constructed Facilities (LEC 3.0)
Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 4448 or Arch Eng 4448; and Junior Standing. (Co-listed with Arch Eng 5448).

CIV ENG 5449 Engineering and Construction Contract Specifications (LEC 3.0)
Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Civ Eng 4448 with a grade of "C" or better. (Co-listed with Arch Eng 5449).

CIV ENG 5510 Geometric Design Of Highways (LEC 2.0 and LAB 1.0)
Development and applications of concepts of geometric design for rural and urban highways. Design controls and criteria; elements of design, including sight distance, horizontal and vertical alignment; cross-section elements; highway types; intersection design elements; types of interchanges and interchange design elements; grade separations and clearance; development of visual elements. Prerequisite: Civ Eng 3500 with grade of "C" or better.

CIV ENG 5513 Traffic Engineering (LEC 3.0)
Driver, vehicle, and roadway characteristics; traffic control devices; traffic studies; intersection capacity, intersection design, traffic safety, and evaluation of traffic improvements. Traffic laws and ordinances, traffic engineering, traffic circulation, parking design, and forecasting traffic impacts. Prerequisite: Civ Eng 3500 with a grade of "C" or better.

CIV ENG 5515 Advanced Traffic Operations And Capacity Analysis (LEC 3.0)
This course will introduce students to advanced traffic operation and capacity analysis as applied to an urban highway network. It will focus on the operations and management of freeway and arterials where a signalized intersection is one of the key elements affecting traffic flow operation and determining highway capacity. Prerequisite: Civ Eng 5513.

CIV ENG 5605 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 2601, Env Eng/Civ Eng 2602 and Env Eng/ Civ Eng 3603; or Graduate standing. (Co-listed with Env Eng 5605).
CIV ENG 5619 Environmental Engineering Design (LEC 2.0 and LAB 1.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 3615 or Env Eng 3615. (Co-listed with Env Eng 5619).

CIV ENG 5630 Remediation of Contaminated Groundwater and Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 3615, Geo Eng 5237 or Graduate Standing. (Co-listed with Env Eng 5630).

CIV ENG 5635 Phytoremediation and Natural Treatment Systems: Science and Design (LEC 3.0)
Students learn the scientific basics of chemical transport in soil and groundwater and learn fundamental plant physiology and processes. Students then learn how these processes are utilized in design of phytoremediation and natural treatment systems, including the most up to date literature and design guidance available. Prerequisites: Civ Eng 3615 or Env Eng 3615. (Co-listed with Env Eng 5635).

CIV ENG 5640 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting, Safe Drinking Water Act, OSGA, TSCA, RCRA, AND CERCLA. Case studies will be emphasized. (Co-listed with Env Eng 5640).

CIV ENG 5642 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 5642 and Arch Eng 5642).

CIV ENG 5650 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 2601 with a grade of "C" or better. (Co-listed with Env Eng 5650).

CIV ENG 5660 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 3330; or graduate standing. (Co-listed with Env Eng 5660).

CIV ENG 5662 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 3330; or graduate standing. (Co-listed with Env Eng 5662).

CIV ENG 5665 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 2601 or Mech Eng 5571 or Graduate Status. (Co-listed with Env Eng 5665 and Arch Eng 5665).

CIV ENG 5670 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 2601 with grade of "C" or better; or graduate standing. (Co-listed with Env Eng 5670).

CIV ENG 5702 Geomatics (LEC 3.0)
Horizontal and vertical geodetic datums and networks. Theory, calculations and applications of State Plane Coordinate Systems. Introduction to Geographic and Land Information Systems: hardware and software issues; data quality and accuracy; resource, environmental, cadastral and governmental applications; databases; GIS/LIS trends. Introduction to Global Positioning Systems (GPS): Project planning, data collection, data processing and network adjustment applications, Kinematic and RealTime GPS applications, hardware and software options and costs. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5715 Intermediate Soil Mechanics (LEC 3.0)
General principles of soil mechanics and their applications, including mineralogy, soil structure, flow through porous media, shear strength, slope stability and consolidation. Prerequisites: Civ Eng 3715 with grade of "C" or better.

CIV ENG 5716 Geotechnical Earthquake Engineering (LEC 3.0)
Geotechnical earthquake hazards and mitigations, damage to structures, plate tectonics, seismicity, wave propagation, characterization of ground motions, theory of vibrations (1-DOF), effect of local soil conditions on ground response, development of design ground motions, liquefaction, dynamic lateral earth pressures and slope stability/deformation. Prerequisites: Civ Eng 3715 with a grade of "C" or better.

CIV ENG 5729 Foundation Engineering II (LEC 3.0)
Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Civ Eng 4729 with a grade of "C" or better. (Co-listed with Arch Eng 5729).

CIV ENG 5744 Geosynthetics in Engineering (LEC 3.0)
Geotechnical principles are applied to design of geosynthetic systems for foundation support, earth retention, drainage, and disposal of hazardous conventional wastes. Geosynthetic testing and identification. Emphasis is on design of geosynthetic earth reinforcement, roadway stabilization, filters, and waste containment systems. Prerequisite: Civ Eng 3715 with grade of "C" or better.
CIV ENG 5750 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5761 and Geophys 5761).

CIV ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 6001 Special Topics (LAB 1.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

CIV ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CIV ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CIV ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CIV ENG 6201 Analysis And Design Of Plates And Shells I (LEC 3.0)
Fundamental theories of bending and buckling of plates for practical applications in analysis and design of bridge and building floors, highway and airport pavements, and structural plate components. Shell theory with application to tanks, pressure vessels, shell roofs, and folded plate construction. Prerequisite: Preceded or accompanied by Civ Eng 5207.

CIV ENG 6205 Structural Dynamics and Earthquake Engineering (LEC 3.0)
Behavior of structural materials, elements, and systems under earthquake loads; computer methods for response analysis of lumped and distributed mass models, eigensolution techniques, response spectral analysis, design of 2-D and 3-D seismic resistant structures with current design codes. Prerequisite: Civ/Arch Eng 5208 or equivalent.

CIV ENG 6206 Stochastic Theory of Structural Dynamics (LEC 3.0)

CIV ENG 6207 Finite Element Application in Structural Design (LEC 3.0)

CIV ENG 6208 Analysis Of Nonlinear Structures (LEC 3.0)
Inelastic behavior of structural members and connections; formulation of various models for steel and reinforced concrete including elasto-plastic, bilinear, trilinear, Ramberg-Osgood, Cheng-Mertz, and Cheng-Lou; matrix analysis of 2-D and 3-D building structures for geometric and material nonlinearity; dynamic and stability analysis. Prerequisite: Preceded or accompanied by Civ Eng 5207.

CIV ENG 6211 Plastic Analysis And Design Of Metal Structures (LEC 3.0)
Behavior of engineering materials in the inelastic stress range. Analysis and design of elementary structural members and frames.

CIV ENG 6213 Advanced Design in Steel and Lightweight Structures (LEC 3.0)
A critical evaluation of the theories of design and actual behavior of metal components and their connections. The basis of the development of the pertaining codes will be considered. Prerequisite: Preceded or accompanied by Civ Eng 5207.

CIV ENG 6221 Advanced Behavior Of Reinforced And Prestressed Concrete (LEC 3.0)
Behavior of reinforced and prestressed concrete sections, members and wall/shell-type elements subjected to bending, axial load, shear and torsion. Confinement of concrete. Various truss model theories applicable to main members and strut-tie model applicable to disturbed regions, joints, and connections. Prerequisite: Civ Eng 3220 with grade of "C" or better.

CIV ENG 6331 Advanced Hydraulics And Hydraulic Engineering (LEC 3.0)
Studies in the field of hydraulic engineering to fit the needs of a particular student or class. Each student makes a complete design of a hydraulic development in one of the following fields: water power, sanitation, river and harbor projects. Prerequisite: Civ Eng 3330.

CIV ENG 6335 Hydraulic Structures (LEC 3.0)
Gravity, arch, multiple arch, and buttress dams including appurtenances such as spillways, penstocks and gates. Latter part of course is designed to needs of the individual student with applications to river and harbor structures, canal and irrigation structures, and sewage structures. Prerequisites: Civ Eng 3220 and 3330.
CIV ENG 6338 Advanced Hydrology (LEC 3.0)
A study of methods used in modern hydrologic analysis and design. Items of study include hydrograph analysis, maximum possible storm, infiltration, design flood determination and project feasibility. Prerequisite: Civ Eng 3333.

CIV ENG 6340 Urban Hydrology (LEC 3.0)
Studies of the influence of urban areas on their hydrology. Special emphasis on the principles of spatially varied unsteady flow. Model hydrographs leading toward determination of design storm flow are utilized to obtain information necessary for design of storm sewers, channels, and hydraulic structures common to urban areas. Prerequisite: Civ Eng 3333.

CIV ENG 6442 Construction Administration, Planning and Control (LEC 3.0)
Study of construction project development and execution, ranging from preliminary engineering to project turnover. Key topics include bidding strategies, quality control, conceptual estimating, scheduling, progress and cost control, value engineering, safety and construction productivity. Prerequisite: Preceded or accompanied by Civ Eng 5445.

CIV ENG 6443 Contract Formulation And Project Delivery Systems (LEC 3.0)
Project life-cycle planning and management. Roles and responsibilities of contract participants. Construction contract formulation. Obtaining work by negotiating and by bidding. Forms and variations of project delivery systems. Prerequisite: Civ Eng 5445 or Civ Eng 5449.

CIV ENG 6445 Advanced Construction Engineering (LEC 3.0)
Study of the temporary structures and plant used in construction. Key topics include legal implications, codes and regulations, falsework, slipforming, bridge construction supports, and protection of adjacent facilities. Prerequisite: Preceded or accompanied by Civ Eng 5445.

CIV ENG 6501 Transportation Planning (LEC 3.0)
Study of urban development, mobility patterns, and the transportation network. Transportation modeling techniques; transportation control plans to improve air quality; consideration of the transportation disadvantaged; transportation planning in smaller cities and rural areas. Access management and site impact analysis of traffic generators. Prerequisite: Civ Eng 5513 or consent of instructor.

CIV ENG 6505 Traffic Modeling and Simulation (LEC 3.0)
Fundamentals of system simulation, components of a simulation model, traffic flow simulation approaches, traffic flow simulation software and their applications, building simulation models, verification and validation of a simulation model, output analysis, variance reduction techniques, role of simulation in Intelligent Transportation Systems (ITS). Prerequisites: Stat 3113, Civ Eng 3500 preceded or accompanied by Civ Eng 5513.

CIV ENG 6509 Traffic Flow Theory and Characteristics (LEC 3.0)
This course will cover advanced theories of traffic flow, traffic flow characteristics, statistical distributions of traffic flow parameters, traffic stream models, car following models, shock wave analysis, queueing analysis, traffic flow models for intersections, traffic simulation. Prerequisites: Preceded or accompanied by Civ Eng 5513, knowledge of statistics, graduate standing or consent of instructor.

CIV ENG 6511 Transportation Systems Analysis (LEC 3.0)
Concepts and principles fundamental to the planning, design, operation, and management of transportation systems using a systems perspective to transportation problems. Concepts from economics, engineering, operations research, management, psychology, and public policy analysis are used throughout. Topics include linear and non-linear programming, dynamic programming, supply-demand microeconomic framework, analysis of transportation demand, system performance, network equilibrium, simulation and associated case studies. Prerequisite: Civ Eng 5513.

CIV ENG 6600 Chemical Principles In Environmental Engineering (LEC 3.0)
The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Env Eng 6600).

CIV ENG 6601 Biological Principles In Environmental Engineering Systems (LEC 2.0 and LAB 1.0)
Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Env En 6601).

CIV ENG 6602 Environmental Chemistry (LAB 1.0 and LEC 2.0)
This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Env En 6602).

CIV ENG 6608 Environmental Engineering Analysis Laboratory (LAB 2.0 and LEC 1.0)
Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 2601 or equivalent, with a grade of "C" or better. (Co-listed with Env Eng 6608).

CIV ENG 6611 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env Eng 6611 and Chem Eng 6330).
CIV ENG 6612 Biological Operations In Environmental Engineering Systems (LEC 3.0)
Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion processes. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env En 6612).

CIV ENG 6671 Industrial And Hazardous Waste Treatment (LAB 1.0 and LEC 2.0)
Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Env En 6671).

CIV ENG 6712 Computer Modeling in Geotechnical Engineering (LEC 3.0)
Survey of computer methods of analyzing and modeling complex geotechnical engineering problems. Computer applications, data analysis, and result interpretations. Topics include constitutive modeling, foundation engineering, seepage, unsaturated flow problem, slope stability analysis, consolidation, excavation, tunneling, and dynamic soil-structure interaction. Prerequisite: Civ Eng 3715 and graduate standing.

CIV ENG 6713 Dynamics of Earth Materials (LEC 3.0)
Theory of vibration, spectral response, site-specific response spectra, detailed design of retaining structures, pile and machine foundations, soil structure interaction. Dynamic soil properties, including degradation of soil properties and liquefaction, seismic slope stability analysis problem solving. Select research topics and use of computer codes. Prerequisite: Preceded or accompanied by Civ Eng 5715.

CIV ENG 6714 Measurement Of Soil Properties (LEC 2.0 and LAB 1.0)
Laboratory determination of soil properties with emphasis on practical. Applications of test data. Tests include classification, atterberg limits, consolidation, compaction, triaxial shear tests with pore pressure measurement, and direct shear tests. Preparation of technical reports. Prerequisites: CIV ENG 3715.

CIV ENG 6715 Advanced Soil Mechanics (LEC 3.0)
Advanced topics and recent advances in theoretical soil mechanics. Topics may include stress distribution, failure theories, shear failure in ideal soils, consolidation and settlement, physico-chemical properties, and clay mineralogy. Prerequisite: Civ Eng 5715.

CIV ENG 6716 Soil Stabilization (LEC 3.0)
The application of mineralogical and physicochemical principles to soil stabilization problems and stabilization techniques for highway and foundation applications. Prerequisite: Civ Eng 5715.

CIV ENG 6717 Earth Dams And Related Problems (LEC 3.0)
The exploration for and selection of site and materials, seepage analysis, slope stability and design, embankment design, compaction, instrumentation and construction operations as they pertain to earth and rockfill dams. Prerequisite: Civ Eng 5715.

CIV ENG 6729 Foundation Engineering III (LEC 3.0)
A critical study of modern concepts of foundation engineering including current procedure for the application of soil mechanics principles to the design of foundations, embankments and retaining structures. Case histories will be emphasized with the student making successive design decisions.

CIV ENG 6760 Inca Civilization Geotechnical Engineering Practices (LEC 3.0)
An in-depth study of geotechnical engineering practices in the mountains of Peru, including the Cuzco-Machu Picchu corridor, with emphasis on the inter-relationships between tectonics, geology, geomorphology, climate, hydrology, agriculture, quarrying, construction practices, irrigation, culture and history. A week-long field trip to Peru during Spring Break is required at student's expense. Prerequisite: Geo Eng 1150 or Civ Eng 3715 or Geo Eng 5471 or equivalent; Graduate standing. (Co-listed with Geo Eng 6407).

CIV ENG 6801 Advanced Concrete Science and Technology (LEC 3.0)
The course covers advanced notions of concrete science and technology. It discusses various aspects related to cement manufacturing, cement hydration and microstructure, use of supplementary cementitious materials and chemical admixtures, rheology and workability, mechanical properties, dimensional stability, durability, and sustainability of concrete. Prerequisites: Civ Eng 5113 or equivalent; or consent of the instructor with Graduate Standing. (Co-listed with Arch Eng 6801).

CIV ENG 6940 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Env Eng 6940, Elec Eng 6810, Comp Eng 6810).

ENV ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.

ENV ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Comp Eng 5070, Elec Eng 5070, Civ Eng 5070).

ENV ENG 5360 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 3333, 3335, 3615. (Co-listed with Civ Eng 5360).
ENV ENG 5605 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 2601, Env Eng/Civ Eng 2602 and Env Eng/ Civ Eng 3603; or Graduate standing. (Co-listed with Civ Eng 5605).

ENV ENG 5619 Environmental Engineering Design (LAB 1.0 and LEC 2.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 3615 or Env Eng 3615. (Co-listed with Civ Eng 5619).

ENV ENG 5630 Remediation of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 3615, Geo Eng 5237 or Graduate Standing. (Co-listed with Civ Eng 5630).

ENV ENG 5635 Phytoremediation and Natural Treatment Systems: Science and Design (LEC 3.0)
Students learn the scientific basics of chemical transport in soil and groundwater and learn fundamental plant physiology and processes. Students then learn how these processes are utilized in design of phytoremediation and natural treatment systems, including the most up to date literature and design guidance available. Prerequisite: Env Eng 3615 or Civ Eng 3615 or graduate standing. (Co-list with Civ Eng 5635).

ENV ENG 5640 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting, Safe Drinking Water Act, OSGA, TSCA, RCRA, and CERCLA. Case studies will be emphasized. (Co-listed with Civ Eng 5640).

ENV ENG 5642 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 5642 and Arch Eng 5642).

ENV ENG 5650 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 2601 with grade of "C" or better. (Co-listed with Civ Eng 5650).

ENV ENG 5660 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 3330 or equivalent; or graduate standing. (Co-listed with Civ Eng 5660).

ENV ENG 5662 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 3330 or equivalent; or graduate standing. (Co-listed with Civ Eng 5662).

ENV ENG 5665 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 2601 or Mech Eng 5571 or Graduate Status. (Co-listed with Civ Eng 5665 and Arch Eng 5665).

ENV ENG 5670 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 2601 with grade of "C" or better; or graduate standing. (Co-listed with Civ Eng 5670).

ENV ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

ENV ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 6010 Seminar (IND 0.0)
Discussion of current topics.

ENV ENG 6040 Oral Examination
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of instructor.

ENV ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of instructor.

ENV ENG 6600 Chemical Principles In Environmental Engineering (LEC 3.0)
The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Civ Eng 6600).
ENV ENG 6601 Biological Principles In Environmental Engineering Systems (LAB 1.0 and LEC 2.0)
Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Civ Eng 6601).

ENV ENG 6602 Environmental Chemistry (LEC 2.0 and LAB 1.0)
This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Civ Eng 6602).

ENV ENG 6608 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0)
Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 2601 or equivalent, with a grade of "C" or better. (Co-listed with Civ Eng 6608).

ENV ENG 6611 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Civ Eng 6611 and Chem Eng 6330).

ENV ENG 6612 Biological Operations In Environmental Engineering Systems (LEC 3.0)
Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion process. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Civ Eng 6612).

ENV ENG 6617 Industrial And Hazardous Waste Treatment (LAB 1.0 and LEC 2.0)
Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Civ Eng 6671).

ENV ENG 6940 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Civ Eng 6940, Elec Eng 6810, Comp Eng 6810).

Computer Engineering

The mission of the computer engineering program, consistent with the Missouri S&T campus mission statements, is the education of students to fully prepare them to provide leadership in the recognition and solution of society's problems in the area of computer engineering.

The computer engineering program in the department of electrical and computer engineering offers graduate programs of study which lead to the M.S. degree (thesis and non-thesis options) and the Ph.D. degree. Both the Rolla campus and Missouri S&T Global - St. Louis offer M.S. programs. A great variety of multidisciplinary programs and research areas are available. Most graduate programs in computer engineering normally include some specialization in one or more of the following:

Emphasis Areas

- Integrated circuits and logic design: Topics include hardware/software co-design, IC design, electromagnetic compatibility, VLSI design, and secure embedded systems design.
- Networking, security and dependability: Topics include network analysis and synthesis, cyber-physical systems, wireless networks, sensor networks, dependability, and fault tolerance.
- Computer architecture and embedded systems: Topics include high performance systems, parallel processors, GPU computing, and heterogeneous systems architecture.
- Computational intelligence: Topics include clustering, adaptive resonance and reinforcement learning architectures, learning and adaptation, hardware and applications, neurofuzzy regression, traveling salesman problem heuristics, robotic swarms, bioinformatics, medical informatics, machine vision, and automation.

Departmental Requirements

The nominal GPA requirement for admission to the M.S. degree program in this department is an undergraduate GPA of 3.3 on a 4.0 GPA system. In evaluating the academic performance from universities that may use other grading systems, the department may rely upon statistical data gathered in analyzing academic outcomes for recent graduate students to the extent that such statistical data is available. The department will not offer graduate admissions to students who do not have the equivalent of a four year baccalaureate degree in engineering. As an example, we cannot accept students who have only a diploma or engineering technology degree.

The ECE department requires ETS reported GRE scores and recommends the following:

ETS scoring: Q+V=310, Q≥ 160, V=150, A/WR≥ 4.0

This GRE requirement may be waived if the applicant has an undergraduate GPA of 3.5 obtained from the courses offered by the electrical engineering or computer engineering program at Missouri S&T (must be minimum 18 credit hours).

For international students who are required to provide TOEFL scores, the ECE department has no preference as to the computer based TOEFL (CBT), internet based TOEFL (iBT), or paper based TOEFL (PBT). Minimum recommended scores set by the department are 237 CBT, 92 iBT, and 580 PBT. Where TOEFL is not available, IELTS score of 6.5 is recommended.

Students applying for graduate studies in this department on the basis of degrees in closely related fields may have additional conditions placed on their admission. These conditions are generally imposed to make
sure that students lacking a traditional Computer Engineering degree will have sufficient background to ensure a reasonable chance for academic success.

Students seeking admission to the Ph.D. program should meet or exceed all of the above recommendations and should have a graduate GPA of 3.5 or better. All Ph.D. applicants must provide at least three letters of recommendation. Exceptional applicants may apply directly to the Ph.D. program after completing the baccalaureate degree.

Program Requirements
Additional departmental requirements beyond those stated in the section on Admission and Program Procedures are as follows. Thesis option M.S. programs of study require a minimum of 21 credit hours of course work exclusive of credit hours earned for thesis research (courses numbered 5099). A limited number of credit hours for 3000 level courses may be counted towards the fulfillment of an M.S. program of study, provided that the courses are taken outside of the electrical and computer engineering department and that the courses are prerequisites for at least one 5000 or 6000 level course also included in the program of study. The doctoral program of study, for the Ph.D. degree or the D.E. degree, should include 90 credit hours beyond the B.S. degree or 60 credit hours beyond the M.S. degree. An M.S. or doctoral student’s advisory committee may impose additional requirements or restrictions as it sees fit.

Ph.D. Language Requirement
As a computer engineering Ph.D. student, you are not required to satisfy a language requirement. However, you may have language requirements included in your plan of study if your advisory committee feels that this inclusion would be useful or necessary for your research.

Research
Significant research, suitable for publication, is expected for students pursuing the thesis option M.S. or a doctoral degree. The student should work closely with their major advisor and their advisory committee to determine when these expectations are met. The length of research time and/or the number credit hours earned for thesis research will not automatically satisfy this requirement.

Additional Information
Additional information about departmental emphasis areas, requirements, graduate handbook, faculty, research opportunities, financial aid, and facilities can be found by visiting the department's web page at http://ece.mst.edu. We can be contacted by telephone at 573-341-4519 or email at ecegrad@mst.edu. For information about the Engineering Education Center in St. Louis, visit their web page at http://ece.mst.edu. We can be contacted by telephone at 573-341-4519 or email at ecegrad@mst.edu. For information about the department's web page at http://ece.mst.edu. We can be contacted by telephone at 573-341-4519 or email at ecegrad@mst.edu. For information about the department's emphasis areas, requirements, graduate handbook, research opportunities, financial aid, and facilities can be found by visiting the department's web page at http://ece.mst.edu.

Graduate Certificate Programs
(Also offered in the systems engineering or computer science disciplines)

There are three graduate certificate programs that utilize computer engineering graduate level courses to develop the skills of practicing engineers, including network centric systems, information assurance and security officer essentials, and computational intelligence. Details for these programs can be obtained from http://dce.mst.edu/credit/certificates/. The four courses taken to fulfill the requirements of any of the graduate certificate programs can, under certain circumstances, be counted towards an M.S. degree. However, any prerequisite or remedial courses taken to provide background for one or more of the four graduate certificate program courses cannot be counted towards an M.S. degree.

In order for a required graduate certificate course in network centric systems to count for graduate credit the graduate certificate program must have been successfully completed, as described in the Admission and Program Procedures section, and the applicant must apply for and be accepted into the graduate program (computer engineering, computer science, or systems engineering) specified at the time the applicant was accepted into the specific graduate certificate program.

These programs are designed to appeal to working professionals.

Levent Acar, Associate Professor
PHD Ohio State University
Control and systems, intelligent control with applications to robotics, neural network and fuzzy logic systems, large-scale systems and optimization.

Daryl G Beetner, Professor
DSC Washington University
Electromagnetic immunity and emissions at the chip and system level detection, detection and neutralization of explosive devices, skin cancer detection.

Rui Bo, Assistant Professor
PHD University of Tennessee-Knoxville
Computation, optimization and economics in power system operation and planning, high performance computing and its application in power systems, electricity market simulation, evaluation and design.

Egemen K Cetinkaya, Assistant Professor
PHD University of Kansas
Networks, systems, graph algorithms, resilience and dependability.

Minsu Choi, Associate Professor
PHD Oklahoma State University
Computer architecture and VLSI, embedded systems, fault tolerance testing, quality assurance, reliability modeling and analysis, configurable computing, distributed systems and dependable instrumentation and measurement.

Mariesa L Crow, Professor
PHD University of Illinois-Urbana
Power systems analysis, dynamic stability, computational algorithms, and power electronics.

Kristen Marie Donnell Hilgedick, Assistant Professor
PHD Missouri Univeristy of Science & Technology
Microwave nondestructive testing, modulated antennas/scatterers and terahertz methodologies and electronics design.

James L Drewniak, Curators Professor
PHD University of Illinois-Urbana
Electromagnetic compatibility of high-speed digital electronics, power electronics and electric machinery, numerical electromagnetic analysis and electronic packaging.

Kelvin Todd Erickson, Professor
PHD Iowa State University
Chemical process control, advanced control algorithms, digital control, programmable logic controllers, and systems identification.
Jun Fan, Professor
PHD University of Missouri-Rolla
Intra-system electromagnetic compatibility, Radio-Frequency interference, signal/power integrity and high-speed printed circuit boards and packages.

Mehdi Ferdowsi, Professor
PHD Illinois Institute of Technology
Power electronics, power converters and electric drives.

Ian Ferguson, Professor
PHD University of St. Andrews, Scotland
Compound semiconducting materials, solid-state optoelectronic devices, spintronics, entrepreneurship.

Jie Huang, Assistant Professor
PHD Clemson University
Fiber optic sensors, laser machining, sensors and instrumentation for applications in harsh environments, microwave-photonic sensing imaging and spectroscopy.

Ali Hurson, Professor
PHD University of Central Florida
Parallel and distributed systems, databases, mobile-databases, pervasive and mobile computing.

Chulsoon Hwang, Assistant Professor
PHD KAIST, Daejeon, Korea
Signal and power integrity of IC/package/PCB system, electromagnetic modeling, time/frequency domain simulation/measurement techniques.

Victor Khilkevich, Assistant Professor
PHD Moscow Power Engineering Institute
Microwave imaging, near field measurements, automotive EMC, electromagnetic interference in electronic systems, EMC materials and signal integrity.

Chang-Soo Kim, Professor
PHD Kyungpook National University
Micro-and nano-sensors, bio-MEMS (Micro Electro Mechanical System), microsystems, sensor engineering, biomedical/agricultural engineering.

Jonathan William Kimball, Associate Professor
PHD University of Illinois-Urbana
Power electronics, energy harvesting, alternative energy, and multi-phase converters.

Kurt Louis Kosbar, Associate Professor
PHD University of Southern California
Statistical communication theory, spread spectrum systems, computer aided design of communication systems, stochastic process theory, and digital signal processing.

Hamidreza Modares, Assistant Professor
PHD University of Texas-Arlington
Cooperative control of multi-agent systems, security of cyber-physical systems, reinforcement learning, game-theoretic control, autonomous control.

David Pommerenke, Professor
PHD Technical University Berlin
Electromagnetic compatibility with emphasis on measurement techniques and the application of numerical methods, and the application of FR methods to high voltage problems.

Jagannathan Sarangapani, Professor
PHD University of Texas-Arlington
Control of networks, embedded systems, MEMS, intelligent systems/control, diagnostics/prognostics, and biomedical applications.

Sahra Sedighsarvestani, Associate Professor
PHD Purdue University-W. Lafayette
Component-based software engineering and enterprise integration.

Pourya Shamsi, Assistant Professor
PHD University of Texas-Dallas
Smart-grids, stability assessments in micro-grids, energy management, switching power converters, VHF/UHF dc-dc converters, and motor drives.

Ronald Joe Stanley, Associate Professor
PHD University of Missouri-Columbia
Image and signal processing, computational intelligence, automation and medical informatics.

Steve E Watkins, Professor
PHD University of Texas at Austin
Fiber optic sensing, optical and electronic materials, electro-optic devices and engineering education.

Cheng Hsiao Wu, Professor
PHD University of Rochester
Quantum resistor network theory, semiconductor device modeling, DLTS measurement, and optical computing.

Maciej J Zawodniok, Associate Professor
PHD University of Missouri-Rolla
Embedded systems for cyber infrastructure, wireless sensor and ad hoc networks, and general wireless communications systems.

Yahong Rosa Zheng, Professor
PHD Carleton University
Wireless communication systems, wireless ad hoc/sensor networks, array signal processing, and real time digital signal processing.

Reza Zoughi, Professor
PHD University of Kansas
Electromagnetics, microwave engineering, and microwave and millimeter wave nondestructive evaluation.

COMP ENG 5000 Special Problems
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 5001 Special Topics
This course is designed to give the department an opportunity to test a new course. Variable title.
COMP ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMP ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Elec Eng 5070, Civ Eng 5070).

COMP ENG 5099 Special Research And Thesis (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of the instructor required.

COMP ENG 5110 Principles of Computer Architecture (LEC 3.0)
Principles of performance measurement and instruction set design; advanced issues in pipelining; instruction level parallelism (dynamic scheduling, branch prediction, multi-issue processors); memory hierarchies for superscalar processors; multiprocessors; multi-threading; storage systems; and interconnection networks. Prerequisite: Comp Eng 3110.

COMP ENG 5120 Digital Computer Design (LEC 3.0)
Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software tradeoffs in different levels of computer system design. Prerequisites: COMP ENG 3150 and COMP ENG 3151.

COMP ENG 5130 Advanced Microcomputer System Design (LEC 3.0)
The design of digital systems based on advanced microprocessors. Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language tradeoffs. Hardware and software laboratory projects required. Prerequisites: COMP ENG 5110.

COMP ENG 5150 Digital Systems Design Laboratory (LAB 1.0 and LEC 2.0)
Experimental studies of problems with high speed digital signals in circuits. Student designs, wires, tests, and programs a microprocessor based single board computer project. A FPGA design is programmed and tested. Prerequisites: COMP ENG 3150 or 5110.

COMP ENG 5160 Embedded Processor System Design (LEC 3.0)
Development of hardware and software for embedded systems, including real-time operating systems, advanced programming, communication schemes, hardware peripherals and sensors, control methodologies, printed-circuit board design, interrupts, microcontrollers, and hardware-software co-design. One or more team design projects. Prerequisites: COMP ENG 3150 or equivalent or 80x51 processor experience.

COMP ENG 5170 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisites: COMP ENG 3150 or COMP SCI 3800. (Co-listed with Comp Sci 5205).

COMP ENG 5210 Introduction To VLSI Design (LEC 3.0)
An introduction to the design and analysis of digital integrated circuits (ICs). Topics include basic manufacturing techniques, transistor-level design and analysis of logic and memory circuits, logic timing, and parasitics. Computer aided design tools are used to develop circuits in the lab. Prerequisites: Elec Eng 2200 and Comp Eng 2210.

COMP ENG 5220 Digital System Modeling (LEC 3.0)
Digital system modeling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies. Prerequisite: Comp Eng 2210 with a grade of "C" or better.

COMP ENG 5230 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 2210 or equivalent. (Co-listed with Elec Eng 5250).

COMP ENG 5310 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Elec Eng 5310 and Sys Eng 5211).

COMP ENG 5410 Introduction to Computer Communication Networks (LEC 3.0)
Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internetworking. A modeling tool is used for network design and simulation. Prerequisites: Comp Eng 3150 or computer hardware competency and Stat 3117 or Stat 3115 or Stat 5643 or equivalent.

COMP ENG 5420 Introduction to Network Security (LEC 3.0)
This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Comp Eng 5410 or Comp Sci 5600.
COMP ENG 5430 Wireless Networks (LEC 2.0 and LAB 1.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and ad-hoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 4320 or Comp Eng 3150 and graduate standing. (Co-listed with Elec Eng 5430 and Sys Eng 5323.)

COMP ENG 5450 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5450).

COMP ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5460).

COMP ENG 5510 Fault-Tolerant Digital Systems (LEC 3.0)
Design and analysis of fault-tolerant digital systems. Fault models, hardware redundancy, information redundancy, evaluation techniques, system design procedures. Prerequisites: Comp Eng 2210 and Comp Eng 2211.

COMP ENG 5610 Real-Time Digital Signal Processing (LAB 1.0 and LEC 2.0)
Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisite: Elec Eng 3400 or Elec Eng 3410.

COMP ENG 5620 Signal Integrity in High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 3600 or Comp Eng 3150, and Senior standing. (Co-listed with Elec Eng 5620).

COMP ENG 5803 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfiability, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Sci 5203, Philos 4354 and Math 5154).

COMP ENG 5820 Mechatronics (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Aero Eng 5478 and Elec Eng 5870).

COMP ENG 5880 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Sci 5403 and Elec Eng 5880).

COMP ENG 6000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

COMP ENG 6001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Consent of the instructor.

COMP ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMP ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except for the dissertation, and are away from the campus, must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

COMP ENG 6099 Special Research and Thesis (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of the instructor required.

COMP ENG 6110 Advanced Computer Architecture I (LEC 3.0)
Advanced topics in computer structures, parallel processors, and computer networks. Emphasis on their design, applications, and performance. Prerequisite: Comp Eng 5110 or Comp Eng 5120.

COMP ENG 6120 Advanced Computer Architecture II (LEC 3.0)
Continuation of Computer Engineering 6110. Prerequisites: COMP ENG 6110.

COMP ENG 6210 Digital Logic (LEC 3.0)
Digital logic analysis, synthesis and simulation. Design automation of digital systems. Prerequisites: Comp Eng 2210 and Comp Eng 2211.

COMP ENG 6220 Design Automation of VLSI Systems (LEC 3.0)
A state-of-the-art survey of advanced VLSI design techniques, including ultra-low-voltage designs, asynchronous computing, microfluidic chips, three-dimensional integration and other More-than-Moore technologies. Prerequisites: COMP ENG 5210.
COMP ENG 6230 Advanced VLSI Design (LEC 3.0)
Advanced topics in chip-level VLSI design, including issues related to high-performance, low-power, analog and mixed-signal circuits, reliability, noise and coupling mechanisms, computer aided design tools, and recent advances and trends in the field. Prerequisite: Comp Eng 5210 is required.

COMP ENG 6302 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 301 Introduction to Data Mining. (Co-listed with Comp Sci 6402 and Sys Eng 6216).

COMP ENG 6310 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Mech Eng 6447, Aero Eng 6447, Eng Mgt 6410 and Comp Sci 6202).

COMP ENG 6320 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Elec Eng 6360, Mech Eng 6458, Aero Eng 6458 and Sys Eng 6215).

COMP ENG 6330 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Elec Eng 6340, Sys Eng 6214, Comp Sci 6405, Stat 6239).

COMP ENG 6410 Modeling Complex Systems (LEC 3.0)
Engineering Systems of today are non-linear, distributed, global, and adaptive to their environment in both space and time, thereby creating emergent behaviors. This course covers the current modeling tools and techniques used in modeling and architecting these complex systems. Prerequisites: Graduate Standing. (Co-listed with SYS ENG 6321).

COMP ENG 6420 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Elec Eng 6430 and Sys Eng 6324).

COMP ENG 6430 High Speed Networks (LAB 1.0 and LEC 2.0)
A state-of-the-art survey of high-speed networks, modeling and simulation, quality of service (QoS) for multimedia applications and management schemes, TCP congestion control, ATM and Internet traffic management, Internet Service Architecture (ISA), and Internet routing protocols. Prerequisites: Comp Eng 5410 and hardware competency for ECE students, Comp Sci 4600 for computer science students, or consent of the instructor.

COMP ENG 6440 Network Performance Analysis (LEC 3.0)
Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Sci 6602).

COMP ENG 6510 Resilient Networks (LEC 3.0)
This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisites: Sys Eng 6410, Comp Eng 6410, or Comp Eng 5420. (Co-listed with SYS ENG 6322).

COMP ENG 6810 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Civ Eng 6940, Env Eng 6940, Elec Eng 6810).

Computer Science

The computer science department offers comprehensive M.S. and Ph.D. degree programs that focus on computer network security, software engineering, web databases, wireless systems, intelligent systems, data mining, parallel and distributed processing, pervasive computing, computer networks, scientific visualization, and algorithms. These research activities support the department’s two major areas of excellence: software engineering and critical infrastructure protection.

The computer science department at Missouri S&T makes use of both its own computer learning center (CLC) as well as university CLCs. The CLC contains a mix of Linux and Windows computing platform. Class sizes are kept small to facilitate student and faculty interactions. Research laboratories provide support for both undergraduate and graduate students. These laboratories include:

- Advanced Networking and Cyber-Physical Systems Laboratory
- Applied Computational Intelligence Laboratory
- Computer Vision and Machine Learning Laboratory
- CReWMaN Laboratory
- Critical Infrastructure Protection Laboratory
- Cybersecurity Laboratory
- Data Mining Laboratory
- Natural Computation Laboratory
Wired and wireless computer access is available to all students, faculty, and staff.

Financial Assistance
Financial assistance is available to graduate students in the form of research assistantships, teaching assistantships, and fellowships. Applications for computer science assistantships can be found on the department’s web page or by contacting the department directly (see below). In addition, research opportunities for advanced students exist in the department and in the Missouri S&T Intelligent Systems Center as well as other research labs on campus.

Additional Information
Additional information about department emphasis areas, requirements, faculty, labs, and research opportunities can be found at http://cs.mst.edu or email csgradcoord@mst.edu or phone at 573-341-6642. More information about distance education can be obtained from http://dce.mst.edu.

Admissions Requirements
In addition to those requirements stated in the section of this catalog devoted to Admission and Program Procedures, the computer science department has additional requirements for each of its degree areas.

M.S. in Computer Science (thesis or non-thesis)
A minimum GRE verbal score of 370/144 and for those whom English is not their native language, a TOEFL score of 570/230/89. Minimum GRE Quantitative Score >= 700/155. Written score >= 4.0.

An undergraduate GPA of 3.0/4.0 or better over the last 2 years or successful completion of 12 graduate hours in computer science as a "conditional" graduate student at Missouri S&T, with at least a 3.0 GPA, as per graduate requirements.

Applicants are expected to have strong mathematical skills, competency in a modern programming language, and knowledge of the following computer science core subjects:

- Algorithms and Data Structures
- Computer Organization/Architecture
- Database and File Structures
- Discrete Mathematics
- Operating Systems

The department offers a distance M.S. degree program via the Internet. (Admissions and degree requirements are the same as the regular M.S. program.)

M.S. in Computer Science
Application is made to the Missouri S&T admissions office along with the required transcripts, statement of purpose and GRE verbal, quantitative, and analytical test scores.

The M.S. in computer science (thesis and non-thesis) is a 31 credit hour program. M.S. students are required to take and pass the graduate seminar course COMP SCI 6010.

Ph.D. in Computer Science
Application is made to the Missouri S&T admissions office along with the required transcripts and letters of recommendation. Applicants who do not have a graduate degree will normally request admission to the M.S. program first but, outstanding applications will be admitted directly into the Ph.D. program. Applicants must submit a letter outlining tentative research interests and career goals along with GRE verbal, quantitative, and analytical test scores.

Requirements for the Ph.D. in computer science include: Qualifier examination, comprehensive examination, dissertation and defense. The qualifier examination consists of two parts: (i) pass five selected CS graduate level lecture courses and meet the GPA requirements; (ii) conduct a literature study and pass both a written exam and an oral exam. The dissertation should report the results of original research that meets the standards of current disciplinary journal-quality research publications. In addition, Ph.D. students are required to take and pass the graduate seminar course COMP SCI 6010 for three semesters in their Ph.D. studies.

The Ph.D. program is under the guidance of an advisory committee which is appointed no later than the semester following passage of the qualifying exam.

Graduate Certificates via Distance Education
Graduate certificate programs give students the opportunity to increase their knowledge in specific areas of interest. These courses provide students with the latest knowledge and skills in strategic areas of computing and are presented by Missouri S&T faculty members who are experts in their fields. Most of the courses will be offered through distance education over the internet. Distance education courses use streaming internet video for course delivery. In this setting, students actively participate in classes through viewing the class on their computer while being interactively connected with the class by telephone. Lectures are archived so they may be reviewed at any time during the semester. Instructors are available outside of class time by e-mail and telephone. Where there is sufficient interest, some courses may be taught by traditional instruction methods at Missouri S&T and at off site locations such as Ft. Leonard Wood, St. Louis, and Springfield, MO.

Big Data Management & Analytics
As the size and availability of datasets increase, so too do the challenges in efficiently and effectively sharing, analyzing, and visualizing information. Proficiency in big data analytics requires knowledge in interdisciplinary areas including computer science, business information technology, mathematics and statistics, and electrical and computer engineering. Currently many colleges and universities worldwide are establishing programs in big data analytics. Missouri S&T faculty have the expertise to provide a unique specialized graduate certificate program to teach practicing computing professionals and graduate students the skills that are necessary for the use and development of big data management, big data analytics, data mining, cloud computing, and business intelligence.
Big Data Management & Security
Significant data growth leads to challenges in efficiently and securely sharing, accessing, and analyzing big data. Proficiency in big data management and security requires knowledge in interdisciplinary areas including computer science, business information technology, mathematics and statistics, and electrical and computer engineering. Currently many colleges and universities worldwide are establishing programs in big data analytics. Missouri S&T faculty have the expertise to provide a unique specialized graduate certificate program to teach practicing computing professionals and graduate students the skills that are necessary for the use and development of big data securely and efficiently.

Computational Intelligence Certificate
This graduate certificate program provides practicing engineers the opportunity to develop the necessary skills in the use and development of computational intelligence algorithms based on evolutionary computation, neural networks, fuzzy logic, and complex systems theory. Engineers can also learn how to integrate common sense reasoning with computational intelligence elective courses such as data mining and knowledge discovery.

Cyber Security
Information Assurance and Security Officer Essentials
Protecting information systems is key to protecting the nation’s critical infrastructures. Only through diligence and a well-trained workforce will we be able to adequately defend the nation’s vital information resources. Missouri S&T’s certificate is Certified by the National Security Agency (NSA) Committee on National Security Systems (CNSS) for National Standards 4011 (National Training Standard for Information Systems Security (INFOSEC) Professionals) and 4014E (Information Assurance Training Standard for Information Systems Security Officers (ISSO)).

Information Systems and Cloud Computing Certificate
The information systems and cloud computing certificate is tailored to the working professional who wants to expand their knowledge of advanced data management technologies. Data mining and knowledge discovery, heterogeneous and mobile databases and cloud computing form the core of the study.

Software Design and Development Certificate
The software design and development certificate provides an attractive option for the working professional to expand their experience in software engineering. The core of four classes gives a treatment of software project management in its many roles, from overall project management and process improvement to the management of individual life-cycle components, including software deployment and evolution. Specialized coursework gives depth in advanced object-oriented design, requirements, software quality, testing theory and practice, and an advanced treatment of software metrics.

Systems and Software Architecture Certificate
The systems and software architect fills a critical role in today’s development process, transforming market inputs into the requirements and architecture specification of a product that independent (often remote) development teams can implement. Requests from industrial partners have led to a focused graduate certificate training program.

Wireless Networks and Mobile Systems Certificate
The wireless networks and mobile systems certificate is designed to provide students an intensive treatment in wireless systems and applications. Coverage includes network architecture and protocols, security and privacy wireless network provisioning and deployment, location and mobility management applications, heterogeneous and mobile databases, and pervasive computing.

Sajal K Das, St. Clair Endowed Chair Professor
PHD University of Central Florida
Wireless and sensor networks; mobile and pervasive computing; cyber-physical systems and smart environments; smart healthcare and smart grid; big data; parallel, distributed and cloud computing; security and privacy; systems biology; social networks and social computing; applied graph theory and game theory.

Yanjie Fu, Assistant Professor
DBA Rutgers University
Data mining and big data analytics, with application to urban computing, mobile analytics, recommender systems, online markets.

Mike Gosnell, Assistant Teaching Professor
MS University of Missouri-Rolla
Programming fundamentals and software engineering, operating systems, discrete mathematics for computer science, relational database systems, parallel, distributed, and grid computing.

Zhishan Guo, Assistant Professor
PHD University of North Carolina
Real-time systems, cyber-physical systems, neural dynamic systems and machine intelligence.

Wei Jiang, Associate Professor
PHD Purdue University
Privacy, security, data dining and databases: security and privacy issues raised by data integration and distributed data mining techniques; security issues in databases and federated search; applied cryptography and secure multi-party computation techniques; document anonymization to prevent the disclosure of sensitive attributes.

Jennifer Leopold, Associate Professor
PHD University of Kansas
Qualitative spatial reasoning, programming languages, scientific visualization, ontologies, database accessibility and analysis.

Dan Lin, Associate Professor
PHD National University of Singapore
Database systems, security and privacy, cloud computing, vehicular ad-hoc networks.

Sanjay Kumar Madria, Professor
PHD Indian Institute of Technology, India
Cloud computing security, wireless computing and mobile data management.

George Markowsky, Department Chair
PHD Harvard University
CyberSecurity

Linda Markowsky, Assistant Research Professor
PHD University of Maine
CyberSecurity
Consent of instructor required.

Problems or readings on specific subjects or projects in the department.

COMP SCI 5000 Special Problems (IND 0.0-6.0)

Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 5001 Special Topics (LEC 0.0-6.0)

This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 5099 Research (IND 0.0-16)

Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

COMP SCI 5100 Agile Software Development (LEC 3.0)

Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs and measure project progress and productivity. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMP SCI 5101 Software Testing And Quality Assurance (LEC 3.0)

It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5102 Object-Oriented Analysis And Design (LEC 3.0)

This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5200 Analysis Of Algorithms (LEC 3.0)

The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques such as sorting, backtracking, and graph algorithms. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5201 Object-Oriented Numerical Modeling I (LEC 3.0)

A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: A grade of "C" or better in both Comp Sci 3200 and Comp Sci 1575; a grade of "C" or better in one of Math 3108, 3103, 3329.

COMP SCI 5202 Object-Oriented Numerical Modeling II (LEC 3.0)

A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: A "C" or better grade in Comp Sci 5201.

COMP SCI 5203 Mathematical Logic I (LEC 3.0)

A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Math 5154, Philos 4354 and Comp Eng 5803.)
COMP SCI 5204 Regression Analysis (LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, 3117, or 5643. (Co-listed with Stat 5346).

COMP SCI 5205 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisites: COMP ENG 3170 or COMP SCI 3800. Co-listed with COMP Eng 5170.

COMP SCI 5300 Database Systems (LEC 3.0)
This course introduces the advanced database concepts of normalization and functional dependencies, transaction models, concurrency and locking, timestamping, serializability, recovery techniques, and query planning and optimization. Students will participate in programming projects. Prerequisite: A "C" or better grade in both Comp Sci 1200 and Comp Sci 2300.

COMP SCI 5400 Introduction To Artificial Intelligence (LEC 3.0)
A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5401 Evolutionary Computing (LEC 3.0)
Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisite: A "C" or better grade in both Comp Sci 2500 and in a Statistics course.

COMP SCI 5402 Introduction to Data Mining (LEC 3.0)
The key objectives of this course are two-fold: (1) to teach the fundamental concepts of data mining and (2) to provide extensive hands-on experience in applying the concepts to real-world applications. The core topics to be covered in this course include classification, clustering, association analysis, data preprocessing, and outlier/novelty detection. Prerequisites: A grade of "C" or better in all of Comp Sci 2300, Comp Sci 2500, and one of Stat 3113, Stat 3115, Stat 3117 or Stat 5643.

COMP SCI 5403 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Eng 5880 and Elec Eng 5880).

COMP SCI 5404 Introduction to Computer Vision (LEC 3.0)
This course introduces foundational theories and analysis methods in computer vision. Topics will include camera model and geometry, description of visual features, shape analysis, stereo reconstruction, motion and video processing, and visual object recognition. Prerequisite: A "C" or better grade in both Math 3108 and Comp Sci 2500.

COMP SCI 5405 Java GUI & Visualization (LEC 3.0)

COMP SCI 5406 Interactive Computer Graphics (LEC 3.0)
Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisite: A "C" or better grade in both Comp Sci 3200 and Comp Sci 2500.

COMP SCI 5500 The Structure of a Compiler (LEC 3.0)
Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisite: A "C" or better grade in both Comp Sci 3500 and Comp Sci 2500.

COMP SCI 5600 Computer Networks (LEC 3.0)
This course focuses on the Internet and the general principles of computer networking. It covers the TCP/IP model from the application layer to the link layer in a top-down approach. It also exposes students to multimedia networking, network security, wireless and mobile networks. It is a networking class targeted for entry-level graduate students. This course has additional requirements beyond CS4600 on network performance modeling and analysis, development and implementation of complex communication protocols. Credit will not be given if previously have taken CS4600 or CpE 4410/5410. Prerequisite: A "C" or better grade in Comp Sci 3800.

COMP SCI 5601 Security Operations & Program Management (LEC 3.0)
An overview of information security operations, access control, risk management, systems and application life cycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: A "C" or better grade in all of: operating systems, computer networking, and a writing emphasized course.
COMP SCI 5602 Introduction to Cryptography (LEC 3.0)
Introduces fundamentals of modern cryptography. Topics include basic number theory, public & private key encryption schemes, cryptographic hash functions, message authentication codes, elliptic curve cryptography, Diffie-Hellman key agreements, digital signatures, PUFs, quantum cryptography, and generation of prime numbers and pseudo-random sequences. Prerequisites: A grade of "C" or better in COMP SCI 5200 or a grade of "B" or better in COMP SCI 2500.

COMP SCI 5700 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with Bio Sci 5323).

COMP SCI 5800 Distributed Computing (LEC 3.0)
This is an introduction to the fundamentals of distributed computing. Topics include a review of communication between distributed processes, causality, distributed state maintenance, failure detection, reconfiguration and recovery, distributed mutual exclusion, clock synchronization, and leader election. Students will implement select course concepts. Prerequisites: A grade of "C" or better in both Comp Sci 3800 and Comp Sci 2500.

COMP SCI 5801 The Structure Of Operating Systems (LEC 3.0)
The hardware and software requirements for operating systems for uniprocessing, multiprogramming, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisions, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: A "C" or better grade in Comp Sci 3800.

COMP SCI 5802 Introduction to Parallel Programming and Algorithms (LEC 3.0)
Parallel and pipelined algorithms, architectures, network topologies, message passing, process scheduling and synchronization. Parallel programming on clusters. Cost, speedup and efficiency analysis. Prerequisite: A "C" or better grade in both Comp Sci 3800 and Comp Sci 2500.

COMP SCI 5803 Introduction to High Performance Computer Architecture (LEC 3.0)
Overviews high performance architecture of computing systems and covers various architectural/hardware and software/algorhmic means that enhance performance. Uniprocessor and concurrent systems are investigated. Various computational models are studied and linked to commercial systems. Prerequisite: A "C" or better grade in both Comp Eng 3150 and Comp Sci 2500.

COMP SCI 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 6010 Seminar (RSD 1.0)
Discussion of current topics.

COMP SCI 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMP SCI 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

COMP SCI 6099 Research Special Topics (IND 0.0-16)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

COMP SCI 6100 Software Engineering II (LEC 3.0)
A quantitative approach to measuring costs/productivity in software projects. The material covered will be software metrics used in the life cycle and the student will present topical material. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMP SCI 6101 Software Requirements Engineering (LEC 3.0)
This course will cover advanced methods, processes, and techniques for discovering, analyzing, specifying and managing software requirements of a software system from multiple perspectives. It will discuss both functional and non-functional requirements analysis. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMP SCI 6102 Model Based Systems Engineering (LEC 3.0)
Provides the student with understanding of the use of models to represent systems and validate system architectures. The student will gain proficiency in using a systems modeling language and shifting systems engineering from a document centric to a model centric paradigm. Prerequisites: Graduate Standing. (Co-listed with SYS ENG 6542).

COMP SCI 6200 Algorithmics II (LEC 3.0)
Covers selected classical and recent developments in the design and analysis of algorithms, such as sophisticated data structures, amortized complexity, advanced graph theory, and network flow techniques. Prerequisite: A "C" or better grade in Comp Sci 5200.

COMP SCI 6201 Theory Of Computation (LEC 3.0)
Turing machines and other machines. Godel numbering and unsolvability results. Machines with restricted memory access and limited computing time. Recursive functions, computable functionals and the classification of unsolvable problems. Prerequisite: A "C" or better grade in Comp Sci 2200.
COMP SCI 6202 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Aero Eng 6447 and Eng Mgt 6410).

COMP SCI 6203 Network Information Analysis (LEC 3.0)
Modeling techniques and analytical methods to study the interaction of information and networks focusing on models and properties of network structures, and diffusion of information over networks. Expected outcomes are systematic inference of information encoded in network structures, and effective methods to disseminate or gather information from networks. Prerequisites: A "C" or better grade in Comp Sci 5200.

COMP SCI 6204 Applied Graph Theory for Computer Science (LEC 3.0)
This course covers advanced concepts in graph theory and their applications. Graphs offer an excellent modeling and analysis tool for solving a wide variety of real-life problems. Emphasis will be on understanding concepts, theory, and proof techniques, and how to develop "cool" and "elegant" solutions for applications. Students will conduct projects. Prerequisite: A grade of "C" or better in Comp Sci 5200.

COMP SCI 6300 Object-Oriented Database Systems (LEC 3.0)
This course will include a study of the origins of object-oriented database manipulation languages, their evolution, currently available systems, application to the management of data, problem solving using the technology, and future directions. Prerequisite: A "C" or better grade in Comp Sci 5102.

COMP SCI 6301 Web Data Management and XML (LEC 3.0)
Management of semi-structured data models and XML, query languages such as Xquery, XML indexing, and mapping of XML data to other data models and vice-versa, XML views and schema management, advanced topics include change-detection, web mining and security of XML data. Prerequisite: A "C" or better grade in Comp Sci 5300.

COMP SCI 6302 Heterogeneous and Mobile Databases (LEC 3.0)
This course extensively discusses multidatabase systems (MDBS) and mobile data access systems (MDAS). Moreover, it will study traditional distributed database issues within the framework of MDBSs and MDASs. Prerequisite: A "C" or better grade in Comp Sci 5300.

COMP SCI 6303 Pervasive Computing (LEC 3.0)
Pervasive computing aims to seamlessly integrate computing with our everyday activities, so that people do not need to be aware of computing artifacts. This course will introduce various techniques needed to realize pervasive computing, such as position tracking and ad-hoc networking. Prerequisite: A grade of "C" or better in one of Comp Sci 4600, Comp Sci 5600, or Comp Eng 5410.

COMP SCI 6304 Cloud Computing and Big Data Management (LEC 3.0)
Covers facets of cloud computing and big data management, including the study of the architecture of the cloud computing model with respect to virtualization, multi-tenancy, privacy, security, cloud data management and indexing, scheduling and cost analysis; it also includes programming models such as Hadoop and MapReduce, crowdsourcing, and data provenance. Prerequisites: A grade of 'C' or better in both COMP SCI 5800 and either COMP SCI 5300 or COMP SCI 5402.

COMP SCI 6400 Advanced Topics In Artificial Intelligence (LEC 3.0)
Advanced topics of current interest in the field of artificial intelligence. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in one of Comp Sci 5400, Comp Sci 5401 or Comp Eng 5310.

COMP SCI 6401 Advanced Evolutionary Computing (LEC 3.0)
Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: A "C" or better grade in Comp Sci 5401.

COMP SCI 6402 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Eng 6302 and Sys Eng 6216).

COMP SCI 6403 Advanced Topics in Robotics (LEC 3.0)
This course covers advanced topics in robotics, including perception, robotic path planning, robotic system integration, and computational intelligence topics for robotics. A term project including both written and oral components will be required. Prerequisite: A "C" or better in either Comp Sci 5403 or Mech Eng 5449 or Aero Eng 5449. (Co-listed with Comp Eng 6880 and Elec Eng 6880).

COMP SCI 6404 Computer Graphics And Realistic Modeling (LEC 3.0)
Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: A "C" or better grade in Comp Sci 5406.

COMP SCI 6405 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 6330, Elec Eng 6340, Sys Eng 6214 and Stat 6239).
COMP SCI 6406 Machine Learning in Computer Vision (LEC 3.0)
Introduces machine learning fundamentals in current computer vision research. Topics include modeling complex data densities, regression and classification models, graphical models such as chains, trees, and grids, temporal models such as particle filtering and models for visual recognition such as deep learning. Students will implement select course topics. Prerequisite: A grade of "C" or better in either Comp Sci 5402 or Comp Sci 5404.

COMP SCI 6500 Theory Of Compiling (LEC 3.0)
Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: A "C" or better grade in Comp Sci 5500.

COMP SCI 6600 Formal Methods in Computer Security (LEC 3.0)
The course presents various vulnerabilities and threats to information in cyberspace and the principles and techniques for preventing and detecting threats, and recovering from attacks. The course deals with various formal models of advanced information flow security. A major project will relate theory to practice. Prerequisites: A grade of "C" or better in both Comp Sci 3600 and Comp Sci 5200.

COMP SCI 6601 Privacy Preserving Data Integration and Analysis (LEC 3.0)
This course covers basic tools, in statistics and cryptography, commonly used to design privacy-preserving and secure protocols in a distributed environment as well as recent advances in the field of privacy-preserving data analysis, data sanitization and information retrieval. Prerequisite: A "C" or better grade in both Comp Sci 5300 and Comp Sci 3600.

COMP SCI 6602 Network Performance Analysis (LEC 3.0)
Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Eng 6440).

COMP SCI 6603 Advanced Topics in Wireless Networks (LEC 3.0)
Introduces the fundamentals and recent advances in wireless networking. Coverage includes cellular networks, wireless and mobile ad hoc networks, wireless mesh networks, sensor networks and wireless LANs with a focus on network operation. Special topics selected from the literature on wireless network security will also be addressed. Prerequisite: A "C" or better grade in Comp Sci 4600 or equivalent.

COMP SCI 6604 Mobile And Sensor Data Management (LEC 3.0)
Architectures of mobile computing systems; Mobile-IP support in mobile computing systems; location data management, Broadcasting and indexing, replication control; caching, fault tolerance and reliability of mobile systems; ad hoc and sensor routing schemes, key management. Prerequisite: Comp Sci 4601.

COMP SCI 6605 Advanced Network Security (LEC 3.0)
Topics covered include network security issues such as authentication, anonymity, traceback, denial of service, confidentiality, forensics, etc. in wired and wireless networks. Students will have a clear, in-depth understanding of state of the art network security attacks and defenses. Prerequisite: A "C" or better grade in either Comp Eng 5420 or Comp Sci 4600.

COMP SCI 6800 Distributed Systems Theory And Analysis (LEC 3.0)
Analysis of the problems of state maintenance and correctness in concurrent computing systems using formal methods such as Hoare Logic, Temporal Logic, and Symbolic Model Checking. Prerequisite: A "C" or better grade in Comp Sci 5800.

COMP SCI 6801 Topics in Parallel and Distributed Computing (LEC 3.0)
Introduction of parallel and distributed computing fundamentals and advanced research topics. Students present research papers selected from the current literature on P&D computing paradigms. A term paper and oral presentation are required. Prerequisite: A "C" or better grade in Comp Sci 5802 or equivalent background.

Economics

The department of economics has entered into a cooperative agreement with the department of economics of the University of Missouri-St. Louis to offer a master of arts in economics. A maximum of 12 graduate semester hours may be taken at Missouri S&T (with no more than 9 credit hours at the 4000-level).

Management for Sustainable Business

This certificate in management for sustainable business addresses an identified need to provide science and engineering students with business knowledge and professional skills to further their careers in business sustainability. The certificate will focus on building knowledge and competencies, specifically in the area of environmental sustainability of a business organization. The proposed program will provide professionals with the skills necessary for rapidly advancing themselves in the workplace, and more importantly, rapidly advancing the general knowledge base and skill set in their professional workplaces.

The curriculum consists of the following:

- **ECON 6641** Advanced Foundations of Sustainability
- **ECON 6642** Global Eco- and Social-preneurship and Innovation
- **ECON 6643** Advanced Ethical Problems in a Global Environment

Choose one of the following:

- **ECON 6440** Advanced Environmental and Natural Resource Economics
- **ECON 5532** Advanced Mining Economics
- **ECON 6540** Advanced Energy Economics
- **ECON 5644** Creativity, Innovation, and Sustainability
- **ENG MGT 5320** Project Management
- **ENG MGT 5513** Energy and Sustainability Management Engineering
- **MIN ENG 5742** Environmental Aspects of Mining
- **MIN ENG 6735** Sustainability in Mining

Bonnie J Bachman, Professor
PHD Rutgers University
ECON 5337 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Econ 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Math 5737).

ECON 5342 Advanced Finance (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. This course is an advanced version of Econ 321, and will include additional research and project assignments. Credit cannot be obtained for both Econ 5160 and Econ 5342. Prerequisite: Econ 2100 or Econ 2200.

ECON 5430 Advanced Cost-Benefit Analysis (LEC 3.0)
Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. This course is an advanced version of Econ 4430, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4430 and Econ 5430. Prerequisite: Econ 2100.

ECON 5532 Advanced Mining Economics (LEC 3.0)

ECON 5537 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Econ 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Math 5737).

ECON 5342 Advanced Finance (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. This course is an advanced version of Econ 321, and will include additional research and project assignments. Credit cannot be obtained for both Econ 5160 and Econ 5342. Prerequisite: Econ 2100 or Econ 2200.

ECON 5430 Advanced Cost-Benefit Analysis (LEC 3.0)
Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. This course is an advanced version of Econ 4430, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4430 and Econ 5430. Prerequisite: Econ 2100.

ECON 5532 Advanced Mining Economics (LEC 3.0)

ECON 5537 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Econ 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Math 5737).

ECON 5342 Advanced Finance (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. This course is an advanced version of Econ 321, and will include additional research and project assignments. Credit cannot be obtained for both Econ 5160 and Econ 5342. Prerequisite: Econ 2100 or Econ 2200.

ECON 5430 Advanced Cost-Benefit Analysis (LEC 3.0)
Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. This course is an advanced version of Econ 4430, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4430 and Econ 5430. Prerequisite: Econ 2100.

ECON 5532 Advanced Mining Economics (LEC 3.0)

ECON 5537 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Econ 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Math 5737).
ECON 5720 Advanced International Finance (LEC 3.0)
Examination of the international monetary system, the Balance of Payments, the foreign exchange market, futures and options markets; foreign exchange and other risk management for firms, financing from a global perspective and direct foreign investment. This course is an advanced version of Econ 4720, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4720 and Econ 5720. Prerequisite: Econ 2200.

ECON 5820 Advanced Labor Economics (LEC 3.0)
Labor as a factor of production, collective bargaining, trade unionism, labor legislation, from the viewpoint of public policy. This course is an advanced version of Econ 4820, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4820 and Econ 5820. Prerequisite: Econ 2100 or Econ 2200.

ECON 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ECON 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

ECON 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

ECON 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

ECON 6337 Financial Mathematics II (LEC 3.0)
Continuation of Math 5737/Econ 5337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 5737 or Econ 5337. (Co-listed with Math 6737).

ECON 6440 Advanced Environmental and Natural Resource Economics (LEC 3.0)
Optimum use of renewable and non-renewable resources, public goods and common resources, externalities, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. As an advanced version of Econ 4440, it will include additional research assignments. Credit can't be earned for both Econ 4440 and 6440. Prerequisite: Econ 2100.

ECON 6540 Advanced Energy Economics (LEC 3.0)
Market structures. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. This course is an advanced version of Econ 4540, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4540 and Econ 6540. Prerequisite: Econ 2100.

ECON 6641 Advanced Foundations of Sustainability (LEC 3.0)
This interdisciplinary course is designed as an introduction to sustainability in commerce. It examines environmental, social, and economic issues in an organized context. Principles, processes and practices in sustainability will be explored. Project or written case study required.

ECON 6642 Global Eco- and Social-preneurship and Innovation (LEC 3.0)
This interdisciplinary course applies an entrepreneurial mindset to the environmental and social opportunities and challenges facing the global community. Topics are examined from multiple perspectives; nonprofit, hybrid, and for-profit organizations. Written case studies required. Research project required. Prerequisites: Econ 6641.

ECON 6643 Advanced Ethical Problems in a Global Environment (LEC 3.0)
Focuses on the international dimension of ethics including corporate responsibility from economic, social, and environmental perspectives. It addresses the ethical challenges of decision-making, stakeholder engagement, and governance at micro-(personal), and meso-(org), and macro-(systems) levels. Case studies will be included as part of the course.

Electrical Engineering

The mission of the electrical engineering program, consistent with the Missouri S&T campus mission statements, is the education of students to fully prepare them to provide leadership in the recognition and solution of society's problems in the area of electrical engineering.

The electrical engineering program in the department of electrical and computer engineering offers graduate programs of study which lead to the M.S. degree (thesis and non-thesis options), the Ph.D. degree and the doctor of engineering degree. Both, the Rolla campus and the Engineering Education Center in St. Louis offer M.S. programs. Most graduate programs in electrical engineering normally include some specialization in one or more of the following six emphasis areas of electrical engineering.

Emphasis Areas

Circuits and Electronics

Topics include network analysis and synthesis, computer-aided circuit design, distributed circuits, communication circuits, and linear and nonlinear electronic circuits.

Communications & Signal Processing

Topics include coding, information theory, modulation, detection, filtering for both analog and digital systems, signal processing, image processing and wireless.

Controls and Systems

Topics include resilience control, wireless sensor/network design and networked control systems, process control, optimal control and estimation, robust control, neural networks, fuzzy logic based control as applied to control of vehicles, chemical processes, manufacturing, robotics, environmental systems and smart structural systems.

Devices and Optics

Topics include the semiconductor devices, microsystems, fiber optics and sensors, optical methods applied to structural monitoring, and optical/quantum computing.

Electromagnetics

Topics include electromagnetic compatibility and signal integrity for high-speed electronic systems, microwaves and applications to nondestructive testing and evaluation.
Power

Topics include power electronic converters, electric machines, electric motor drives, high voltage engineering, transportation electrification, application of computer methods to power system analysis and control, power system relaying and protection, and power quality load management.

Departmental Requirements

Admission Requirements

The nominal GPA requirement for admission to the M.S. degree program in this department is an undergraduate GPA of 3.3 on a 4.0 GPA system. In evaluating the academic performance from universities that may use other grading systems, the department may rely upon statistical data gathered in analyzing academic outcomes for recent graduate students to the extent that such statistical data is available. The department will not offer graduate admissions to students who do not have the equivalent of a four year baccalaureate degree in engineering. As an example, we cannot accept students who have only a diploma or engineering technology degree.

The ECE department requires ETS reported GRE scores and recommends the following:

ETS scoring after November 2011: Q+V=310, Q=160, V=150, A/WR= 4.0

This GRE requirement may be waived if the applicant has an undergraduate GPA of 3.5 obtained from the courses offered by the electrical engineering or computer engineering program at Missouri S&T (must be minimum 18 credit hours).

For international students who are required to provide TOEFL scores, the ECE department has no preference as to the computer based TOEFL (CBT), internet based TOEFL (IBT), or paper based TOEFL (PBT). Minimum recommended scores set by the department are 237 CBT, 92 iBT, and 580 PBT. Where TOEFL is not available, IELTS score of ≥ 6.5 is recommended.

Students applying for graduate studies in this department on the basis of degrees in closely related fields may have additional conditions placed on their admission. These conditions are generally imposed to make sure that students lacking a traditional electrical engineering degree will have sufficient background to ensure a reasonable chance for academic success.

Students seeking admission to the Ph.D. program should meet or exceed all of the above recommendations and should have a graduate GPA of 3.5 or better. All Ph.D. applicants must provide at least three letters of recommendation. Exceptional applicants may apply directly to the Ph.D. program after completing the baccalaureate degree.

Program Requirements

Additional departmental requirements beyond those stated in the section on Admission and Program Procedures are as follows. Thesis option M.S. programs of study require a minimum of 21 credit hours of course work exclusive of credit hours earned for thesis research (courses numbered 5099). A limited number of credit hours for 3000 level courses may be counted towards the fulfillment of a M.S. program of study, provided that the courses are taken outside of the electrical and computer engineering department and that the courses are pre-requisites for at least one 5000 or 6000 level course also included in the program of study. An M.S. advisory committee may impose additional requirements or restrictions as it sees fit.

Ph.D. Language Requirement

As an electrical engineering Ph.D. student, you are not required to satisfy a language requirement. However, you may have language requirements included in your plan of study if your advisory committee feels that this inclusion would be useful or necessary for your research.

Research

Significant research, suitable for publication, is expected for students pursuing the thesis option M.S. or a doctoral degree. The student should work closely with their major advisor and their advisory committee to determine when these expectations are met. The length of research time and/or the number credit hours earned for thesis research will not automatically satisfy this requirement.

Additional Information

Additional information about departmental emphasis areas, requirements, graduate handbook, faculty, research opportunities, financial aid, and facilities can be found by visiting the department’s web page at http://ece.mst.edu. We can be contacted by telephone at 573-341-4519 or e-mail ecegrad@mst.edu. For information about the Engineering Education Center in St. Louis, visit their web page at http://ece.mst.edu.

Advanced Control Systems

This graduate certificate program is designed to provide specialized graduate level education in the area of advanced control systems.

Admission

The advanced control systems graduate certificate program is open to all persons holding a B.S. degree in any field of engineering from an ABET accredited undergraduate program or a degree in a closely related technical field such as physics or mathematics. The minimum overall GPA in the B.S. degree program should be at least 2.5.

Once admitted to the program, the student must take four designated courses as given below. In order to receive a graduate certificate, the student must have an average graduate grade point average of 3.0 or better in the certificate courses taken.

Students admitted to the certificate program will have non-degree graduate status. If the four-course sequence is completed with a grade of B or better in each of the courses taken, the student, upon application, will be admitted to the M.S. program in electrical engineering, provided that all other program prerequisites and admission requirements are met. The certificate courses taken by students admitted to the M.S. program will count towards their master’s degrees. Students who do not have all of the prerequisite courses necessary to take the courses in the certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Students admitted to the certificate program will have non-degree graduate status. If the four-course sequence is completed with a grade of B or better in each of the courses taken, the student, upon application, will be admitted to the M.S. program in electrical engineering, provided that all other program prerequisites and admission requirements are met. The certificate courses taken by students admitted to the M.S. program will count towards their master’s degrees. Students who do not have all of the prerequisite courses necessary to take the courses in the certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a B average in the courses taken.

Curriculum

Students enrolled in this graduate certificate program will take two required courses and two elective courses. Alternative courses may be
substituted with the departmental approval dependent on the availability of the courses listed below:

Required courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 5300</td>
<td>Digital Control</td>
</tr>
<tr>
<td>ELEC ENG 6300</td>
<td>Linear Control Systems</td>
</tr>
</tbody>
</table>

Choose two of the following:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 5320</td>
<td>Neural Networks Control and Applications</td>
</tr>
<tr>
<td>ELEC ENG 5330</td>
<td>Fuzzy Logic Control</td>
</tr>
<tr>
<td>ELEC ENG 5350</td>
<td>Plantwide Process Control</td>
</tr>
<tr>
<td>ELEC ENG 5360</td>
<td>System Simulation And Identification</td>
</tr>
<tr>
<td>ELEC ENG 5380</td>
<td>Autonomous Mobile Robots</td>
</tr>
<tr>
<td>ELEC ENG 6310</td>
<td>Optimal Control And Estimation</td>
</tr>
<tr>
<td>ELEC ENG 6330</td>
<td>Robust Control Systems</td>
</tr>
<tr>
<td>ELEC ENG 6390</td>
<td>Current Topics In Control Theory</td>
</tr>
<tr>
<td>ELEC ENG 6335</td>
<td>Discrete-Time Neural Network Control</td>
</tr>
<tr>
<td>or ELEC ENG 6350</td>
<td>Neural Network Control of Nonlinear Continuous-time Systems</td>
</tr>
<tr>
<td>ELEC ENG 5325</td>
<td>Applied Nonlinear Control</td>
</tr>
<tr>
<td>or ELEC ENG 632</td>
<td>Nonlinear Control Systems</td>
</tr>
</tbody>
</table>

Automation Engineering and PLC
This graduate certificate program is designed to provide specialized graduate level education in the area of automation engineering and PLC.

Admission
The automation engineering and PLC graduate certificate program is open to all persons holding a B.S. degree in any field of engineering from an ABET accredited undergraduate program or a degree in a closely related technical field such as physics or mathematics. The minimum overall GPA in the B.S. degree program should be at least 2.5.

Once admitted to the program, the student must take four designated courses as given below. In order to receive a graduate certificate, the student must have an average graduate grade point average of 3.0 or better in the certificate courses taken.

Students admitted to the certificate program will have non-degree graduate status. If the four-course sequence is completed with a grade of B or better in each of the courses taken, they will be admitted to the M.S. program in chemical engineering, electrical engineering, or mechanical engineering, provided that all other program prerequisites and admission requirements are met. The certificate courses taken by students admitted to the M.S. program will count towards their master’s degree. Students who do not have all of the prerequisite courses necessary to take the courses in the certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a B average in the courses taken.

Curriculum
Students enrolled in this graduate certificate program will take two required courses and two elective courses. Alternative courses may be substituted with the departmental approval dependent on the availability of the courses listed below.

Required courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM ENG 5190/</td>
<td>Plantwide Process Control</td>
</tr>
<tr>
<td>ELEC ENG 5350</td>
<td>Advanced PLC</td>
</tr>
</tbody>
</table>

Choose two of the following:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM ENG 5140</td>
<td>Intermediate Chemical Process Safety</td>
</tr>
<tr>
<td>ELEC ENG 5345</td>
<td>PLC Motion Control</td>
</tr>
<tr>
<td>ELEC ENG 5870/</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MECH ENG 5478</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 5449</td>
<td>Robotic Manipulators and Mechanisms</td>
</tr>
<tr>
<td>MECH ENG 5655</td>
<td>Manufacturing Equipment Automation</td>
</tr>
</tbody>
</table>

Electric Machine and Drives
This graduate certificate program is designed to provide specialized graduate level education in the area of electric machine and drives.

Admission
The electric machine and drives program is open to all persons holding a B.S. degree in any field of engineering from an ABET accredited undergraduate program and having a minimum of 24 months of post B.S. professional work experience that would normally require an engineering degree or a degree in a closely related technical field such as physics or mathematics. The minimum overall GPA in the B.S. degree program should be at least 2.5.

Once admitted to the program, the student must take four designated courses as given below. In order to receive a graduate certificate, the student must have an average graduate grade point average of 3.0 or better in the certificate courses taken.

Students admitted to the certificate program will have non-degree graduate status; however, if they complete the four-course sequence with a grade of B or better in each of the courses taken, they will be admitted to the M.S. program in electrical engineering if they apply. The certificate courses taken by students admitted to the M.S. program will count towards their master’s degree. Students who do not have all of the prerequisite courses necessary to take the courses in the certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a B average in the courses taken.

Curriculum
Students enrolled in this graduate certificate program will take two required courses and two elective courses. Alternative courses may be substituted with the departmental approval dependent on the availability of the courses listed below.

The following two courses must be taken:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 5500</td>
<td>Electric Drive Systems</td>
</tr>
<tr>
<td>ELEC ENG 6500</td>
<td>Advanced Theory Of Electric Machines</td>
</tr>
</tbody>
</table>

A minimum of two of the following electric power systems courses must be taken:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 5550</td>
<td>Electric Power Quality</td>
</tr>
<tr>
<td>ELEC ENG 5300</td>
<td>Digital Control</td>
</tr>
<tr>
<td>ELEC ENG 5520</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>ELEC ENG 5600</td>
<td>Interference Control in Electronic Systems</td>
</tr>
<tr>
<td>ELEC ENG 6001</td>
<td>Special Topics</td>
</tr>
<tr>
<td>ELEC ENG 6550</td>
<td>Power System Stability</td>
</tr>
<tr>
<td>ELEC ENG 6300</td>
<td>Linear Control Systems</td>
</tr>
</tbody>
</table>

Other courses approved by the electric machines and drives faculty may be substituted for any of the above listed courses on a case-by-case basis. The department’s associate chair for graduate affairs must approve the substitution prior to enrolling in the course.
Electrical Power Systems Engineering

This graduate certificate program is designed to provide specialized graduate level education in the area of electric power systems engineering.

Admission

The electrical power systems engineering program is open to all persons holding a B.S. degree in any field of engineering from an ABET accredited undergraduate program and having a minimum of 24 months of post B.S. professional work experience that would normally require an engineering degree or a degree in a closely related technical field such as physics or mathematics. The minimum overall GPA in the B.S. degree program should be at least 2.5.

Once admitted to the program, the student must take four designated courses as given below. In order to receive a graduate certificate, the student must have an average graduate grade point average of 3.0 or better in the certificate courses taken.

Students admitted to the certificate program will have non-degree graduate status; however, if they complete the four-course sequence with a grade of B or better in each of the courses taken, they will be admitted to the M.S. program in electrical engineering if they apply. The certificate courses taken by students admitted to the M.S. program will count towards their master's degrees. Students who do not have all of the prerequisite courses necessary to take the courses in the certificate program will be allowed to take "bridge" courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a B average in the courses taken.

Curriculum

Students enrolled in this graduate certificate program will take two required courses and two elective courses. Alternative courses may be substituted with the departmental approval dependent of the availability of the courses listed below.

The following two electric power systems courses must be taken:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 5540</td>
<td>Power Systems Engineering</td>
</tr>
<tr>
<td>ELEC ENG 5550</td>
<td>Electric Power Quality</td>
</tr>
</tbody>
</table>

A minimum of two of the following electric power systems courses must be taken:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 6300</td>
<td>Linear Control Systems</td>
</tr>
<tr>
<td>ELEC ENG 5570</td>
<td>Extra High Voltage Engineering</td>
</tr>
<tr>
<td>ELEC ENG 6540</td>
<td>Computer Methods In Power System Analysis</td>
</tr>
<tr>
<td>ELEC ENG 6550</td>
<td>Power System Stability</td>
</tr>
<tr>
<td>ELEC ENG 6560</td>
<td>Power System Protection</td>
</tr>
<tr>
<td>ELEC ENG 6570</td>
<td>Surge Phenomena In Power Systems</td>
</tr>
<tr>
<td>ELEC ENG 6580</td>
<td>Power System Operations</td>
</tr>
</tbody>
</table>

Other courses approved by the electric power systems faculty may be substituted for any of the above listed courses on a case-by-case basis. The department's associate chair for graduate affairs must approve the substitution prior to enrolling in the course.

Levent Acar, Associate Professor
PHD Ohio State University
Control and systems, intelligent control with applications to robotics, neural network and fuzzy logic systems, large-scale systems and optimization.

Daryl G Beetner, Professor
DSC Washington University
Computer Engineering, parallel processing, hardware-software co-design, skin cancer detection, and electro-cardiology. Interests in electro-cardiology include body-surface mapping, the inverse problem, and risk-assessment.

Rui Bo, Assistant Professor
PHD University of Tennessee-Knoxville
Computation, optimization and economics in power system operation and planning, high performance computing and its application in power systems, electricity market simulation, evaluation and design.

Egemen K Cetinkaya, Assistant Professor
PHD University of Kansas
Networks, systems, graph algorithms, resilience, and dependability.

Kristen Marie Donnell Hilgedick, Assistant Professor
PHD Missouri University of Science & Technology
Microwave nondestructive testing, modulated antennas/scatterers, terahertz methodologies and electronics design.

James L Drewniak, Curators Professor
PHD University of Illinois-Urbana
Electromagnetic compatibility of high-speed digital electronics, power electronics and electric machinery, numerical electromagnetic analysis, electronic packaging.

Kelvin Todd Erickson, Professor
PHD Iowa State University
Chemical process control, advanced control algorithms, digital control, programmable logic controllers, system identification.

Jun Fan, Professor
PHD University of Missouri-Rolla
Intra-system electromagnetic compatibility, Radio-Frequency interference, signal/power integrity, high-speed printed circuit boards and packages.

Mehdi Ferdowsi, Professor
PHD Illinois Institute of Technology
Power electronics, power converters and electric drives.

Ian Ferguson, Professor
PHD University of St. Andrews, Scotland
Compound semiconducting materials, solid-state optoelectronic devices, spintronics, entrepreneurship.

Jie Huang, Assistant Professor
PHD Clemson University
Fiber optic sensors, laser machining, sensors and instrumentation for applications in harsh environments, microwave-photonic sensing imaging and spectroscopy.
Ali Hurson, Professor
PHD University of Central Florida
Parallel and distributed systems, databases, mobile-databases, pervasive and mobile computing.

Chulsoon Hwang, Assistant Professor
PHD KAIST, Daejeon, Korea
Signal and power integrity of IC/package/PCB system, electromagnetic modeling, time/frequency domain simulation/measurement techniques.

Victor Khilkevich, Assistant Professor
PHD Moscow Power Engineering Institute
Microwave imaging, near field measurements, automotive EMC, electromagnetic interference in electronic systems, EMC material and signal integrity.

Chang-Soo Kim, Professor
PHD Kyungpook National University
Micro-and nano-sensors, bio-MEMS (Micro Electro Mechanical System), microsystems, sensor engineering, biomedical/agricultural engineering.

Jonathan William Kimball, Associate Professor
PHD University of Illinois-Urbana
Power electronics, energy harvesting, alternative energy, multi-phase converters.

Kurt Louis Kosbar, Associate Professor
PHD University of Southern California
Statistical communication theory, spread spectrum systems, computer aided design of communication systems, stochastic process theory, digital signal processing.

Hamidreza Modares, Assistant Professor
PHD University of Texas-Arlington
Cooperative control of multi-agent systems, security of cyber-physical systems, reinforcement learning, game-theoretic control, autonomous control.

David Pommerenke, Professor
PHD Technical University Berlin
Electromagnetic compatibility with emphasis on measurement techniques and the application of numerical methods, and the application of FR methods to high voltage problems.

Jagannathan Sarangapani, Professor
PHD University of Texas-Arlington
Control of networks, embedded systems and resilience, sensors and neural network control, diagnostics/prognostics, cyber physical systems, event-triggered control.

Sahra Sedighsarvestani, Associate Professor
PHD Purdue University-W. Lafayette
Component-based software engineering and enterprise integration.

Pourya Shamsi, Assistant Professor
PHD University of Texas-Dallas
Smart-grids, stability assessments in micro-grids, energy management, switching power converters, VHF/UHF dc-dc converters, and motor drives.

Ronald Joe Stanley, Associate Professor
PHD University of Missouri-Columbia
Image processing, pattern recognition software methods, automation and medical informatics.

Steve E Watkins, Professor
PHD University of Texas at Austin
Fiber optic sensing, optical and electronic materials, electro-optic devices and Fourier optics.

Cheng Hsiao Wu, Professor
PHD University of Rochester
Quantum resistor network theory, semiconductor device modeling, DLTS measurement, optical computing.

Donald C Wunsch II, Professor
PHD University of Washington
Adaptive critic designs, neural networks, fuzzy systems, surety, nonlinear adaptive control, intelligent agents, applications, financial engineering.

Maciej J Zawodniok, Associate Professor
PHD University of Missouri-Rolla
Embedded systems for cyber infrastructure, wireless sensor and ad hoc networks, and general wireless communications systems.

Yahong Rosa Zheng, Professor
PHD Carleton University
Wireless communication systems, wireless ad hoc/sensor networks, array signal processing, and real time digital signal processing.

Reza Zoughi, Professor
PHD University of Kansas
Electromagnetics, microwave engineering, and microwave and millimeter wave nondestructive evaluation.

ELEC ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 5001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ELEC ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ELEC ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Comp Eng 5070, Civ Eng 5070).

ELEC ENG 5099 Special Research And Thesis (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.
ELEC ENG 5100 Advanced Electronic Circuits (LEC 3.0)
Application of feedback theory, oscillators and frequency standards, precision analog techniques, low-power circuit design, interfacing sensors, designing for high reliability, electronics for harsh environments. Prerequisite: Elec Eng 3120.

ELEC ENG 5120 Communication Circuits (LEC 3.0)
Analysis and design of circuits used in communication systems. Topics include RF semiconductor devices, low-noise amplifiers, mixers, modulators, crystal oscillators, AGC circuits, highpower RF amplifiers, phase-locked loops, impedance matching, and frequency-selective networks and transformers. Prerequisites: Elec Eng 3120, 3600.

ELEC ENG 5140 High-Frequency Amplifiers (LEC 3.0)
Analysis and design of high frequency amplifiers. Topics include parameter conversions, activity and passivity, stability criteria, device operating conditions, Smith chart usage, matching networks, microstrip, scattering parameters, and practical applications. Prerequisites: Elec Eng 3120, 3600.

ELEC ENG 5150 Photovoltaic Systems Engineering (LEC 3.0)
Physics and characteristics of photovoltaic (solar) cell technologies, electronic control of alternative energy sources, site selection, array design, energy storage methods, electrical code compliance, standalone systems, grid-intertie systems, legal and economic considerations. Prerequisite: Senior or graduate standing in Science or Engineering.

ELEC ENG 5160 Computer-Aided Network Design (LEC 3.0)
Analysis and design of active and passive electric networks. Theory and computer application, including methods for automatic formulation of network state equations, network tolerance, network optimization, and device modeling. Prerequisites: Elec Eng 3100.

ELEC ENG 5170 Introduction To Circuit Synthesis (LEC 3.0)

ELEC ENG 5200 Classical Optics (LEC 3.0)
Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 2222 and Physics 2135 or 2111. (Co-listed with Physics 4503).

ELEC ENG 5210 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear systems theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Both Elec Eng 3430 and Elec Eng 3600 or both Physics 2401 and Physics 4211. (Co-listed with PHYSICS 5503).

ELEC ENG 5220 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonics sensors. Prerequisite: Elec Eng 3600 or Physics 4211. (Co-listed with Physics 5513).

ELEC ENG 5250 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 2210 or equivalent. (Co-listed with Comp Eng 5230).

ELEC ENG 5270 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Aero Eng 5529, Mech Eng 5229 and Civ Eng 5118).

ELEC ENG 5300 Digital Control (LEC 3.0)
Analysis and design of digital control systems. Review of ztransforms; root locus and frequency response methods; state space analysis and design techniques; controllability, observability and estimation. Examination of digital control algorithms. Prerequisite: Elec Eng 3320.

ELEC ENG 5310 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Comp Eng 5310 and Sys Eng 5211).

ELEC ENG 5320 Neural Networks Control and Applications (LEC 3.0)
Introduction to artificial neural networks and various supervised and unsupervised learning techniques. Detailed analysis of some of the neural networks that are used in control and identification of dynamical systems. Applications of neural networks in the area of Control. Case studies and a term project. Prerequisites: Elec Eng 3320.

ELEC ENG 5325 Applied Nonlinear Control (LEC 3.0)
Review of State Variable Models, Nonlinear Model and Phenomena, Lyapunov Stability, Phase Plane Analysis, Feedback Linearization, Sliding Mode and Backstepping Control, and Control Applications Prerequisite: Elec Eng 3320 or graduate standing.
ELEC ENG 5330 Fuzzy Logic Control (LEC 3.0)
A mathematical introduction to the analysis, synthesis, and design of control systems using fuzzy sets and fuzzy logic. A study of the fundamentals of fuzzy sets, operations on these sets, and their geometrical interpretations. Methodologies to design fuzzy models and feedback controllers for dynamical systems. Various applications and case studies. Prerequisite: Elec Eng 3320.

ELEC ENG 5340 Advanced PLC (LAB 1.0 and LEC 2.0)
Advanced programmable logic controller (PLC) programming, function block, structured text, function chart, sequencer. Factory communications, system simulation, human-machine interface (HMI) programming. Advanced PID control. Network security and reliability. Class-wide project. Prerequisite: Elec Eng 3340.

ELEC ENG 5345 PLC Motion Control (LEC 2.0 and LAB 1.0)
Factory automation motion control integrated with programmable logic controllers, servo control, variable-speed drive control, PackML state model, sizing motors and drives, machine safety, and experience with commercial hardware/software. Laboratory exercises on small-scale standard applications such as coordinated motion of multiple axes and camming. Prerequisite: Elec Eng 3340.

ELEC ENG 5350 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 4110 or Elec Eng 3320 or Elec Eng 3340 or graduate standing. (Co-listed with Chem Eng 5190).

ELEC ENG 5360 System Simulation And Identification (LEC 3.0)

ELEC ENG 5370 Introduction to Neural Networks and Applications (LEC 3.0)
The course provides an introduction to basic neural network architectures and their applications. Students learn to construct neural networks and train them to solve engineering problems, specifically pattern recognition and function approximation. Mathematical analysis of network architectures, training algorithms and practical applications of neural nets. Prerequisites: Graduate Standing. (Co-listed with Sys Eng 5212).

ELEC ENG 5380 Autonomous Mobile Robots (LEC 3.0)
This course will provide an introduction to mobile robots and current approaches to robot autonomy. Topics include mobile robot systems, modeling and control, sensors and estimation, localization and mapping, and motion planning. Prerequisites: Elec Eng 3320 or equivalent and Stat 3117 or equivalent.

ELEC ENG 5400 Digital Signal Processing II (LEC 3.0)
Spectral representations, sampling, quantization, z-transforms, digital filters and discrete transforms including the Fast Fourier transform. Prerequisites: Elec Eng 3410.

ELEC ENG 5420 Communications Systems II (LEC 3.0)
Random signals and their characterization; noise performance of amplitude, angle and pulse modulation systems; digital data transmission; use of coding for error control. Prerequisite: Elec Eng 3430.

ELEC ENG 5430 Wireless Networks (LEC 2.0 and LAB 1.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Elec Eng 3430 or Comp Eng 3150. (Co-listed with Comp Eng 5430 and Sys Eng 5323).

ELEC ENG 5440 Stochastic Signal Analysis I (LEC 3.0)
Introduction to the application of probabilistic models to typical electrical engineering problems. Topics include: methods for describing random voltages, random digital signals, correlation, linear mean-square estimation, linear transformation of random digital signals, and bit-error rate calculation for communication systems. Prerequisites: Math 3304 and Elec Eng 2120.

ELEC ENG 5450 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisites: At least one of the following: Elec Eng 3400, Elec Eng 3410, Elec Eng 3420, or prior exposure to Fourier Transforms and consent of the instructor. (Co-listed with Comp Eng 5450).

ELEC ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: At least one of the following: Elec Eng 3400, Elec Eng 3410, Elec Eng 3420, or prior exposure to Fourier Transforms and consent of the instructor. (Co-listed with Comp Eng 5460).

ELEC ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: At least one of the following: Elec Eng 3400, Elec Eng 3410, Elec Eng 3420, or prior exposure to Fourier Transforms and consent of the instructor. (Co-listed with Comp Eng 5460).

ELEC ENG 5470 Introduction to Neural Networks (LAB 1.0 and LEC 2.0)
Introduction to basic neural network architectures and their applications. Topics include: training algorithms and practical applications of neural nets. Prerequisites: Graduate Standing. (Co-listed with Sys Eng 5212).

ELEC ENG 5500 Electric Drive Systems (LEC 3.0)
Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Prerequisites: Elec Eng 3500 and Elec Eng 3320.

ELEC ENG 5510 Electric Drive Systems (LEC 3.0)
Course covers introductory topics related to understanding/analysis of electric, hybrid/plug-in hybrid power trains. Classification of hybrid drivetrains, driving cycles, energy storage systems, mechanical coupling devices, automotive applications of fuel cells and introduction to power converters. Prerequisite: Senior standing and Physics 2135.

ELEC ENG 5520 Power Electronics (LEC 3.0)
Analysis, design, modeling, and control of switching mode power converter circuits for ac-dc, dc-dc, dc-ac, and ac-ac conversion. Power semiconductor devices, passive components, and non-ideal sources and loads. Applications to industry, consumer goods, electric vehicles, and alternative energy. Prerequisite: Elec Eng 3100.
ELEC ENG 5521 Power Electronics Laboratory (LAB 2.0)
An introduction to power electronic circuits is presented. Students will construct several dc/dc, dc/ac and ac/dc converters. Various switching algorithms, including pulse width modulation, delta modulation, and hysteresis control will be developed to regulate and control the respective circuits. Prerequisite: Co-requisite Elec Eng 5520.

ELEC ENG 5540 Power Systems Engineering (LEC 3.0)
Network analysis applied to power systems; the load flow concept; economic operation of power systems; synchronous machine reactances and transient stability; symmetrical components and asymmetrical faults; protective relaying. Prerequisite: Elec Eng 3540.

ELEC ENG 5550 Electric Power Quality (LEC 3.0)
Definitions of power quality, types of power quality problems; sources of sags, transient overvoltages and harmonics; distribution overcurrent protection methods and their effect on power quality and reliability; harmonic analysis, principles of controlling harmonics, devices for filtering harmonics; power quality improvement methods. Prerequisite: Elec Eng 3500 or Elec Eng 3540.

ELEC ENG 5570 Extra High Voltage Engineering (LEC 2.0 and LAB 1.0)
The physical phenomena associated with high voltage dielectric breakdown are presented. Methods of generating and measuring high voltages and currents are explained. Demonstration of design and performance. Field trips to companies for laboratory testing of high voltage according to industry standards will serve as the lab part of the course. Prerequisite: Senior standing.

ELEC ENG 5600 Interference Control in Electronic Systems (LEC 3.0)
Principles of high frequency effects in PCBs and components, generation of unwanted radio-frequency (RF) signals by ICs, RF radiation mechanisms, shielding, and immunity against electrostatic discharge and RF signals. Prerequisites: Elec Eng 3400 and 3600.

ELEC ENG 5620 Signal Integrity in High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 3600 or Comp Eng 3150, and Senior standing. (Co-listed with Comp Eng 5620).

ELEC ENG 5630 Wave Propagation and Transmission Lines (LEC 3.0)
The materials in this course are intended to provide a) follow up electromagnetics related courses, b) electromagnetics related career including RF design and c) a graduate degree in electromagnetic related fields an in-depth understanding of the basics of wave propagation and transmission lines. Prerequisite: Elec Eng 3600.

ELEC ENG 5640 Antennas and Propagation (LEC 3.0)
Propagated fields of elemental dipole, directivity and gain, radiation resistance, the half-wave dipole, wire antennas, arrays, broadband antennas, aperture antennas, horn antennas, and antenna temperature. Prerequisite: Elec Eng 3600.

ELEC ENG 5650 Microwave and Millimeter Wave Engineering and Design (LEC 3.0)
Introduce senior and graduate students to the concept of microwave and millimeter wave engineering and passive component design such as waveguide, cavities, couplers, detectors, mixers, etc., including network theory and scattering matrix. Finally, their specific application in the design of various microwave circuits will be discussed. Prerequisites: Elec Eng 3600.

ELEC ENG 5660 Microwave Principles For Mixed-Signal Design (LEC 3.0)
Transmission lines; coupled transmission lines; microwave network analysis; impedance matching and tuning; design of microwave amplifiers and oscillators. Prerequisite: Elec Eng 3600.

ELEC ENG 5670 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 2135 or 2111. (Co-listed with Met Eng 5510).

ELEC ENG 5680 Introduction to Radar Systems (LEC 3.0)
The objective of this course is to introduce senior and graduate students to various radar system principles, designs and applications (e.g., pulse, frequency-modulated, chirp, Doppler radars). Topics related to signals, systems, noise, resolution, multiple sampling, different imaging modalities, and remote sensing will also be discussed. Prerequisites: Elec Eng 3400 and Elec Eng 3600.

ELEC ENG 5870 Mechatronics (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Aero Eng 5478 and Comp Eng 5820).

ELEC ENG 5880 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Sci 5403 and Comp Eng 5880).

ELEC ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
ELEC ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ELEC ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

ELEC ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

ELEC ENG 6099 Special Research And Thesis (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ELEC ENG 6140 Advanced RF & Time Domain Measurements (LAB 1.0 and LEC 2.0)
Advanced measurement techniques and instrumentation: Oscilloscopes (real time and sampling, A/D conversion errors, Probing, Jitter, Noise), Spectrum analyzer (concepts, applications), Network Analyzer (concepts, calibration), Impedance measurements. Lab experiments are a main part of this class. Prerequisite: ELEC 3600.

ELEC ENG 6150 Signal Integrity, High Speed Digital and RF Design Laboratory (LAB 3.0)
This is an RF and digital electronics design class. Student groups will design, manufacture and test RF and/or digital circuits during the class. Besides this project work the lecture part will emphasize circuit design, layout, parasitic effects and design for testability. Prerequisite: ELEC 3600.

ELEC ENG 6170 Electromagnetic Optics (LEC 3.0)
Propagation, control, and modulation of laser radiation. Topics include optical polarization, interference, layered and anisotropic media, electrooptic devices, acousto-optic devices, and nonlinear optics. Prerequisite: ELEC 3600 or PHYSICS 4211.

ELEC ENG 6240 Semiconductor Devices (LEC 3.0)
Properties of semiconductors, junctions and transistors; high frequency and high-current effects; recombination processes; field-effect devices, semiconductor devices and microcircuits. Prerequisite: Graduate status in ELEC ENG.

ELEC ENG 6260 Integrated Microsystems Engineering (LEC 1.5 and LAB 1.5)
Theory and practice of multidisciplinary integrated microsystem technologies. The topics include (1) micromachining technology, (2) review of mechanical, optical, microfluidic and (bio) chemical microsensors and microactuators, (3) hands-on lab session for design, fabrication, and characterization of microsystems. Prerequisite: Graduate standing.

ELEC ENG 6285 Advanced Topics in Optics and Devices (LEC 3.0)
Advanced topics of current interest in optics and devices. Selected topics include semiconductor materials, electronic devices, wave-based sensing, fiber optic systems, optoelectronics, and photonic engineering. Prerequisite: Graduate Standing.

ELEC ENG 6320 Nonlinear Control Systems (LEC 3.0)
Review of linear algebra, state variable formulations, solutions of state equations; controllability and observability; multivariable systems, matrix-fraction decompositions; design of state and output feedback controllers and observers; introduction to calculus of variations; linear quadratic regulators. Prerequisite: ELEC 3320.

ELEC ENG 6330 Robust Control Systems (LEC 3.0)
Performance and robustness of multivariable systems, linear fractional transformations, LQG/LTR advanced loop shaping, Youla parameterization, H(subscript infinity) optimal control, mixed H(subscript 2) and H(subscript infinity) control, controller synthesis for multiple objective optimal control, linear matrix inequalities theory and case studies. Prerequisite: ELEC 6300.

ELEC ENG 6335 Discrete-Time Neural Network Control (LEC 3.0)
Neural network topologies, universal function approximation property, background on Lyapunov stability & dynamic systems, control of a class of nonlinear systems using single and multilayer neural networks, feedback linearization, strict & nonstrict feedback systems, MIMO system, system identification, output feedback control, and hardware implementation. Prerequisites: ELEC 6300.
ELEC ENG 6340 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 6330, Sys Eng 6214, Comp Sci 6405 and Stat 6239).

ELEC ENG 6350 Neural Network Control of Nonlinear Continuous-time Systems (LEC 3.0)
Neural network topologies, universal function approximation property, background on Lyapunov stability and dynamic systems, control of a class of nonlinear systems and robot manipulators, feedback linearization, backstepping control, force control, neural observers, decentralized neural network control, neural network-based optimal control and applications. Prerequisite: Elec Eng 6300.

ELEC ENG 6360 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Mech Eng 6458, Aero Eng 6458 and Sys Eng 6215).

ELEC ENG 6390 Current Topics In Control Theory (LEC 3.0)
Topics of current interest in control theory literature. Offered as interest and demand warrant. Prerequisite: Consent of instructor.

ELEC ENG 6400 Advanced Digital Signal Processing (LEC 3.0)
Continuation of Elec Eng 5400. Effects of discrete noise sources in digital signal processing; discrete spectral analysis of random signals; discrete time signal detection, estimation, and filtering algorithms. Prerequisites: Elec Eng 5400 or Elec Eng 5420; Elec Eng 5440 or Stat 5643.

ELEC ENG 6410 Information Theory And Coding (LEC 3.0)
Principles of information generation, transmission and processing; quantitative measure of information, entropy source encoding; channels; mutual information; channel capacity; Shannon’s second theorem for discrete channels; introduction to coding for error controls; continuous information sources. Prerequisites: Elec Eng 5420 or Elec Eng 5440 or Stat 5643.

ELEC ENG 6420 Wireless Communications (LEC 3.0)
Introduction to the principle of wireless communication systems. Topics include: wireless channel characteristics, cellular concepts, channel capacity analysis, transceiver architectures, diversity techniques, multiple access schemes, and practical wireless systems. Prerequisite: Elec Eng 5420 or Elec Eng 5440 or equivalent.

ELEC ENG 6430 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Comp Eng 6420 and Sys Eng 6324).

ELEC ENG 6440 Stochastic Signal Analysis II (LEC 3.0)
Continuous-time stochastic signals, multi-dimensional signals, Wiener and matched filters, LMS equalization, non-linear systems with random inputs, spectral estimation and Markov chains. Prerequisites: Stat 5643 or Elec Eng 5440.

ELEC ENG 6450 Statistical Decision Theory (LEC 3.0)
Classical detection and estimation theory with applications; hypothesis testing, detection of known signals, matched filter receiver implementation, detection of signals with unknown parameters, sequential and nonparametric detection, detection of stochastic signals: Parameter estimation theory with application to modulation. Prerequisite: Elec Eng 5440.

ELEC ENG 6490 Advanced Topics In Communications (LEC 3.0)
Advanced topics of current interest in communications and signal processing such as spread spectrum, digital processing of communications, speech, and radar signals, applications of pattern recognition, communications networks, specialized coding topics. Repeatable for additional credit toward degree each time a different subtitle offered. Prerequisite: Elec Eng 5420 or 5440.

ELEC ENG 6500 Advanced Theory Of Electric Machines (LEC 3.0)
Energy conversion, reference frame theory, transient and dynamic modeling of ac machines, simulation of ac machines, parameter identification, model-order reduction, advanced topics depending on semester taught. Prerequisite: Elec Eng 3500.

ELEC ENG 6510 Advanced Electric Drive Vehicles (LEC 3.0)
This course covers an entire range of advanced topics related to the analysis, design, control, simulation, and optimization of electric, hybrid, and plug-in hybrid power-trains including the automotive applications of adjustable speed motor drives, energy storage systems, and advanced power converters. Prerequisite: Elec Eng 5500 or Elec Eng 5520.

ELEC ENG 6520 Advanced Power Electronics (LEC 3.0)
The purpose of this course is to cover selected areas of power electronics in greater depth. The topics covered include small signal analysis of power converters, voltage- and current- mode control, soft switching techniques, power factor correctors, multi-level converters, and PWM techniques. Prerequisite: Elec Eng 5520.

ELEC ENG 6525 Power Converter Modeling and Design (LEC 3.0)
Students will integrate electrical, magnetic, and thermal modeling techniques into a design process for switching power converters. A variety of applications will be considered, including dc-dc, ac-dc, and dc-ac converters over a wide power range. Prerequisite: Elec Eng 5520.
ELEC ENG 6530 Power System Reliability (LEC 3.0)

ELEC ENG 6540 Computer Methods In Power System Analysis (LEC 3.0)
Algorithms for large scale solution, non-linear systems, ordinary differential equations, eigenvalue problems, modal information, and optimization. Applications to power systems analysis. Prerequisite: Elec Eng 3540 or similar course.

ELEC ENG 6550 Power System Stability (LEC 3.0)
Synchronous machine theory and modeling; AC transmission; power system loads; excitation systems; control of active and reactive power; small signal stability; transient stability; voltage stability; mid-term and long-term stability; subsynchronous oscillations; stability improvement. Prerequisite: Elec Eng 3540 or similar course.

ELEC ENG 6560 Power System Protection (LEC 3.0)
Protective relaying incorporating electromechanical, solid state and computer relaying methods for high voltage transmission systems; instrument transformers; generator, transformer, line and bus protection; effect of system grounding; pilot protection and out of step relaying principles. Prerequisite: Elec Eng 5560 and 5540.

ELEC ENG 6565 Power System Protection II (LEC 3.0)
Protective relaying advanced topics focusing on methods for generation and high voltage transmission systems; generator, motor, transformer, transmission line and bus protection; pilot protection and out of step relaying principles; and NERCPRC (Protective Relay and Control) reliability standard requirements. Prerequisite: Elec Eng 6560.

ELEC ENG 6570 Surge Phenomena In Power Systems (LEC 3.0)
Study of transmission system insulation, distributed constant lines, terminations, multiple reflections, lighting performance, characteristics of sustained and switching overvoltages, surge voltages due to system faults, energizing and reclosing of circuit breakers. Methods of reducing overvoltages to acceptable levels. Prerequisite: Elec Eng 5540.

ELEC ENG 6580 Power System Operations (LEC 3.0)
Optimal dispatch operations, economic loading of power plants, mathematical optimization, locational marginal pricing, optimal power flow; effect of hydro and wind power plants on system economics; contingency analysis and system security, state estimation. Prerequisite: Elec Eng 5540.

ELEC ENG 6600 Advanced Electromagnetics I (LEC 3.0)

ELEC ENG 6610 Electromagnetic Waves II (LEC 3.0)
Circular waveguides, circular cavities, scattering by cylinders, apertures in cylinders, spherical cavities, orthogonality relationships, source of spherical waves, scattering by spheres, perturbational and variational techniques, microwave networks, probes in cavities, and aperture coupling to cavities. Prerequisite: Elec Eng 6600.

ELEC ENG 6630 Computational Electromagnetics (LEC 3.0)
Differential-equation based numerical methods-finite element, finite-difference, and finite-difference time-domain-for solving static and dynamic equations of electromagnetics. Applications considered are multi-conductor transmission lines, Maxwell's equations for radiation and scattering, and electric machinery. Prerequisite: Elec Eng 3600.

ELEC ENG 6640 Advanced Topics in Antenna Analysis and Design (LEC 3.0)
Introduction and discussion of advanced antenna design issues including: polarization, antenna synthesis and source modeling, broadband antennas, aperture and microstrip antenna simulation and design, and antenna pattern measurement techniques including near-field to far-field transformation. Prerequisite: Elec Eng 5640 or equivalent.

ELEC ENG 6810 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Civ Eng 6940, Env Eng 6940, Comp Eng 6810).

Engineering Management

Engineering management is the art and science of planning, organizing, allocating resources, and directing and controlling engineering activities. The field of engineering management has become recognized as a professional discipline with a critical role in the modern society. Graduates develop innovative and integrated solutions to problems that arise at the convergence of engineering and business.

Graduate programs leading to the M.S. and Ph.D. degrees are offered in engineering management. The discipline involves designing, operating and continuously improving systems by integrating engineering and management knowledge. This integration starts with an awareness of customer needs and market conditions. It then seeks to optimize the use of people, equipment, money and information to achieve desired objectives. The discipline also seeks to develop students into individuals with leadership potential who can achieve high quality results in an ethical manner and with respect for the environment. The major goal of entering students is to enhance the usefulness of their previously acquired technical background. This is accomplished through coursework and research designed to expand knowledge of the management and operation of organizations in today’s competitive environment. This broader understanding is further enhanced with the opportunity to acquire specialized knowledge in many areas that exist at the interface between the classical engineering and management disciplines.

The engineering management department has produced over 6,200 graduates at the B.S., M.S., and Ph.D. level since its inception in 1968. The engineering management and systems engineering department is one of only a few institutions in the world that offers B.S., M.S., and
Ph.D. degrees in engineering management. The B.S. in engineering management is fully ABET accredited and the M.S. in engineering management has been certified by the American Society of Engineering Management. Graduates have been successful in working at the intersection of technology, engineering, and management to produce outstanding results.

Requirements for Completion

Students following their approved program of study will be assured of graduation upon maintenance of good academic standing. A minimum of 30 units of course work from the areas listed below must be completed with a cumulative grade point average of 3.00 (on a 4.00 scale) and a C grade or better in each course. Accumulation of more than 10 hours of “C” or “F” results in dismissal from the program. A maximum of nine hours of course work for M.S. degrees may be transferred from universities outside the University of Missouri System. Such credits for transfer must have been registered as graduate courses when they were taken. All courses applied to the degree require prior written advisor approval recorded on the study plan in the student’s file. It is the responsibility of each student to apply for graduation with the Missouri S&T registrar’s office during his or her last semester. Assistance on this final step can be provided by the engineering management and systems engineering department.

Departmental Laboratories

The department has several “hands on” laboratories that have both a research and teaching focus. Each of our labs is directed by faculty members that work closely with students to enhance their learning experience. The description below gives a brief introduction that will help you understand the purpose of each lab.

Smart Engineering Systems Lab (SESL)

The department established the Smart Engineering Systems Lab (SESL) to develop approaches in building complex systems that can adapt in the environments in which they operate. The term “smart” in the context indicates physical systems that can interact with their environment and adapt to changes both in space and time by their ability to manipulate the environment through self-awareness and perceived models of the world based on both quantitative and qualitative information. The emerging fields of artificial neural networks, fuzzy logic, evolutionary programming, chaos, wavelets, fractals, complex systems, and virtual reality provide essential tools for designing such systems.

The focus of the SESL is in developing smart engineering architectures that integrate and/or enhance the current and future technologies necessary for developing smart engineering systems while illustrating the real life applications of these architectures. The smart engineering systems design and operations cut across a diversity of disciplines, namely manufacturing, electrical, computer, and mechanical, biomedical, civil and other related fields such as applied mathematics, cognitive sciences, biology and medicine. Current research is on developing new models and tools for building complex systems architectures that are intelligent, modular, and adaptive.

Design Engineering Center (DEC)

The center is one of the outreach arms of the engineering management and systems engineering department. The focus is on research and service activities in support of the educational goals of the department through externally funded projects. Current areas of research include total quality management, concurrent engineering, Taguchi Methods®, quality engineering, the product development process, and design optimization.

Laboratory for Investment and Financial Engineering

The goal of the Laboratory for Investment and Financial Engineering is to develop techniques and computational tools for increasing investment and capital return while managing and reducing financial risk. This involves research into stocks and financial derivatives (options, futures, forwards, and swaps), financial risk and uncertainty, financial forecasting, market efficiency and behavioral finance, fundamental and technical analysis, equity valuation, real options, and engineering economics. In cooperation with the Smart Engineering Systems Lab, research in the lab may also involve the use of smart and intelligent systems, such as neural networks, fuzzy logic, genetic and evolutionary algorithms, expert systems, intelligent agents, artificial life, chaos and fractals, and dynamic and complex systems. Data mining, principal component analysis and various other forms of applied statistics are also used. Members of the lab have access to financial data and various financial modeling software packages.

Additional Information

For additional information you can call our main department phone at 573-341-4572 or you can visit our web page at http://emse.mst.edu/.

Master of Science Admission Standards

- B.S. in engineering or a physical science
- Undergraduate courses: Calculus Series (I, II, III), Differential Equations, Statistics, Physics (I, II) or Chemistry, Engineering Economy
- GPA: Regular status: 3.0 cumulative
- Graduate Record Exam (GRE): All students must submit current GRE scores. Students successfully completing one of the department’s graduate certificates with a grade of B or better in all the certificate courses can be admitted without the GRE.
- Regular status: V+Q≥ 1100, A≥ 4.0 (former scoring) or V≥ 155, Q≥ 148, A≥ 4.0
- Condition: Student must earn B or better in each of first four graduate courses (5000 or 6000 level) classes after conditional admission.
- TOEFL: All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study.
- Regular status: 580/237/92
- Statement of Purpose: All applicants must submit a statement of purpose.
- Financial Support: Students in conditional status are not eligible for financial support from the department.
- Three reference letters

The M.S. degree program is offered on the Rolla campus and several locations including the Missouri S&T Global - St. Louis, Fort Leonard Wood (restricted to Engineer Captain’s Career Course), and by distance education throughout the United States and selected international locations. Distance course lectures are archived upon completion of the lecture and all lectures are available to students through streaming video during the semester for review. These courses can be reached from anywhere at any time. It is feasible to obtain a Missouri S&T non-thesis M.S. degree regardless of your location.
The M.S. non-thesis program requires completion of at least 10 three-credit hour courses approved by the academic advisor. The M.S. with thesis option requires thirty credit hours including the thesis. All students are required to take the following:

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5111</td>
<td>Management for Engineers and Scientists</td>
</tr>
<tr>
<td>ENG MGT 5320</td>
<td>Project Management</td>
</tr>
<tr>
<td>ENG MGT 5412</td>
<td>Operations Management Science</td>
</tr>
<tr>
<td>ENG MGT 6211</td>
<td>Advanced Financial Management</td>
</tr>
</tbody>
</table>

Students are then encouraged to identify an emphasis area depending on their interests and to choose available courses from the selected area. However, courses can be chosen from more than one emphasis area. Students have the option to take up to two out-of-department elective courses.

Students must submit a typed Form I to the EMSE graduate office by the beginning of the semester of their 15th credit hour. Links to forms are available at: http://emgt.mst.edu/currentstudents/formsdeadlines.html. Thesis students cannot register for Graduate Research (ENG MGT 6099) until their Form I is on file. If students vary from Form I, they must file a Form I-A. Non-thesis students must take three 6000-level courses. Thesis students must take two 6000-level courses (in addition to ENG MGT 6099). Students must meet all requirements for graduation as specified in the Graduate Catalog for engineering management. A graduate student already holding or completing a master’s degree may obtain a second M.S. in engineering management by completing at least an additional 24 credit hours of work.

Some recent master thesis titles include:

- Impacting Co-Worker Trust Toward Persons with Disabilities
- Intelligent Technical Analysis Using Neural Networks and Fuzzy Logic
- Applying the Six Sigma Methodology to Improve the Admissions Process at Missouri S&T
- Strategic Inventory Allocation for Vehicle Rental Agencies
- Design and Development of an Interactive Web-Integrated Flexible Manufacturing Cell Control System
- Investigations in the Design of Products and Factories for End-of-Life Disassembly
- Warranty Cost Prediction Using Mahalanobis Distance
- Automotive Braking System Simulation and Optimization

Doctor of Philosophy Admission Standards

- B.S. in engineering, or a physical science
- Undergraduate courses: Calculus Series (I, II, III), Differential Equations, Statistics, Physics (I, II) or Chemistry, Engineering Economy
- GPA: M.S. GPA = 3.5
- Graduate Record Exam (GRE): All students must submit current GRE scores. V+Q+3 = 1100, A2 = 4.0 (former scoring) or V = 155, Q = 148, A2 = 4.0
- TOEFL: All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study.
- Regular status: 580/237/92
- Statement of Purpose: All applicants must submit a statement of purpose.
- Three reference letters

A candidate for the Ph.D. in engineering management must complete the equivalent of at least three years of full-time work beyond the bachelor’s degree. The content of all Ph.D. programs is individually structured by the student in consultation with and approved by the student’s advisory committee. All requirements for the degree must normally be completed within an eight-year period. Each candidate must normally spend at least two sequential semesters in full-time residence at Missouri S&T. The department does have special conditions for satisfying residency and meeting research requirements for full time working engineers that meet all admission standards. At appropriate points in their program, Ph.D. students must pass both a qualifying examination and a comprehensive examination. Ph.D. students must conduct original research under the supervision of a doctoral advisor, and write and successfully defend the dissertation. Some recent Ph.D. dissertation titles include:

- Development and Analysis of Intelligent Computation Based Stock Forecasting and Trading
- An Analysis of Intermodal Transportation Mode Selection Considering Stochastic System Parameters
- Surviving the Change to a Competitive Market Place in the Small Local Exchange Carrier Telecommunications Industry
- The Relationship Between R&D Spending and Shareholder Returns in High Technology Industries
- Global Stock Index Forecasting Using Multiple Generalized Regression Neural Networks with a Gating Network
- The Development of Efficient Delivery Routes in Extremely Short Product Life-Cycle Environments
- Quantification of Attribute Driven Cannibalization Induced by New Product Introduction
- Cost Allocation Using Intelligent Agents for New Transmission Investment Under Electricity Deregulation

Residency Requirements

Students must normally spend at least two sequential semesters in full-time residence at Missouri S&T and conduct original research under the supervision of a doctoral advisor. For distance PhD students, alternative methods for meeting this residency requirement are allowed and are up to the discretion of the student’s doctoral advisor, but the qualifying examination, comprehensive examination and dissertation defense must be completed on campus. The student has the option of conducting research that is beneficial to the student’s professional work.

Graduate Certificate Programs

This program is designed to appeal to working professionals. Certificate courses taken for graduate credit can be counted in the M.S. degree once accepted into the M.S. degree. If the four-course sequence is completed with a grade of "B" or better in each of the courses taken, they can apply to the M.S. program in engineering management. The certificate program may be followed by six additional 3 credit courses to complete the M.S. degree. The certificate program is open to all persons holding a B.S., M.S., or Ph.D. degree in engineering or a physical science and who have a minimum of 12-months of professional employment experience or are currently accepted into a graduate degree program at Missouri S&T.
Admission Standards

- B.S. in engineering or a physical science
- Undergraduate courses: Calculus Series (I, II, III), Differential Equations, Statistics, Physics or Chemistry, Engineering Economy
- GPA: Regular status: 2.75 cumulative
- TOEFL: All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study
- Regular status: 580/237/92

Once admitted to the program, the student must take the four designated courses as given below. In order to receive a graduate certificate, the student must have an average cumulative grade point of 3.0 or better in the certificate courses.

Engineering Management

The engineering management certificate program aims to provide individuals with a core body of engineering management knowledge that includes key technical management concepts, processes, and methods for individuals preparing to transition from individual technical contributors to managers of complex technological projects.

The certificate program coverage includes planning, organizing, allocating resources, and directing and controlling technical projects and people in technical jobs. Students will be responsible for prerequisite knowledge as determined by course instructors.

- ENG MGT 5111 Management for Engineers and Scientists
- ENG MGT 5320 Project Management
- ENG MGT 5412 Operations Management Science
- ENG MGT 6211 Advanced Financial Management

Financial Engineering

The financial engineering certificate program aims to equip students with a set of tools that will help them meet the standards of the Global Association of Risk Professionals (GARP) and the Professional Risk Managers’ International Association (PRMIA) certifications. While being separate organizations, both GARP and PRMIA have become the standards in financial engineering and financial risk management, due to their similar knowledge of requirements for certification.

Certificate topics will help prepare students to take the GARP Financial Risk Managers (FRM) exam and/or the PRMIA Professional Risk Managers (PRM) exam. Both exams are set around topics in financial theory, financial markets and financial instruments, market risk measures, quantitative analysis, mathematical foundations of risk management, financial derivatives for risk reduction, risk management best practices, operational risk, market risk, credit risk, case studies, ethics, and governance. The certificate courses will provide a strong foundation in these areas.

Students will be responsible for prerequisite knowledge as determined by course instructors and are expected to have taken ENG MGT 5210 Economic Decision Analysis, ENG MGT 5202 Financial Decision Analysis, SYS ENG 6103 Systems Life Cycle Costing, or an equivalent introduction to finance and/or engineering economics course, as a prerequisite to the certificate program.

- ENG MGT 6212 Investment
- ENG MGT 6213 Financial Engineering
- ENG MGT 6214 Financial Engineering II
- ENG MGT 6215 Financial Risk Management

Human Systems Integration (HSI)

This certificate will prepare students to have a significant impact on complex tasks involving humans. In our increased threat environment, the consequences of HSI failures will become even more critical. We cannot afford to have a token human factors specialist added to teams addressing complex military issues. A more effective comprehensive approach is to broadly educate military personnel and defense contractors and others in HSI. An increased understanding of human performance will allow for improved performance across the areas of interest which will be gained from this certificate and will result in improved survivability in response to disasters and catastrophes.

The human systems integration certificate program consists of four of five courses. Students will be responsible for prerequisite knowledge as determined by course instructors. With the prior approval of the department, appropriate courses may be substituted for a certificate course if that course is not available.

- ENG MGT 4330 Human Factors
- ENG MGT 6001 Special Topics
- IS&T 5885 Human-Computer Interaction
- ENG MGT 5316 Safety Engineering Management
- IS&T 5887 Human-Computer Interaction Evaluation

Lean Six Sigma

This certificate program offers an opportunity for professionals to expand their knowledge in Lean Six Sigma through a flexible graduate education program. The certificate provides a solid foundation of Lean Six Sigma methods and practices that can be immediately applied to process improvement projects in the workplace. The certificate consists of four courses designed to prepare professionals for variation and waste reduction projects and provide a sound statistical background.

The Lean Six Sigma certificate program consists of four of the five courses below, which are delivered as part of our regular master’s degree programs in engineering management. Students will be responsible for prerequisite knowledge determined by course instructors.

- ENG MGT 5710 Six Sigma
- ENG MGT 6710 Design for Six Sigma
- ENG MGT 6611 Lean Systems
- STAT 5643 Probability And Statistics
- STAT 5353 Statistical Data Analysis

Military Construction Management

(Certificate restricted to the Engineer Captain’s Career Course at Fort Leonard Wood.)

- ENG MGT 5110 Managerial Decision Making
- ENG MGT 5111 Management for Engineers and Scientists
- CIV ENG 5445 Construction Methods
- CIV ENG 5360 Water Resources And Wastewater Engineering
- or CIV ENG 6443 Contract Formulation And Project Delivery Systems

Project Engineering & Construction Management

Although available to all interested students, the project engineering and construction management graduate certificate program was created to specifically meet the needs of visiting faculty/graduate students from Algeria as part of the collaborative program “Development of Engineering Management Curriculum and Distance-Learning Methodologies in

Graduate Catalog 2018-2019
Algeria: An Educational Partnership,” sponsored by the United States Department of State, Bureau of Educational and Cultural Affairs, and the North African Partnerships Program.

The objective of this collaborative program is to provide educational and technical assistance to Algeria in order for that country to develop new graduate programs in engineering management and construction engineering and modern teaching methodologies, including Internet and distance learning. The cooperative framework provides participants with engineering management skills and expertise to prepare them to be leaders at their home institutions.

Choose two:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 5445</td>
<td>Construction Methods</td>
</tr>
<tr>
<td>CIV ENG 5449</td>
<td>Engineering and Construction Contract Specifications</td>
</tr>
<tr>
<td>CIV ENG 6442</td>
<td>Construction Administration, Planning and Control</td>
</tr>
<tr>
<td>CIV ENG 6445</td>
<td>Advanced Construction Engineering</td>
</tr>
</tbody>
</table>

Project Management

The project management certificate program aims to equip students with a set of tools that will allow them to achieve Project Management Institute (PMI) standards in the project management area, to successfully manage projects and human resources, and to analyze, evaluate, and improve systems.

The certificate program will consist of four required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5210</td>
<td>Economic Decision Analysis</td>
</tr>
<tr>
<td>ENG MGT 5320</td>
<td>Project Management</td>
</tr>
<tr>
<td>ENG MGT 6322</td>
<td>Case Studies in Project Management</td>
</tr>
<tr>
<td>ENG MGT 6323</td>
<td>Global Project Management</td>
</tr>
</tbody>
</table>

Safety Engineering

Safe engineering systems protect the health of workers and the public, preserve the environment, and improve the profitability of industrial facilities. The graduate certificate in safety engineering is a program of study that focuses on methods to reduce risks, prevent accidents, and/or mitigate the consequences to acceptable levels. Risk reduction is accomplished by identifying hazards with unacceptable consequences and then reducing the probability of occurrence (accident reduction) and/or reducing the consequences to acceptable levels (mitigation). The program of study consists of four courses: two required core courses and two courses selected from a specialization track.

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 4312/5312</td>
<td>Risk Assessment and Reduction</td>
</tr>
<tr>
<td>CHEM ENG 5130</td>
<td>Safety Engineering Management</td>
</tr>
</tbody>
</table>

Available Specialization Tracks:

Safety Engineering Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5713</td>
<td>Management And Methods in Reliability</td>
</tr>
<tr>
<td>SYS ENG 6110</td>
<td>Risk Modeling and Optimization under Uncertainty</td>
</tr>
</tbody>
</table>

Human Factors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5330</td>
<td>Advanced Human Factors</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 4700</td>
<td>Industrial Psychology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>John F Bade</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>PHD University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Robert T Berry</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>PHD University of Kansas</td>
<td></td>
</tr>
<tr>
<td>Steven M. Coms</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>PHD Iowa State University</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Anne Fargher Cudney</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>PHD Missouri S&T</td>
<td></td>
</tr>
<tr>
<td>Cihan H Dagli</td>
<td>Professor</td>
</tr>
<tr>
<td>PHD University of Birmingham, UK</td>
<td></td>
</tr>
<tr>
<td>David Enke</td>
<td>Professor</td>
</tr>
<tr>
<td>PHD University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Abhijit Gosavi</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>PHD University of South Florida</td>
<td></td>
</tr>
<tr>
<td>Kellie Sue Grasman</td>
<td>Lecturer</td>
</tr>
<tr>
<td>MBA University of Michigan Ann Arbor</td>
<td></td>
</tr>
<tr>
<td>Sheryl Hodges</td>
<td>Assistant Teaching Professor</td>
</tr>
<tr>
<td>DEng Louisiana Tech University</td>
<td></td>
</tr>
<tr>
<td>Suzanna K. Long</td>
<td>Professor</td>
</tr>
<tr>
<td>PHD University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Ruwen Qin</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>PHD Pennsylvania State University</td>
<td></td>
</tr>
<tr>
<td>Stephen A Raper</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>PHD University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Joan Barker Schuman</td>
<td>Associate Teaching Professor</td>
</tr>
<tr>
<td>PHD University of Southern Mississippi</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Catalog 2018-2019
ENG MGT 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENG MGT 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env Eng 5070, Comp Eng 5070, Elec Eng 5070, Civ Eng 5070).

ENG MGT 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ENG MGT 5110 Managerial Decision Making (LEC 3.0)
Individual and group decision making processes and principles for engineers and technical managers with emphasis on the limitations of human rationality and the roles of social influence and organizational contexts; principles and skills of negotiation. Prerequisite: Senior or graduate standing.

ENG MGT 5111 Management for Engineers and Scientists (LEC 3.0)
The transition of the engineer or scientist to manager; study of management roles and theory, organizational systems and behavior, managing and motivating technical personnel, leadership, communication, processes, and customer focus. Prerequisite: Graduate standing.

ENG MGT 5210 Economic Decision Analysis (LEC 3.0)
Comprehensive treatment of engineering economy including effects of taxation and inflation; sensitivity analysis; decisions with risk and uncertainty; decision trees and expected value, normally includes solutions on personal computer and student problem report. Prerequisite: Graduate students without previous course in engineering economy because of partial overlap.

ENG MGT 5212 Intelligent Investing (LEC 3.0)
An overview of the essential elements of intelligent investing. Coverage includes stocks, bonds, exchange traded funds, mutual funds, stock screening, fundamental and technical analysis, valuation, market and industry analysis, macroeconomic indicators, investing strategies, and portfolio construction. Prerequisites: Senior or Graduate Standing.

ENG MGT 5312 Advanced Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing.

ENG MGT 5313 Packaging Management (LEC 3.0)
Provides a comprehensive background in the field of packaging and its place in productive systems. Emphasizes the design or economics of the system. Analyzes the management of the packaging function and interrelationship with other functions of an enterprise.

ENG MGT 5315 Interdisciplinary Problems In Manufacturing Automation (LEC 1.0 and LAB 2.0)
Introduction to basic techniques and skills for concurrent engineering, manufacturing strategies, product design, process planning, manufacturing data management and communication are the topics covered. Students experiment the design process through team projects and structured manufacturing laboratory work. (Co-listed with Mech Eng 5644, Chem Eng 4310).

ENG MGT 5316 Safety Engineering Management (LEC 3.0)
This course is an introduction to the principles of safety engineering applied to industrial situations. Job safety analysis, reduction of accident rates, protective equipment, safety rules and regulations, environmental hazards, health hazards, and ergonomic hazards are covered. Prerequisite: Senior or graduate standing.

ENG MGT 5320 Project Management (LEC 3.0)
Organization structure and staffing; motivation, authority and influence; conflict management; project planning; network systems; pricing, estimating, and cost control; proposal preparation; project information systems; international project management. Prerequisite: Graduate Standing.

ENG MGT 5330 Advanced Human Factors (LEC 3.0)
An in-depth review of the foundations of human factors, focusing on the interaction of people with various forms of technology in a variety of environments. Topics include research and evaluation methods, displays (e.g., visual, auditory), attention and information processing, decision making, motor skills, anthropometry, and biomechanics. (Co-listed with PSYCH 5710).

ENG MGT 5410 Industrial System Simulation (LEC 3.0)
Simulation modeling of manufacturing and service operations through the use of computer software for operational analysis and decision making. Prerequisite: Stat 3115 or Stat 3117.

ENG MGT 5411 Engineering Design Optimization (LEC 3.0)
This course is an introduction to the theory and practice of optimal design as an element of the engineering design process. The use of optimization as a tool in the various stages of product realization and management of engineering and manufacturing activities is stressed. The course stresses the application of nonlinear programming methods. Prerequisite: Math 3304 or 3329.
ENG MGT 5412 Operations Management Science (LEC 3.0)
Application of management science with an emphasis on supporting managerial decision-making. Design and operations of systems are modeled and analyzed using quantitative and qualitative techniques implemented using modern technology. Specific approaches include mathematical modeling and optimization, probabilistic/stochastic analysis, and simulation. Prerequisites: Graduate standing.

ENG MGT 5414 Introduction To Operations Research (LEC 3.0)
Mathematical methods for modeling and analyzing industrial systems, topics including linear programming, transportation models, and network models. Prerequisite: Stat 3115 or Stat 3117.

ENG MGT 5510 Industrial Marketing Systems Analysis (LEC 3.0)
An analysis of the factors of engineered products, customers, communication, promotion, personal selling, persuasion and management within a dynamic industrial sales environment. Prerequisites: Senior or graduate standing.

ENG MGT 5511 Technical Entrepreneurship (LEC 3.0)
Student teams develop a complete business plan for a company to develop, manufacture and distribute real technical/product service. Lectures & business fundamentals, patents, market/ technical forecasting, legal and tax aspects, venture capital, etc., by instructor and successful technical entrepreneurs. Prerequisite: Senior or graduate standing.

ENG MGT 5512 Legal Environment (LEC 3.0)
Study of the effect of the legal environment on the decisions which the engineering manager must make. The course investigates the social forces that produced this environment and the responsibilities incumbent upon the engineer. Prerequisites: Senior or graduate standing.

ENG MGT 5513 Energy and Sustainability Management Engineering (LEC 3.0)
This course explores strategic processes and partnership required for the management of sustainable energy infrastructures and innovation in energy systems. Topics relate to renewable energy, energy efficiencies, energy conversion, energy technology, and economic efficiency of energy sources. Prerequisite: Senior or Graduate Standing.

ENG MGT 5514 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Chem Eng 4300).

ENG MGT 5515 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of product realization activities covering important aspects of a product life cycle such as “customer” needs analysis, concept generation, concept selection, product modeling, process development, and end of product life options. Prerequisites: Junior or above standing. (Co-listed with MECH ENG 5757).

ENG MGT 5516 Integrated Product Development (LEC 1.0 and LAB 2.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 5515 or Mech Eng 5757 or Mech Eng 3653 or Mech Eng 5708. (Co-listed with Mech Eng 5758).

ENG MGT 5610 Advanced Facilities Planning & Design (LAB 1.0 and LEC 2.0)
An integrated approach to the planning and design of facilities; examination of advanced techniques and tools for facility location, space allocation, facility layout materials handling system design, work place design; e.g. mathematical programming and simulation modeling. Prerequisites: Graduate standing.

ENG MGT 5611 Value Analysis (LEC 3.0)
An organized effort at analyzing the function of goods or services for the purpose of achieving the basic functions at the lowest overall cost, consistent with achieving the essential characteristics. Covers the basic philosophy, function analysis, FAST diagramming, creativity techniques, evaluation of alternatives, criteria analysis, and value stream mapping. Prerequisite: Senior or graduate standing.

ENG MGT 5612 Production Planning And Scheduling (LEC 3.0)
Introduction to basic techniques of scheduling, manufacturing planning and control, just-in-time systems, capacity management, master production scheduling, single machine processing, constructive Algorithms for flow-shops, scheduling heuristics, intelligent scheduling systems are the topics covered. Prerequisite: Eng Mgt 3310.

ENG MGT 5613 Six Sigma (LEC 3.0)
This course is an introduction to the principles of implementing the Six Sigma philosophy and methodology. Topics include tools and methods including process flow diagrams, cause and effect diagrams, failure mode and effects analysis, gage R&R, capability studies, design of experiments and strategy for organizing six sigma techniques in industry. Prerequisite: Graduate standing.

ENG MGT 5614 Supply Chain Management Systems (LEC 3.0)
This course focuses on the development of logistics management skills related to global supply chains. Particular attention will be given to supply chain systems management as part of the firm's strategic positioning, cultural interactions and transportation sourcing decisions. Prerequisite: Stat 3115 or Stat 3117.

ENG MGT 5615 Production Planning And Scheduling (LEC 3.0)
This course is an introduction to the principles of implementing the Six Sigma philosophy and methodology. Topics include tools and methods including process flow diagrams, cause and effect diagrams, failure mode and effects analysis, gage R&R, capability studies, design of experiments and strategy for organizing six sigma techniques in industry. Prerequisite: Graduate standing.

ENG MGT 5710 Total Quality Management (LEC 3.0)
Examination of various quality assurance concepts and their integration into a comprehensive quality management system: statistical techniques, FMEA's, design reviews, reliability, vendor qualification, quality audits, customer relations, information systems, organizational relationships, motivation. Prerequisite: Senior or graduate standing.
ENG MGT 5712 Introduction To Quality Engineering (LEC 3.0)
This course is an introduction to the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in-depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Other contributions in the field are also considered. Prerequisite: Eng Mgt 5711.

ENG MGT 5713 Management And Methods In Reliability (LEC 3.0)
Study of basic concepts in reliability as they apply to the efficient operation of industrial systems. Prerequisite: Stat 3115, 3117, or 5643.

ENG MGT 5714 Statistical Process Control (LEC 3.0)
The theoretical basis of statistical process control procedures is studied. Quantitative aspects of SPC implementation are introduced in context along with a review of Deming's principles of quality improvement and a brief introduction to sampling inspection. Prerequisite: Stat 3115, or Stat 3117.

ENG MGT 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENG MGT 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.

ENG MGT 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ENG MGT 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

ENG MGT 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ENG MGT 6101 Advanced Research Methodology In Engineering Management (LEC 3.0)
An advanced study of research methodology techniques and theories in conducting research activities. The research problems, hypotheses, literature search, data requirements and analyses, interpretation and presentation of results are examined. Prerequisite: Graduate standing.

ENG MGT 6110 Case Studies In General Management (LEC 3.0)
A quantitative study of engineering management problems related to the functioning of the industrial enterprise through case studies. Prerequisite: Preceded or accompanied by an Eng Mgt 6000 level course.

ENG MGT 6112 Leadership for Engineers (LEC 3.0)
Provides engineers with a background in leadership concepts and principles; enables students to develop practical skills in leading and managing through multiple personal assessment. Topics include leadership styles, managing commitments, conflict resolution, change management, emotional intelligence, team dynamics and business ethics. Prerequisite: Eng Mgt 5110 or Psych 4602. (Co-listed with Psych 6611).

ENG MGT 6113 Advanced Personnel Management (LEC 3.0)
Current practices of procurement and maintenance of technical personnel in research, development, and design organizations. Adaptation of such personnel to the technological enterprise; current practices in personnel administration, labor management relationships.

ENG MGT 6121 Advanced Financial Management (LEC 3.0)
Principles of financial organization and management in the technological enterprise; demands for funds; internal and external supply of funds; budgetary control; reserve and dividends policy. Emphasizes systems approach and problems of engineering design and automation as they influence financial decisions. Prerequisite: Eng Mgt 1210 or 5210.

ENG MGT 6122 Investment (LEC 3.0)
An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6612).

ENG MGT 6123 Financial Engineering (LEC 3.0)
An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6613).
ENG MGT 6214 Financial Engineering II (LEC 3.0)
This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito's lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and value-at-risk. Prerequisite: Eng Mgt 6213/Sys Eng 6613. (Co-listed with Sys Eng 6614).

ENG MGT 6215 Financial Risk Management (LEC 3.0)
Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting. Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6615).

ENG MGT 6310 Human Systems Integration (LEC 3.0)
This course considers Human Systems Integration (HSI) in a variety of applications including systems acquisition and training, HSI tools, techniques, and procedures. Prerequisite: Eng Mgt 4330 or Psych 4710.

ENG MGT 6322 Case Studies in Project Management (LEC 3.0)
Includes the main components of the Project Management Institute (PMI) Body of Knowledge; case studies in project management including project implementation, organizational structures, project estimating, project scheduling, project risk management, and conflict management. Prerequisite: Eng Mgt 5320 or equivalent.

ENG MGT 6323 Global Project Management (LEC 3.0)
In depth and advanced topics in project management including project management methodologies, strategic planning for excellence, project portfolio management, integrated processes, culture, and behavioral excellence; normally includes a hands-on group project. Prerequisite: Eng Mgt 5320 or equivalent.

ENG MGT 6410 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Aero Eng 6447 and Comp Sci 6202).

ENG MGT 6411 Advanced Topics in Simulation Modeling (LEC 3.0)
Design and analysis of distributed systems using discrete-event simulations and synchronization of distributed models. Design and implementation of finite state automata and simulation models as control execution systems. Functioning of real-time, agent-based, and multipass simulations. Prerequisite: Eng Mgt 5410 or Graduate standing.

ENG MGT 6412 Mathematical Programming (LEC 3.0)
An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 3113 or equivalent and (Eng Mgt 5414 or Math 3103 or Math 3108) (Co-listed with Math 6665).

ENG MGT 6413 Advanced Engineering Management Science (LEC 3.0)
Solving of managerial problems utilizing management science techniques. Problems are analyzed, modeled and solved using such techniques as linear, goal, dynamic, programming, simulation, statistical analysis or other non-linear methods. Solutions will involve the use of personal or mainframe computers. A study of the current literature in management science will also be conducted. Prerequisite: Eng Mgt 5414 or graduate standing.

ENG MGT 6415 Risk Modeling and Optimization under Uncertainty (LEC 3.0)
Risk analysis of products and systems will be explored. Traditional probabilistic risk assessment techniques will be covered along with recent approaches (i.e., stochastic programming, robust optimization, and dynamic programming) that use historical data based risk models to realize optimal risk management. Prerequisites: Graduate standing. (Co-listed with Sys Eng 6110).

ENG MGT 6510 Technological Innovation Management (LEC 3.0)
Technological innovation is new technology creating new products and services. This course studies the issues of managing technological innovation under four topics: 1) Innovation; 2) New Ventures; 3) Corporate Research & 4) R&D Infrastructure. Prerequisite: Eng Mgt 5111.

ENG MGT 6511 Advanced Marketing Management (LEC 3.0)
Study of marketing decision areas in the technically based firm, including product selection and development, marketing research, market development, distribution, advertising, and promotion. Pricing policies including legal aspects and problems in selecting, training and controlling field sales force. Examination of interaction within consumer and industrial marketing environments. Prerequisites: Eng Mgt 5111, Econ 1200.

ENG MGT 6610 Advanced Production Management (LEC 3.0)
Examination of responsibilities of production manager in the technological enterprise for providing finished goods to meet the quality, price, quantity and specification needs of the market place. Study of functions of production manager. Quantitative approach to decision making in production management. Prerequisites: Senior or graduate standing and advanced mathematical modelling competence.

ENG MGT 6611 Lean Systems (LEC 3.0)
Lean Systems embodies a total enterprise philosophy built on removing waste. Concepts such as flow, just-in-time, lead times, inventory turns, standardized work, pull system, value streams, quick changeover, workplace organization, and visual controls are discussed to improve system performance. Prerequisite: Graduate standing.

ENG MGT 6710 Design for Six Sigma (LEC 3.0)
Principles of Design for Six Sigma for product development. Topics include tools and methods including quality function deployment, concept generation, concept selection, product modeling, process development, DFV strategies, failure mode and effects analysis, design of experiments, TRIZ, and robust design. Prerequisite: Eng Mgt 5710.
English

The department of English and technical communication has entered into a cooperative agreement with the department of English of the University of Missouri—St. Louis to offer the master of arts in English. A maximum of 12 graduate semester hours may be taken at Missouri S&T (with no more than 9 credit hours at the 300 level).

The program provides an avenue for place-bound secondary teachers, traditional and non-traditional Missouri S&T students, and other qualified residents of South Central Missouri to pursue advanced work whether for career advancement or for personal and lifelong learning and enrichment. The program is also designed to help a select group of incoming freshman to complete their bachelor’s and master’s degrees in five years; for more information, contact the Honor Academy (master student fellowship program).

Candidates for the M.A. in English must meet the admission requirements of both the graduate schools and the departments of English at Missouri S&T and UMSL. Candidates must have a bachelor’s degree, with at least 24 hours in English above the freshman level, 12 in literature courses. Normally only students with a grade point average of at least 3.0 in undergraduate English courses and an overall average of 2.75 will be considered. Applicants must submit scores for the Graduate Record Examination.

In general, students scoring below the 65th percentile on the verbal examination will not be accepted into the program. Students may retake the examination to improve their scores. In addition, the departments require letters of recommendation from two English professors with whom the student has worked. The letters, the undergraduate record, and the Graduate Record Examination scores will be the basis for the admission decision. Three emphasis areas are available: literature, composition, and creative writing. Students must submit fiction or poetry in application for the creative writing track.

Applications should be received by May 1 for fall semester and for the summer session, and December 1 for the spring semester. Late applicants will be considered but cannot be assured of admission. For more information, contact the Missouri S&T department of English and technical communication.

Trent Alan Brown, Associate Professor
PHD University of Chicago

Eric Shane Bryan, Associate Professor
PHD Saint Louis University

Anne Lucile Cotterill, Associate Professor
PHD Washington University

Kathryn C Dolan, Assistant Professor
PHD University of California-Santa Barbara

Kathleen M Drowne, Professor
PHD University of North Carolina at Chapel Hill

Sarah Hercula, Assistant Professor
PHD Illinois State University

Ed A. Malone, Professor
PHD Southern Illinois University Carbondale

Kathryn Michele Northcut, Professor
PHD Texas Tech University

Daniel Charles Reardon, Assistant Professor
PHD SUNY College at Albany

Kristine Swenson, Professor
PHD University of Iowa

Michael David Wright, Associate Professor
PHD Oklahoma State University Main

ENGLISH 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENGLISH 5100 Readings In Rhetoric And Composition (LEC 3.0)
Directed readings and writing on selected topics and areas in Rhetoric and Composition. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5210 Readings In British Literature (LEC 3.0)
Directed readings and writing on selected topics and areas in British literature. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5220 Readings In American Literature (LEC 3.0)
Directed readings and writing on selected topics and areas in American literature. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5230 Readings In Literature And Theory (LEC 3.0)
Directed readings and writing on selected topics and areas in Literature and Theory. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.
Explosives Engineering

The explosives engineering program in the department of mining and nuclear engineering offers the master of science (M.S.) and doctor of philosophy (Ph.D.) degrees and a minor and certificate in explosives engineering for students with bachelor's degrees in engineering, science or technology. It also offers an explosives technology certificate and master of science (MS) for those with other bachelor’s degrees. Due to the age profile of the explosives industry and attrition of personnel, as well as the rapid change in technology within this field, there is an immediate and growing need for highly trained explosives professionals in both the civilian explosive, mining and civil excavating fields and government and the defense industry. Employers are looking for engineers and scientists with sophisticated skills in the integration of explosives technology into complex systems in a wide range of applications. Employers are also seeking M.S. and Ph.D. graduates because they can move quickly into managerial positions.

Faculty involved in a variety of explosives related research programs teach and direct the program in conjunction with instruction by industry specialists in a wide range of applications. Students will have opportunities to assist the faculty, both in research and teaching, as well as working alongside faculty and graduate students in other engineering and science fields such as civil, architectural, mechanical, chemical, aerospace, electrical, geological, and materials engineering and geology, geophysics, chemistry and physics. The explosives engineering faculty and students will be active in the leading professional societies such as the International Society for Explosives Engineers and those in a wide range of associated areas. A security background check is required for all students in the program.

Explosives Engineering

The M.S. program requires a minimum of 30 hours of graduate credit. A core of four courses is required of all students, and a module of allied courses in departments outside of explosives engineering is encouraged.

Degree Requirements

M.S. with thesis: The M.S. degree with thesis requires the completion of 24 hours of graduate course work and six hours of research (EXP ENG 6099) and the successful completion and defense of a research thesis. Four of the following core courses are required of all M.S. students in explosives engineering:

- EXP ENG 5612 Principles of Explosives Engineering
- EXP ENG 5622 Blasting Design And Technology
- EXP ENG 5711 Explosives in Industry
- EXP ENG 5713 Demolition of Buildings and Structures
- EXP ENG 5721 Specialty Uses of Energetic Materials
- EXP ENG 5914 Explosives Manufacturing
- EXP ENG 5992 Tunneling & Underground Construction Techniques
- EXP ENG 6412 Environmental Controls For Blasting
- EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting
- EXP ENG 6112 Explosives Regulations
- MIN ENG 4922 Tunneling & Underground Construction Techniques
- EXP ENG 6412 Environmental Controls For Blasting
- EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting

Students select 12 hours of ExpE and other appropriate elective courses. M.S. in explosives engineering candidates are advised to group out-of-department courses into a module that fits their special interest.

M.S. without thesis (by coursework): The M.S. degree without thesis requires the completion of 30 hours of graduate coursework with the same stipulations as above. The six hours of research is replaced by course work which may include an explosives related cooperative work experience (EXP ENG 6070) or industry project (EXP ENG 6080) with an established company or government agency commonly using explosives and an additional explosives course.

Explosives Technology

Degree Requirements

The M.S. program requires a minimum of 30 hours of graduate credit. A core of four courses is required of all students, and a module of allied courses in departments outside of explosives engineering is encouraged.

M.S. with thesis: The M.S. degree with thesis requires the completion of 24 hours of graduate course work and six hours of research (EXP Eng 6099), and the successful completion and defense of a research thesis. Four of the following core courses are required of all M.S. students in Explosives Technology:

- EXP ENG 5612 Principles of Explosives Engineering
- EXP ENG 5622 Blasting Design And Technology
- EXP ENG 5711 Explosives in Industry
- EXP ENG 5713 Demolition of Buildings and Structures
- EXP ENG 5721 Specialty Uses of Energetic Materials
- EXP ENG 5914 Explosives Manufacturing
- EXP ENG 5992 Tunneling & Underground Construction Techniques
- EXP ENG 6412 Environmental Controls For Blasting
- EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting
- EXP ENG 6112 Explosives Regulations
- MIN ENG 4922 Tunneling & Underground Construction Techniques
- EXP ENG 6412 Environmental Controls For Blasting
- EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting

Students select 12 hours of Exp Eng and other appropriate elective courses. M.S. in explosives engineering and explosives technology candidates are advised to group out-of-department courses into a module that fits their special interest.

M.S. without thesis (by coursework): The M.S. degree without thesis requires the completion of 30 hours of graduate coursework with the same stipulations as above. The six hours of research is replaced by course work which may include an explosives related cooperative work experience (Exp Eng 6070) or industry project (Exp Eng 6080) with an established company or government agency commonly using explosives and an additional explosives course.

Ph.D. Degree Requirements

The Ph.D. degree requires a minimum of 3 years of full-time study beyond the bachelor’s degree, including research work for the dissertation. Minimum requirements for Ph.D. candidates include completing 72 credit hours of graduate credit with at least 24 credit hours of dissertation research (Exp Eng 6099) and a minimum of 24 credit hours of coursework, with at least 15 credit hours of course work completed at Missouri S&T. Students are encouraged to enroll in at least 15 credit hours of 6000-level lecture courses and are required to pass the
qualifying, comprehensive and final oral examinations for the Ph.D. research.

Explosives Engineering Certificate

This certificate program is designed to provide formalized education in the area of explosives engineering. Students will be exposed to the theoretical and practical approaches of explosives engineering. Students will learn analysis and design of explosive-related systems and both natural and built structure effects. The explosives engineering certificate program is open to all persons holding a B.S. (in an applied science, technology or engineering), M.S., or Ph.D. degree and who have a minimum of 12-months of post-B.S. professional employment experience. Once admitted to the program, the student must take four designated courses as given below. In order to receive a graduate certificate, the student must have an average cumulative grade of 3.0 or better in the certificate courses. Students admitted to the certificate program will have non-matriculated status, however, if they complete the four-course sequence with a grade of B or better in each of the courses taken, they will be eligible to apply to the M.S. explosives engineering program upon application. The certificate credits taken by the student admitted to the M.S. program will count toward their master's degrees. Students who do not have all of the prerequisite courses necessary to take the course in the certificate program will be allowed to take "bridge" courses at either the graduate or undergraduate level to prepare for the formal certificate courses. Once admitted to a certificate program, a student will be given at least a B average in the courses taken.

The following courses are required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP ENG 5612</td>
<td>Principles of Explosives Engineering</td>
</tr>
<tr>
<td>EXP ENG 5622</td>
<td>Blasting Design And Technology</td>
</tr>
</tbody>
</table>

Two more explosives designated classes on the approved list maintained by the explosives engineering program faculty.

3 hours of EXP ENG 6099 and EXP ENG 6000 may be substituted at the discretion of the program coordinators.

Other courses approved by the explosives engineering faculty may be substituted for any of the above listed courses on a case-by-case basis.

Explosives Technology Certificate

This certificate program is designed to provide formalized education in the area of explosives. Students will be exposed to the theoretical and practical approaches of explosives technology. Students will learn analysis and design of explosive-related systems and both natural and built structure effects.

The following courses constitute the graduate certificate in explosives technology.

Required-One of the following four courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP ENG 5612</td>
<td>Principles of Explosives Engineering</td>
</tr>
<tr>
<td>EXP ENG 5711</td>
<td>Explosives in Industry</td>
</tr>
<tr>
<td>EXP ENG 5721</td>
<td>Specialty Uses of Energetic Materials</td>
</tr>
<tr>
<td>EXP ENG 5914</td>
<td>Explosives Manufacturing</td>
</tr>
</tbody>
</table>

Choose any three courses from the list below:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP ENG 5112</td>
<td>Explosives Handling and Safety</td>
</tr>
<tr>
<td>EXP ENG 5512</td>
<td>Commercial Pyrotechnics Operations</td>
</tr>
<tr>
<td>EXP ENG 5513</td>
<td>Stage Pyrotechnics and Special Effects</td>
</tr>
<tr>
<td>EXP ENG 5514</td>
<td>Display Fireworks Manufacturing</td>
</tr>
</tbody>
</table>

EXP ENG 5555 Computer Fired Pyrotechnic Show Design and Firing System Operation

EXP ENG 5622 Blasting Design And Technology

EXP ENG 5713 Demolition of Buildings and Structures

MIN ENG 5922 Tunneling & Underground Construction Techniques

EXP ENG 6112 Explosives Regulations

Other courses approved by the explosives engineering faculty may be substituted for any of the above listed courses on a case-by-case basis.

Matthew Coy, Lecturer
Master Missouri University of Science and Technology

Stephen W Hall, Lecturer
MASTER Missouri University of Science and Technology

Catherine Johnson, Assistant Professor
PHD University of Kentucky

Braden Lusk, Professor
PHD University of Missouri-Rolla

Kyle Perry, Assistant Professor
PHD University of Kentucky

Velim Petr, Lecturer

Paul Nicholas Worsley, Professor
PHD University of Newcastle-upon-Tyne, United Kingdom

Gillian M Worsley, Assistant Adjunct Professor
PHD University of Missouri-Rolla

EXP ENG 5000 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EXP ENG 5001 Special Topics (LEC 1.0 and LAB 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EXP ENG 5112 Explosives Handling and Safety (LEC 3.0)
Basic handling & safety for explosives, explosive devices and ordnance related to laboratory handling, testing, manufacturing & storage, for both civil and defense applications. Classroom instruction only. Prerequisite: Junior Standing or above.

EXP ENG 5512 Commercial Pyrotechnics Operations (LAB 1.0 and LEC 2.0)
Provide participants with training preparing for Missouri Licensed Display Operator (Outdoor) License and advanced lead pyrotechnic operator training. Class work will be complemented by practical training in laboratory sessions, culminating in a full pyrotechnic show, from start to finish. Prerequisites: Both Chem 1310 and Chem 1319 or their equivalent; US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.
EXP ENG 5513 Stage Pyrotechnics and Special Effects (LAB 2.0 and LEC 1.0)
Use of energetic materials in close proximity to audiences. Provide participants with training preparing for Missouri Pyrotechnics Display Operators License. Covers: close proximity indoor and outdoor pyrotechnics and special effects. Working with stage crews and talent, safety and permitting. Prerequisites: Both Chem 1310 and Chem 1319 or their equivalent; US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.

EXP ENG 5514 Display Fireworks Manufacturing (LEC 1.0 and LAB 2.0)
Theory and practice of manufacturing display fireworks. Focusing on safety, chemical interaction, color development, basic theory, state and federal law. The lab will include hands on building of ball and canister shells and other pyrotechnic effects. Prerequisites: Chem 1310, Chem 1319, Chem 1100; one of Econ 1100, Econ 1200, Eng Mgt 1210; Successful background check.

EXP ENG 5555 Computer Fired Pyrotechnic Show Design and Firing System Operation (LAB 2.0 and LEC 1.0)
Students will learn to use music editing, electronic firing system operation and Fire One pyrotechnic choreography and simulation software to design their own pyromusical program shows. Creation of a musical sound track, selecting the fireworks and choreographing to the musical score. Create, setup, diagnose and fire a pyrotechnic show. Prerequisites: Exp Eng 5512 or Exp Eng 5513 and successful background check.

EXP ENG 5612 Principles of Explosives Engineering (LEC 2.0 and LAB 1.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Min Eng 5612).

EXP ENG 5622 Blasting Design And Technology (LAB 1.0 and LEC 2.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 5612. Student must be at least 21 years of age. Successful background check. (Co-listed with Min Eng 5622).

EXP ENG 5711 Explosives in Industry (LEC 3.0)
Overview of how explosives are applied in various industrial settings. Focus is placed on the general application, identification, and necessity of explosives in industry. Topics include explosive use in surface and underground mining, road development, construction, utility placement, demolition, oil, gas, and underwater.

EXP ENG 5713 Demolition of Buildings and Structures (LAB 1.0 and LEC 2.0)
Provide participants with basics and solid grounding in the equipment, techniques and processes required for the demolition and remediation of mine plant and processing equipment sites and non-mining structures such as buildings, factories, bridges, etc. Field trip required. Prerequisites: Preceded or accompanied by Civ Eng 2200 or Mech Eng 2340; US citizen or permanent resident; Successful background check.

EXP ENG 5721 Specialty Uses of Energetic Materials (LEC 3.0)
Overview of special, less common uses of energetic materials and how they can be applied as a functional tool. Topics include the use of energetics in aerospace, explosive ordnance, oil field development, welding, pyrotechnics, theaters, and cinematic special effects.

EXP ENG 5914 Explosives Manufacturing (LEC 3.0)
History of industrial explosives from discovery to what is used today. Manufacturing processes for packaged and bulk explosives are explored along with specialty explosives such as detonating cord, cast boosters, detonators, shaped charges, and commercial fireworks. Field manufacturing of explosives by mixing or gassing is also covered.

EXP ENG 5922 Tunneling & Underground Construction Techniques (LAB 1.0 and LEC 2.0)
Mechanical and conventional excavation techniques in underground tunneling and construction. Topics include tunneling layouts design, equipment and performance modeling, ground control systems including support, drainage, and structural integrity. Construction specifications, advance rate and contractual and cost estimation. Prerequisite: Consent of instructor. (Co-listed with Min Eng 5922).

EXP ENG 6000 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EXP ENG 6001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EXP ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

EXP ENG 6070 Graduate Cooperative Experience (LAB 3.0)
Students on an approved internship will complete a project designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge in the work setting. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

EXP ENG 6080 Industry Project (LAB 3.0)
Students who are currently employed may complete a project in their work setting designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

EXP ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisites: Consent of instructor required.
EXP ENG 6112 Explosives Regulations (LEC 3.0)
Comprehensive coverage of the federal regulations governing the explosives industry, including those governing storage of explosives (ATF), transportation of explosives (DOT and TSA), the environment (EPA) and use of explosives (OSM, MSHA and OSHA). Prerequisite: Graduate standing.

EXP ENG 6212 Theory Of High Explosives (LEC 3.0)
Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Graduate Standing. (Co-listed with Min Eng 6632).

EXP ENG 6292 Research Methods (LEC 3.0)
Foundations, dimensions, and methods for designing and investigating research problems. Focus on fundamentals and applied research, research methods, literature review, experimental design and experimentation, dissertation composition, concepts of originality and intellectual property. Prerequisites: PhD students only. (Co-listed with Min Eng 6992).

EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting (LEC 3.0)
Application of scientific principles, equipment description and operation for instrumentation of explosive events including blasting. Topics: Blast chamber design, set up, high-speed photography, motion detection and measurement, explosives sensitivity testing, explosives properties testing, vibration measurement & analysis, destruction & demilitarization. Prerequisite: Exp Eng 5612 and Successful background check.

EXP ENG 6412 Environmental Controls For Blasting (LAB 1.0 and LEC 2.0)
Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 5612, Successful background check. (Co-listed with Min Eng 6622).

EXP ENG 6464 Advanced Blast Vibration Analysis and Prediction (LEC 3.0)
Advanced Blast Vibration prediction methodologies. Includes typical methods including scaled distance, linear regression, signature hole analysis, and modern improved signature hole analysis. Structural response and damage criteria for blast vibrations including considerations for frequency spectra and amplitude. Prerequisite: Exp Eng 5612.

Geological Engineering

The department of geosciences and geological and petroleum engineering is home to three separate programs, geological engineering, geology and geophysics, and petroleum engineering. Geotechnics is a part of the geological engineering program.

Geological engineering is the application of the knowledge and principles of geology to the solution of problems in engineering practice. These applications include the evaluation of geological conditions for environmental protection studies, for groundwater resource and pollution investigations, for mineral and energy development, for site selection of civil works facilities and for land use and environmental impact analysis.

The geological engineering laboratories are well equipped for research relating to physical and hydraulic properties of rock, groundwater hydrology, remote sensing, and geographic information systems. Computer applications are emphasized, and the department has a laboratory equipped with a variety of personal computer equipment for student use. A groundwater hydrology laboratory is equipped to conduct research in subsurface fluid flow and computer facilities are available for the modeling of flow through porous media.

Recent research projects in the GE program include:

- Designing excavating tools for geomaterials on earth and in space.
- Studying blasting efficiency for enhancing productivity in the mining industry.
- Applying mining methods to potential space mining applications, and reducing the size of asteroid on potential collision courses with earth.
- Global sustainability.
- Shale gas and other unconventional energy sources.
- Geologic membrane processes.
- Developing a rock fall hazard rating system for Missouri highways.
- Using LIDAR to research the rock raveling process.
- Multivariate cluster analysis of borehole discontinuity data.
- Developing a virtual geotechnical database for the greater St. Louis Metropolitan Area.
- Pilot seismic hazard assessment of the Granite City Monk Mound and Columbia Bottom Quadrangles, St. Louis Metropolitan Area.
- Creation of a geologic GIS database for the St. Louis Metropolitan Area.
- Bridge deck delamination studies using ground penetrating radar.
- Detection of underground mines and caverns using geophysical methods.
- Subsurface imaging in Karst Terrain.
- Bridge pier scour investigations.
- Applying stochastic analysis to groundwater remediation design.
- Developing sustainable point of use drinking water systems in developing areas.
- Using renewable energy systems to power active groundwater pumping and remediation systems.
- Characterizing the reliability of wind and solar energy system prediction models.

The department maintains a computer learning center and Geographic Information Systems Laboratory with PCs, and a variety of peripheral devices such as scanners, digitizers, and printers. ERDAS, IDRIS, AutoCAD Map and World, Arc View, and other software packages are available for instruction and research. Applications of GIS and Remote Sensing Technology which are stressed include site characterization and selection, geologic hazards mapping and terrain analysis. The department also offers a graduate certificate in geotechnics.

Contact information, e-mail gee@mst.edu or visit our website at http://gse.mst.edu/

Neil L Anderson, Professor, PhD University of Calgary Acquisition processing.
Jeffrey D Cawlfield, Professor1,2
PHD University of California-Berkeley
Director of Freshman Engineering. Probabilistic modeling and geo-statistics, ground-water and contaminant transport analysis, and computer applications in geological engineering.

Leslie Sour Gertsch, Associate Professor
PHD Colorado School of Mines
Rock mechanics, mechanical mining and excavating, mine design and rock fragmentation.

Katherine R Grote, Associate Professor
PHD University of California, Berkeley
Application of geophysical techniques for hydrological site characterization with emphasis on vadose zone processes, investigation of agriculture practices for improved water management.

Joe D Guggenberger, Assistant Professor
PHD Missouri University of Science and Technology
Green sustainable remediation, renewable energy development, international humanitarian engineering.

Norbert H Maerz, Associate Professor1,2
PHD University of Waterloo
Program Head. Rock mass classification, rock engineering, slope stability, joint genesis, computer applications and image processing.

J David Rogers, Associate Professor1,2
PHD University of California-Berkeley
Seismic hazards, geotechnical engineering, dam safety and earth structures.

GEO ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor is required.

GEO ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 5085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

GEO ENG 5090 Geologic Engineering Design (LEC 2.0 and LAB 1.0)
Geological engineering design is an open-ended project course requiring the collection of data, analysis and synthesis of that data and design of a socially acceptable, economical solution to the selected problem. Oral and written reports are required. Prerequisite: To be taken in the semester before graduation.

GEO ENG 5092 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisites: Senior standing, instructor approval, Geo Eng 5211, Geo Eng 5247. (Co-listed with Met Eng 4510 and Cer Eng 4510).

GEO ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEO ENG 5144 Remote Sensing Technology (LAB 3.0)
Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Geology 1110. (Co-listed with Geology 4310).

GEO ENG 5146 Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0)
Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 3175 or consent of instructor. (Co-listed with Geology 4821).

GEO ENG 5153 Regional Geological Engineering Problems In North America (LEC 3.0)
A physiographic approach to engineering materials and problems. Course emphasizes the distribution and engineering characteristics of soil and rock to construction and site problems and includes aggregates, foundations, excavations, surface and ground water, slope stability and arctic conditions.

GEO ENG 5172 Soil Science In Engineering Practice (LEC 3.0)
A study of the ways in which soils and geologic conditions influence engineered projects. Soil formation, soil chemistry and properties to include composition, organic component, ion exchange and water relationships as well as erosion control and revegetation will be covered. Prerequisite: Geo Eng 3175.

GEO ENG 5173 Geologic Field Methods (LAB 3.0)
Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.

GEO ENG 5174 Geological Engineering Field Methods (LAB 3.0)
Instruction in methods of field investigation required for geological engineering studies. Course will include procedures for qualitative and quantitative data collection for characterizing surficial geologic conditions, groundwater and surface water investigations, and other engineering activities. Written reports and field trip required.

GEO ENG 5211 Introduction to International Engineering and Design Lab (LAB 1.0)
The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by GEO ENG 5247.
GEO ENG 5233 Risk Assessment In Environmental Studies (LEC 3.0)
This course will present the concepts required to assess the human health and environmental risks resulting from contaminants in soil and groundwater. Course topics include evaluation of data sets, exposure calculation, chemical fate and transport, and development of conceptual site models.

GEO ENG 5235 Environmental Geological Engineering (LEC 3.0)
Introduction to engineering geologic mapping for site selection for solid waste disposal facilities; landfill site selection, design, permitting, construction, operation, and closeout/reclamation. Prerequisite: Geo Eng 3175, accompanied or preceded by Civ Eng 3715.

GEO ENG 5237 Geological Aspects Of Hazardous Waste Management (LEC 3.0)
Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geological characterization of facility sites; design of impoundments, storage and containment facilities; ground water monitoring and protection; site permitting and licensing planning. Prerequisite: Geo Eng 3175.

GEO ENG 5239 Groundwater Remediation (LEC 3.0)
A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physico-chemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Various computer programs developed to assist in preliminary selection and design of remediation technologies will be used. Prerequisite: Geo Eng 5331.

GEO ENG 5247 Introduction to International Engineering and Design (LEC 2.0)
A multi-disciplinary design course focused on sustainable design and technology transfer to developing countries. Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 5211.

GEO ENG 5276 Advanced Environmental Aspects Of Mining (LEC 3.0)
Applied and fundamental research issues pertaining to: permitting -- the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Course project. (Co-listed with Min Eng 5742).

GEO ENG 5315 Advanced Statistical Methods in Geology and Engineering (LEC 3.0)
Application of statistical methods to study of geologic materials and practices, with emphasis on reliable interpretation of laboratory and field data for water, hydrocarbon, and mineral exploration, research, and engineering as well as other aspects of geological engineering. Prerequisites: Geo Eng 4115 or Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117.

GEO ENG 5320 Groundwater Modeling (LEC 3.0)
This course is an introduction to advanced modeling techniques for understanding flow and transport in porous media under different hydrologic conditions. Emphasis is placed on both theoretical and practical modeling considerations. Computer demonstrations are incorporated. Practical applications are emphasized. Prerequisite: Civ Eng 3330 or Geo Eng 5331.

GEO ENG 5331 Subsurface Hydrology (LEC 3.0)
Introduction to the theory and engineering concepts of the movement of subsurface fluids. Properties of water and other subsurface fluids. Hydraulic characteristics of earth materials. Engineering problems related to subsurface fluids. Prerequisites: Geo Eng 1150, Math 3304.

GEO ENG 5332 Fundamentals of Groundwater Hydrology (LEC 3.0)
Focus on fundamental analysis and survey of groundwater hydrology with emphasis on practical geo-environmental and subsurface hydrology issues of interest to working professionals. Topics will include general hydrology, surface and subsurface interconnection, basic groundwater flow and well test analysis, and a brief intro to contaminant transport.

GEO ENG 5381 Intermediate Subsurface Hydrology And Contaminant Transport Mechs (LEC 3.0)
A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is put on water rock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Civ Eng 3330 & Geo Eng 5331.

GEO ENG 5415 Soil Mechanics for Geoprofessionals (LEC 3.0)
The basic principles of soil mechanics necessary for professionals to practice in the field of geotechnical engineering and design. Topics related to the practical aspects of engineering include: soil classification, index properties, water flow through soils, compaction, compressibility, and shear strength. These basic principles will be applied to real world problems.

GEO ENG 5441 Engineering Geology And Geotechnics (LEC 3.0)
Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Geo Eng 3175.

GEO ENG 5443 Subsurface Exploration (LAB 1.0 and LEC 2.0)
Lectures and field laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Geo Eng 1150.

GEO ENG 5471 Rock Engineering (LEC 3.0)
Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Geo Eng 3175.
GEO ENG 5556 Renewable Energy Systems (LEC 3.0)
Introduction to the theory and performance prediction of typical renewable energy systems such as, but not limited to, those based on energy from the sun, wind and water, and geothermal. The use of environmental data, including stochastic modeling, for renewable energy system (including wind turbine, photovoltaic, and geothermal) design is addressed. Prerequisites: Math 3304, Physics 2135, and preceded or accompanied by Geo Eng 4115 or any Probability and Statistics class. Junior or senior standing is required.

GEO ENG 5575 Aggregates And Quarrying (LEC 3.0)

GEO ENG 5642 Military Geology (LEC 3.0)
This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geology, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Geo Eng 3175 or graduate standing.

GEO ENG 5736 Geophysical Field Methods (LEC 2.0 and LAB 1.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5736).

GEO ENG 5761 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5761 and Civ Eng 5750).

GEO ENG 5782 Environmental and Engineering Geophysics (LEC 2.0 and LAB 1.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 2222. (Co-listed with Geophys 5782).

GEO ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEO ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 6010 Seminar (RSD 1.0)
Discussion of current topics. Prerequisite: Graduate student.

GEO ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculty. In no case shall this be for less than three (3) semester hours for resident students.

GEO ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEO ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

GEO ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEO ENG 6146 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)
Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 5146. (Co-listed with Geology 6341).

GEO ENG 6235 Advanced Concepts Of Environmental Geological Engineering (LEC 3.0)
Application of the principles of geology to the solution of engineering problems in environmental protection and remediation. Topics will include the study of geologic processes and the evaluation of geologic materials as they affect the potential for groundwater contamination, susceptibility of soils to erosion, characterization of the geologic environment for site suitability and the analysis of the criteria necessary for the selection of technologies for minimizing environmental impact. Prerequisite: Graduate level course in environmental geologic studies.

GEO ENG 6237 Advanced Geological & Geotechnical Design For Hazardous Waste Mgt (LEC 3.0)
Geological and geotechnical design factors for hazardous waste management facilities and remidal actions (cleanup) of uncontrolled hazardous waste sites. Prerequisite: Geo Eng 5237 or consent of instructor.
GEO ENG 6331 Advanced Subsurface Hydrology (LEC 3.0)
Advanced treatment of selected topics in subsurface hydrology, including groundwater contamination, contaminant transport, land disposal of wastes, aquifer test analysis, injection well technology, etc. Applied hydrogeologic site analysis and flow and transport modeling through solution of selected case examples. Prerequisite: Geo Eng 5331 or equivalent.

GEO ENG 6332 Numerical Methods In Subsurface Flow (LEC 3.0)
Development of governing balance equations, constitutive laws and mathematical models of groundwater flow and contaminant transport in porous media. Solution of mathematical models by finite difference and finite element methods for various boundary and initial conditions. Prerequisites: Geo Eng 5331, Comp Sci 1970.

GEO ENG 6400 Practice Oriented Project (IND 3.0)
This class will consist of a single term project. Students will, in consultation with the instructor, pick a topic to study, and produce a comprehensive, in depth, professionally written report, including a literature review on the state of the practice on that topic. Prerequisites: Limited to students enrolled in the Masters of Engineering (M.E.) in Geotechnics Program.

GEO ENG 6441 Geotechnical Construction Practice (LEC 3.0)
Advanced level lecture topics on procedures used for site characterization, standards for earthquake grading and construction, including embankments, building pads, retention structures, roads, levees, and earthen dams. Specific emphasis on preparation of documents involved in such work and engineer’s responsibilities. Prerequisite: Geo Eng 5441.

GEO ENG 6447 Discontinuous Rock (LEC 3.0)
Nature and properties of discontinuous rock masses, genesis and properties of joints, role of joints in rock shear strength, slope of stability of jointed rock, fracture flow hydrogeology. Modeling of the mechanical behavior of fractured rock. Prerequisite: Min Eng 4823 or Geo Eng 5471.

GEO ENG 6625 Applications in Geological Engineering (LEC 3.0)
Content is focused on practical aspects of geological engineering. Geotechnical, environmental and geohydrologic case studies are presented to illustrate concepts and relate theory to applications.

GEO ENG 6477 Inca Civilization Geotechnical Engineering Practices (LEC 3.0)
An in-depth study of geotechnical engineering practices in the mountains of Peru, including the Cuzco-Machu Picchu corridor, with emphasis on the inter-relationships between tectonics, geology, geomorphology, climate, hydrology, agriculture, quarrying, construction practices, irrigation, culture and history. A week-long field trip to Peru during Spring Break is required at student's expense. Prerequisite: Geo Eng 1150 or Civ Eng 3715 or Geo Eng 5471 or equivalent; Graduate standing. (Co-listed with Civ Eng 6760).

GEO ENG 6782 Surface Waves (MASW) and Ground Penetrating Radar (GPR) (LAB 1.0 and LEC 2.0)
Geological engineering applications of surface wave and ground penetrating radar methods are emphasized. Field data will be acquired, processed and interpreted. Prerequisites: Geo Eng 1150 or Civ Eng 3715 or equivalent, and graduate standing.

GEO ENG 6784 Advanced Engineering And Environmental Geophysics (LEC 3.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential induced polarization, seismic, electromagnetic and GPR methods as applied to the solution of engineering and environmental problems. Prerequisite: Admittance into USAES-S&T Cooperative Degree Program. (Co-listed with Geophys 5251).

Geology and Geophysics

Graduate work in geology and geophysics is offered at both the master of science (thesis and non-thesis) and doctoral levels. Programs are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry, and geophysics. Research investigations comprise a significant part of each program, and at the doctoral level an original contribution to the science is required.

Research emphasis of the program is in:
• Low Temperature and Environmental Geochemistry
• Mineralogy/Petrology/Economic Geology
• Geophysics/Tectonics/Remote Sensing
• Sedimentology/Paleontology/Stratigraphy/Petroleum Exploration

In geology and geochemistry, opportunities for research at both the M.S. and Ph.D. levels are available in mining geology, petroleum geology, stratigraphy and sedimentation, geochemistry, clay mineralogy, remote sensing, GIS, palynology, structural geology, igneous and metamorphic petrology, and volcanology.

In geophysics, opportunities for research at both the M.S. and Ph.D. levels are available in the areas of reflection and refraction seismology, theoretical seismology, geophysical data analysis, gravity, magnetics, seismic hazards, and computational geophysics.

The study of the Earth and other planets includes all areas of scientific inquiry. To work effectively in so broad a discipline requires considerable depth and breadth of understanding of physical principles and advanced proficiency in mathematics, particularly for those students contemplating advanced studies in geophysics. A thorough undergraduate training in an earth or physical science is ordinarily regarded as necessary prerequisite for advanced study in geology or geophysics.

Earth sciences have been an integral part of the university since its founding. The program has a long and proud history of faculty and students who have contributed to the advancement of the science and to mineral and hydrocarbon exploration. The university was formerly the Missouri School of Mines. Because of the school's tradition and location near the Missouri Lead District the emphasis of the program has been in hard rock exploration. The program has now expanded to include geochemistry, geophysics, and soft rock geology. Our graduates find employment in mining, environmental, and petroleum industries. It is our intention to provide the student with a sufficiently diverse and complete
education that he or she may seek employment in any area of the earth sciences.

The program has a wide variety of equipment for research and exploration in geology, geochemistry, and geophysics. In addition to its own facilities, the Missouri Department of Natural Resources, and the U.S. Geological Survey's mid-continent mapping division are also located in Rolla. Cooperative research with other departments within the university or other campuses of the University of Missouri may be undertaken by our faculty and graduate students. Interaction with mining engineering, geological engineering, petroleum engineering, metallurgy, environmental engineering, biological sciences and various other programs/departments is routine. Cooperative programs are also undertaken with local mining companies, petroleum companies, or other industries using the skills and techniques of the earth scientist. Thus, your research interests need not fall entirely within the interests of our faculty or within the bounds of the equipment directly available within the program.

Although an advanced degree level is not a requirement for professional practice in geology or geophysics, the B.S. should usually be considered a preparatory, the M.S. should be considered the professional degree, and the Ph.D. should be sought by candidates interested in a career in teaching or research. The M.S. degree is typically granted with the thesis option, although a non-thesis option is now available. A qualifying examination is required of all Ph.D. students during the third semester of residency. For students whose native language is not English, a minimum score of 550 on the standard Test of English as a Foreign Language is generally required for admission.

Neil L Anderson, Professor
PHD University of Calgary
Acquisition processing.

Ralph E Flori Jr, Associate Professor
PHD University of Missouri-Rolla
Engineering mechanics, mechanical earth modeling, reservoir engineering, reservoir simulation, engineering education.

Stephen Shangxing Gao, Professor
PHD University of California-Los Angeles
Seismology, solid earth geophysics, crustal deformation, computational geophysics, plate tectonics.

John Patrick Hogan, Associate Professor
PHD Virginia Polytechnic Institute
Igneous petrology, structural geology, crust and mantle evolution.

Kelly Hong Liu, Professor
PHD University of California-Los Angeles
Exploration geophysics, digital signal processing, seismic hazard, earth structure and dynamics.

Marek Locmelis, Assistant Professor
PHD Marquarie University, Sydney

Francisca Oboh Ikuenebe, Professor
PHD Cambridge University
Program Head of Geology and Geophysics. Palynology, biostratigraphy, sedimentology, paleoclimatology.

Jonathan Obrist Famer, Assistant Professor
PHD Missouri University of Science and Technology

David J Wronkiewicz, Associate Professor
PHD New Mexico Institute of Mining & Technology

Wan Yang, Associate Professor
PHD University of Texas at Austin
Sedimentology, sequence stratigraphy, petroleum geology, paleoclimatology.

GEOLOGY 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOLOGY 5001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOLOGY 5010 Seminar (LEC 0.50)
Discussion of current topics.

GEOLOGY 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOLOGY 5085 Internship (IND 3.0)
Students will select, with their committee's advice, problems for investigation and preparation of a graduate research proposal. Problems must provide higher level experiential learning consistent with a graduate degree in geology. Assessment is based upon the quality of written and oral presentations and supervisor's evaluation. Repeatable for credit. Prerequisite: Graduate Standing.

GEOLOGY 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEOLOGY 5111 Advanced Physical Geology (LEC 3.0)
Examination of topics concerned with the physical properties of earth materials, processes affecting change of the surface and interior of the earth, and the driving forces causing these changes. Weekly critical assessment of literature, and an oral presentation and term paper required. Prerequisite: Consent of instructor.

GEOLOGY 5121 Advanced Historical Geology (LEC 2.0 and LAB 1.0)
Study of the physical and biological history of the Earth beginning with the origin of the solar system up to the present. Emphasis will be placed on processes that shaped the Earth and its ecosystems. Prerequisite: Entrance requirements for the MST program in Earth Science.
GEOLOGY 5311 Depositional Systems (LEC 3.0)
Development of three dimensional depositional models using Walther's Law, Walther's Warning and seismic stratigraphy. Emphasis on overall geometries and internal porosity and permeability characteristics of aquifers and hydrocarbon reservoirs. Includes 3-D models for clastic, carbonate and evaporate sequences. Prerequisites: Geology 1110 or Geo Eng 1150; accompanied or preceded by both Geology 3310 and Geology 3620.

GEOLOGY 5411 Advanced Geochemistry (LEC 3.0)
A study of the absolute and relative abundance of elements and isotopes in the Earth, principles of element transport, formation of the Earth's crust, mineral deposits, and soils. Field trip fee required. Prerequisite: Geology 3410.

GEOLOGY 5511 Applied Petroleum Geology (LEC 1.0 and LAB 2.0)
The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Geological and economical techniques for evaluating hydrocarbon bearing reservoirs are presented, with methods for decisionmaking under conditions of extreme uncertainty. Prerequisite: Geology 5411.

GEOLOGY 5513 Petroleum Geology (LAB 1.0 and LEC 2.0)
Principles of origin, migration, and accumulation of oil and gas. The laboratory introduces the procedures used for exploration, and development of hydrocarbon resources. Prerequisites: Geology 1110 or Geo Eng 1150; accompanied or preceded by both Geology 3310 and Geology 3620.

GEOLOGY 5521 Coal Petrology (LEC 3.0)
Formation, composition, and properties of coals. Discussion of the geology of selected coal deposits, the analysis of coal, and the optical identification of coal minerals. Prerequisite: Permission of instructor.

GEOLOGY 5611 Advanced Stratigraphy and Basin Evolution (LEC 3.0)
Advanced topics in sedimentary geology including: tectonic controls on sedimentary basin development, global sequence stratigraphy, regional facies and diagenetic patterns, basin hydrogeology, thermal evolution of basins and distribution of economic resources. This course should be preceeded or accompanied by Geology 3410. Prerequisites: Geology 3620 and Geology 3310.

GEOLOGY 5671 Clay Mineralogy (LAB 1.0 and LEC 2.0)
Mineral structure, geochemical properties, occurrence, environment, and uses of clays. Determination of physical properties, optics, x-ray diffraction, and thermal features of clays. Field trip fee required. Prerequisites: Geology 2610 and 3410, or Chem 2310, or Civ Eng 5715, or Geo Eng 5172.

GEOLOGY 5679 Field and Laboratory Studies in Earth Science (LAB 3.0)
Hands-on laboratory and field experiences in the Earth Sciences. This course is designed to be taught in an intensive three week session during the summer on the S&T campus. Prerequisites: GEOLOGY 2096 or 5121 or equivalents.

GEOLOGY 5681 Lidar Principles and Application (LEC 3.0)
Provides a comprehensive understanding of light detection and ranging (lidar) technology as it has been developed for commercial use; various methods of deploying technology for collection of data for mapping, engineering and science, and application of the data using specialized software for editing and processing point cloud data. Assumes GIS experience. Prerequisite: Senior or graduate standing.

GEOLOGY 5741 Micropaleontology (LAB 1.0 and LEC 2.0)
This course studies the fossil and soft-body characteristics of bacteria, protists, microinvertebrates and organic-walled microfossils (palynomorphs). Focused discussions on systematics, evolutionary histories, paleoecology, and geologic applications of the microfossil groups. Extraction of foraminifera and palynomorphs from rocks in lab. Prerequisite: Geology 3631.

GEOLOGY 5601 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOLOGY 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.

GEOLOGY 6040 Oral Examination (IND 0.0-6.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.
GEOLOGY 6050 Continuous Registration (IND 1.0)

Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEOLOGY 6085 Internship (IND 3.0)

Students will select, with their committee's advice, problems for investigation and preparation of a graduate research proposal. Problems must provide higher level experiential learning consistent with a graduate degree in geology. Assessment is based upon the quality of written and oral presentations and supervisor's evaluation. Repeatable for credit. Prerequisite: Graduate standing.

GEOLOGY 6097 Advanced Geologic Field Methods (LEC 3.0)

Advanced instruction in planning and implementation of geologic field campaigns, development of an appropriate scientific plan, including logistics, safety, and supervision of field personnel in a manner consistent with professional practices. Emphasis placed upon reflection on projects outcomes supervised with faculty oversight. Field Trip fee required.

GEOLOGY 6098 Advanced Geologic Field Methods (LEC 3.0)

Adv. instruction in theory and practice of qualitative/quantitative description of spatial relationships of rock types in areas exhibiting complex deformation. Emphasis on expl. learning where students plan, implement, and reflect on outcomes for sever. scientific field campaigns in a manner consistent with prof. scientific practices. Field trip fee required.

GEOLOGY 6099 Research (IND 0.0-15)

Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEOLOGY 6211 Geodynamics (LEC 3.0)

The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisite: Math 2222 and Geology 3310. (Co-listed with Pet Eng 6171).

GEOLOGY 6311 Advanced Structural Geology (LAB 1.0 and LEC 2.0)

The course provides theoretical background, analytical techniques, and hands-on experience for analyzing geologic structures at a variety of scales hand sample to global. Prerequisites: Geology 3310, Geophys 4096.

GEOLOGY 6321 Analytical Structural Geology (LAB 1.0 and LEC 2.0)

The course provides theoretical background, analytical techniques, and hands-on experience, for quantifying processes that lead to the formation and evolution of rocks and structures produced as a result of deformation at a variety of scales - hand sample to global. Poster - and oral - presentations, and a research paper required. Prerequisites: Geology 3310, Geophys 4096.

GEOLOGY 6331 Geotectonics (LEC 3.0)

A critical study of the origin, and differentiation of the earth, evolution of the crust, and plate tectonics. Geology of the continents and ocean basins. Regional tectonic analysis of precambrian shields, platforms, orogenic belts, and a review of internal energy sources. Emphasis is on North America. Prerequisite: Geology 3310.

GEOLOGY 6341 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)

Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of land sat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 5146. (Co-listed with Geo Eng 6146).

GEOLOGY 6411 Advanced Isotope Geochemistry (LEC 2.0 and LAB 1.0)

The use of radiogenic and stable isotopes in geology in the study of the evolution of Earth, crust, mantle, and the Solar System as well as applications to geothermometry, ore petrogenesis, paleontology, and the global climate system. Prerequisites: Geology 2620, 3620, 3410.

GEOLOGY 6421 Environmental Geology (LEC 3.0)

Overview of environmental problems facing humans. Emphasis will be placed on surface and groundwater pollution, geological hazards, and pressures on Earth's ecosystems and natural resources by urbanization and population growth. Prerequisites: GEOLOGY 1110 or 1120 or equivalents.

GEOLOGY 6511 Advanced Petroleum Geology (LAB 2.0 and LEC 1.0)

The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Various types of oil and gas accumulations are reviewed in detail. Study of criteria useful in evaluating the petroleum potential of undrilled areas. Special investigation assignment is required. Prerequisite: Geology 3310, Geology 5513, Geology 5661, or Geology 6811.

GEOLOGY 6521 Advanced Ore Microscopy (LEC 1.0 and LAB 2.0)

A study of ore suites utilizing various advanced, quantitative ore microscopy techniques including hardness, spectral reflectance, indentation, color, rotation property measurements, fluid inclusion geothermometry, and salinity measurements. Laboratory study includes demonstration and operation of the luminoscope and other microbeam techniques. Prerequisite: Geology 4521.

GEOLOGY 6531 Applied Ore Microscopy (LEC 1.0 and LAB 2.0)

Application of ore microscopic and petrographic techniques to problems in ore beneficiation, pelletizing, sintering, smelting, refining, refractories, cement, mining, and exploration. Discussions and laboratories are based upon industrial case histories. Prerequisite: Geology 4521.

GEOLOGY 6541 Geology of Natural Resources (LEC 3.0)

The origin and distribution of economically important natural resources including soils, water resources, metals, non-metals, building materials, petroleum, and other energy resources. Prerequisites: GEOLOGY 1110 or 1120 or equivalents.
GEOLOGY 6551 Ore Deposition (LAB 1.0 and LEC 2.0)
An advanced study of mineral deposits, time and space in deposition, theories of deposition and their effect on exploration. Discussions based on maps, logs, and samples from the world’s typical mineral deposits. Two all day field trips at student expense required. Prerequisite: Geology 3511.

GEOLOGY 6611 Advanced Palynology (LEC 1.0 and LAB 2.0)
Study of organic-walled microfossils, and the processes of sporepollen preservation, sedimentation and palynofacies. Chronicle of Phanerozoic palynology in lectures. Major emphasis on independent palynostratigraphic research and applications, such as biostatigraphy, paleoclimatology and paleoenvironments. Prerequisite: Geology 3631 or Geology 5741.

GEOLOGY 6621 Clastic Sedimentary Petrology (LAB 1.0 and LEC 2.0)
Petrology and petrographic of clastic sedimentary rocks. Emphasis on origin, diageneis and description of clastic, sedimentary rocks. Prerequisite: Geology 3620.

GEOLOGY 6651 Granite and Rhyolite Petrogenesis (LAB 1.0 and LEC 3.0)
The origin of granites and rhyolites with respect to extreme fractionation, crustal anatexis, magma mixing, and tectonic setting will be explored through critical reading of the literature and examination of hand samples and thin sections from classic geologic terranes. A research paper is required as well as a field trip at the student’s expense. Prerequisite: Geology 2620.

GEOLOGY 6711 Advanced Paleoclimatology and Paleooecology (LEC 3.0)
Advanced study of paleoclimatic and paleoecologic processes since the Archean, and the interpretation of Holocene climate changes, including human impacts. Extensive presentations and discussions of current ideas and techniques in paleoclimatic studies. Prerequisite: Geology 3620.

GEOLOGY 6811 Sedimentary Basin Analysis (LEC 3.0)
An advanced study of stratigraphic, diagentic and tectonic processes in sedimentary basins. Prerequisites: Geology 3310, 3620, 3410 or 4441 or 4451.

GEOPHYS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOPHYS 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOPHYS 5010 Seminar (LEC 0.50)
Discussion of current topics.

GEOPHYS 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOPHYS 5096 Global Tectonics (LEC 3.0)
An integrated view of the Earth’s structure and dynamics with an emphasis on information gained through geophysical methods. Topics include seismology, heat flow, gravity, rheological and compositional structure, plate motions and intermotions, and mantle driving mechanisms for plate tectonics. Prerequisite: Geology 3310.

GEOPHYS 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEOPHYS 5202 Exploration and Development Seismology (LEC 2.0 and LAB 1.0)
Principles of reflection seismology as applied to the delineation of geologic structures and the determination of stratigraphy and lithology. Emphasis on both the capabilities and limitations of the seismic method. The laboratory utilizes both modeled and actual seismic data. Prerequisites: Math 1208 or Math 1214, Geology 1110 or Geo Eng 1150.

GEOPHYS 5211 Seismic Stratigraphy (LEC 2.0 and LAB 1.0)
A study of the seismic expression of depositional models. Reflection patterns and reflection amplitudes are interpreted to determine bed thicknesses, fluid content, depositional environment, and lithology. Special data acquisition and processing techniques are examined. Prerequisites: Geophys 4521, Geology 3310, 3620.

GEOPHYS 5221 Wave Propagation (LEC 3.0)
A study of Hamilton’s principle and energy theorems, fundamentals of plane wave theory, waves in stratified fluids, elastic waves in solids, electromagnetic and hydromagnetic radiation, and Allen’s functions and point sources. Prerequisites: Geophys 281, 3221.

GEOPHYS 5231 Seismic Data Processing (LEC 2.0 and LAB 1.0)
Introduction to seismic data processing. Topics to be covered include statics corrections, filtering, velocity analysis, deconvolution, stacking and migration. The course has a field component to record seismic data. If this is offered in the summer, an off-campus trip may be needed. Extra fee may be charged to cover the field expenses. Prerequisites: Geophys 3210 or Geophys 5202.

GEOPHYS 5241 Advanced Electrical And Electromagnetic Methods In Geophysical Exp (LAB 1.0 and LEC 2.0)
Theory of the electrical geophysical methods as applied to subsurface investigations addressing geologic, engineering, groundwater and contaminant transport problems. Course content includes both passive and active methods and recent advances in the application of these methods. Course will include a field component illustrating application of techniques to local problems. Prerequisites: Geophys 3251, Math 2222.
GEOPHYS 5261 Computational Geophysics (LAB 2.0 and LEC 1.0)
Scientific programming in a UNIX/Linux environment, with emphasis on solving geophysical problems such as linear and nonlinear inversion, spectral analysis, seismicity, seismic wave attenuation, shear-wave splitting, and seismic tomography. Prerequisite: Geophys 3210.

GEOPHYS 5736 Geophysical Field Methods (LEC 2.0 and LAB 1.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5736).

GEOPHYS 5761 Transportation Applications of Geophysics (LAB 1.0 and LEC 2.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5761 and Civ Eng 5750).

GEOPHYS 5782 Environmental and Engineering Geophysics (LAB 1.0 and LEC 2.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 2222. (Co-listed with Geo Eng 5782).

GEOPHYS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOPHYS 6001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOPHYS 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

GEOPHYS 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOPHYS 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEOPHYS 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEOPHYS 6211 Advanced Seismic Interpretation (LAB 1.0 and LEC 2.0)
The integration of geologic information, well log data and seismic information for interpreting the earth's subsurface using advanced 3-D seismic interpretation software packages. Reservoir identification and evaluation as well as horizon and formation attributes are included. Prerequisites: Geophys 3210 or Geophys 5202.

GEOPHYS 6231 Advanced Seismic Data Processing (LAB 1.0 and LEC 2.0)
Theory and application of seismic data processing. Topics to be covered include convolution, correlation, deconvolution, 2-D filtering, migration and inversion. Prerequisites: Geophys 4251, 5231, Stat 3115.

GEOPHYS 6241 The Theory of Elastic Waves (LAB 1.0 and LEC 2.0)
A mathematical study of elastic waves in the layered earth. Prerequisites: Geophys 3210.

GEOPHYS 6251 Geophysical Inverse Theory (LEC 2.0 and LAB 1.0)
A study of inverse theory applied to geophysical data, focusing on the relationship between data and model spaces and ways to estimate model parameters via global and local optimization techniques. Prerequisites: Geophys 3210 or Graduate Standing in GGPE.

Geotechnics
The geological engineering program at Missouri University of Science and Technology offers an on-line masters of engineering degree in geotechnics. This web-based degree is designed for working professionals, whose upward mobility requires an advanced degree, but who do not wish to take an extended leave of absence to physically attend college. The program is an interdisciplinary master's degree program without a required research component. Courses in geological, civil, and mining engineering can be applied to the degree. The program is offered using distance-education methods and therefore there is no formal residency requirement.

Entrance Requirements
This program is open to graduates holding a B.S. degree in engineering or geology or other hard sciences. (For graduates of a non-engineering B.S. some bridging courses may be required). Prerequisite requirements include at least one introductory course in physical geology and one introductory course in rock mechanics or soil mechanics or equivalent. A minimum GRE score of 1100 (verbal plus quantitative) is required as well as a minimum analytical score of 3.5/5.0. (No GRE score is required if students first complete the four course certificate program in geotechnics). For international students, a TOEFL score of at least 550 is required, or an Internet based TOEFL score of at least 80/120.

Contact information e-mail gtech@mst.edu or visit our website at http://gtech.mst.edu/.

Course Requirements
The M.E. degree program will require 30 semester hours of graduate credit in 4000, 5000, and 6000 level courses. The following four core courses (12 hours) are required:
An additional 18 hours of coursework are required, included a 3 hour industrial (practice oriented) project (GEO ENG 6400). Of the total 30 credit hours required to obtain the degree, a maximum of nine (9) credit hours of graduate-level work with a minimum grade of “B” can be transferred from other another institution, as long as the courses have not been used towards another degree, and have been approved by the student’s advisor. The balance of the credit hours must be taken through Missouri S&T. A minimum of fifteen (15) credit hours must be geological engineering courses.

Neil L Anderson, Professor
PHD University of Calgary
Acquisition processing.

Jeffrey D Cawlfield, Professor
PHD University of California-Berkeley
Director of Freshman Engineering. Probabilistic modeling and geostatistics, ground-water and contaminant transport analysis, and computer applications in geological engineering.

Leslie Sour Gertsch, Associate Professor
PHD Colorado School of Mines
Rock mechanics, mechanical mining and excavating, mine design and rock fragmentation.

Katherine R Grote, Associate Professor
PHD University of California, Berkeley
Application of geophysical techniques for hydrological site characterization with emphasis on vadose zone processes, investigation of agriculture practices for improved water management.

Joe D Guggenberger, Assistant Professor
PHD Missouri University of Science and Technology
Green sustainable remediation, renewable energy development, international humanitarian engineering.

Norbert H Maerz, Associate Professor
PHD University of Waterloo
Rock mass classification, rock engineering, slope stability, joint genesis, computer applications and image processing.

J David Rogers, Associate Professor
PHD University of California-Berkeley
Seismic hazards, geotechnical engineering, dam safety and earth structures.

GEO ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor is required.

GEO ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
GEO ENG 5173 Geologic Field Methods (LAB 3.0)
Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.

GEO ENG 5174 Geological Engineering Field Methods (LAB 3.0)
Instruction in methods of field investigation required for geological engineering studies. Course will include procedures for qualitative and quantitative data collection for characterizing surficial geologic conditions, groundwater and surface water investigations, and other engineering activities. Written reports and field trip required.

GEO ENG 5211 Introduction to International Engineering and Design Lab (LAB 1.0)
The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by GEO ENG 5247.

GEO ENG 5233 Risk Assessment In Environmental Studies (LEC 3.0)
This course will present the concepts required to assess the human health and environmental risks resulting from contaminants in soil and groundwater. Course topics include evaluation of data sets, exposure calculation, chemical fate and transport, and development of conceptual site models.

GEO ENG 5235 Environmental Geological Engineering (LEC 3.0)
Introduction to engineering geologic mapping for site selection for solid waste disposal facilities; landfill site selection, design, permitting, construction, operation, and closeout/reclamation. Prerequisites: Geo Eng 3175, accompanied or preceded by Civ Eng 3715.

GEO ENG 5237 Geological Aspects Of Hazardous Waste Management (LEC 3.0)
Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geological characterization of facility sites; design of impoundments, storage and containment facilities; groundwater monitoring and protection; site permitting and licensing planning. Prerequisite: Geo Eng 3175.

GEO ENG 5239 Groundwater Remediation (LEC 3.0)
A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physico-chemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Various computer programs developed to assist in preliminary selection and design of remediation technologies will be used. Prerequisite: Geo Eng 5331.

GEO ENG 5247 Introduction to International Engineering and Design (LEC 2.0)
A multi-disciplinary design course focused on sustainable design and technology transfer to developing countries. Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 5211.

GEO ENG 5276 Advanced Environmental Aspects Of Mining (LEC 3.0)
Applied and fundamental research issues pertaining to: permitting -- the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Course project. (Co-listed with Min Eng 5742).

GEO ENG 5315 Advanced Statistical Methods in Geology and Engineering (LEC 3.0)
Application of statistical methods to study of geologic materials and practices, with emphasis on reliable interpretation of laboratory and field data for water, hydrocarbon, and mineral exploration, research, and engineering as well as other aspects of geological engineering. Prerequisites: Geo Eng 4115 or Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117.

GEO ENG 5320 Groundwater Modeling (LEC 3.0)
This course is an introduction to advanced modeling techniques for understanding flow and transport in porous media under different hydrologic conditions. Emphasis is placed on both theoretical and practical modeling considerations. Computer demonstrations are incorporated. Practical applications are emphasized. Prerequisite: Civ Eng 3330 or Geo Eng 5331.

GEO ENG 5331 Subsurface Hydrology (LEC 3.0)
Introduction to the theory and engineering concepts of the movement of subsurface fluids. Properties of water and other subsurface fluids. Hydraulic characteristics of earth materials. Engineering problems related to subsurface fluids. Prerequisites: Geo Eng 1150, Math 3304.

GEO ENG 5332 Fundamentals of Groundwater Hydrology (LEC 3.0)
Focus on fundamental analysis and survey of groundwater hydrology with emphasis on practical geo-environmental and subsurface hydrology issues of interest to working professionals. Topics will include general hydrology, surface and subsurface interconnection, basic groundwater flow and well test analysis, and a brief intro to contaminant transport.

GEO ENG 5381 Intermediate Subsurface Hydrology And Contaminant Transport Mech (LEC 3.0)
A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is on waterrock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Civ Eng 3330 & Geo Eng 5331.
GEO ENG 5415 Soil Mechanics for Geoprofessionals (LEC 3.0)
The basic principles of soil mechanics necessary for professionals to practice in the field of geoconstruction. Topics related to the practical aspects of engineering include: soil classification, index properties, water flow through soils, compaction, compressibility, and shear strength. These basic principles will be applied to real world problems.

GEO ENG 5441 Engineering Geology And Geotechnics (LEC 3.0)
Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Geo Eng 3175.

GEO ENG 5443 Subsurface Exploration (LAB 1.0 and LEC 2.0)
Lectures and laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Geo Eng 1150.

GEO ENG 5471 Rock Engineering (LEC 3.0)
Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Geo Eng 3175.

GEO ENG 5556 Renewable Energy Systems (LEC 3.0)
Introduction to the theory and performance prediction of typical renewable energy systems such as, but not limited to, those based on energy from the sun, wind and water, and geothermal. The use of environmental data, including stochastic modeling, for renewable energy system (including wind turbine, photovoltaic, and geothermal) design is addressed. Prerequisites: Math 3304, Physics 2135, and preceded or accompanied by Geo Eng 4115 or any Probability and Statistics class. Junior or senior standing is required.

GEO ENG 5575 Aggregates And Quarrying (LEC 3.0)

GEO ENG 5642 Military Geology (LEC 3.0)
This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geography, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Geo Eng 3175 or graduate standing.

GEO ENG 5736 Geophysical Field Methods (LEC 2.0 and LAB 1.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5736).

GEO ENG 5761 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5761 and Civ Eng 5750).

GEO ENG 5782 Environmental and Engineering Geophysics (LEC 2.0 and LAB 1.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 2222. (Co-listed with Geophys 5782).

GEO ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEO ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 6010 Seminar (RSD 1.0)
Discussion of current topics. Prerequisite: Graduate student.

GEO ENG 6040 Oral Examination
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEO ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEO ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

GEO ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.
GEO ENG 6146 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)
Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 5146. (Co-listed with Geology 6341).

GEO ENG 6235 Advanced Concepts Of Environmental Geological Engineering (LEC 3.0)
Application of the principles of geology to the solution of engineering problems in environmental protection and remediation. Topics will include the study of geologic processes and the evaluation of geologic materials as they affect the potential for groundwater contamination, susceptibility of soils to erosion, characterization of the geologic environment for site suitability and the analysis of the criteria necessary for the selection of technologies for minimizing environmental impact. Prerequisite: Graduate level course in environmental geologic studies.

GEO ENG 6237 Advanced Geological & Geotechnical Design For Hazardous Waste Mgt (LEC 3.0)
Geological and geotechnical design factors for hazardous waste management facilities and remedial actions (cleanup) of uncontrolled hazardous waste sites. Prerequisite: Geo Eng 5237 or consent of instructor.

GEO ENG 6331 Advanced Subsurface Hydrology (LEC 3.0)
Advanced treatment of selected topics in subsurface hydrology, including groundwater contamination, contaminant transport, land disposal of wastes, aquifer test analysis, injection well technology, etc. Applied hydrogeologic site analysis and flow and transport modeling through solution of selected case examples. Prerequisite: Geo Eng 5331 or equivalent.

GEO ENG 6332 Numerical Methods In Subsurface Flow (LEC 3.0)
Development of governing balance equations, constitutive laws and mathematical models of groundwater flow and contaminant transport in porous media. Solution of mathematical models by finite difference and finite element methods for various boundary and initial conditions. Prerequisites: Geo Eng 5331, Comp Sci 1970.

GEO ENG 6400 Practice Oriented Project (IND 3.0)
This class will consist of a single term project. Students will, in consultation with the instructor, pick a topic relevant to their studies, and produce a comprehensive, in depth, professionally written report, including a literature review on the state of the practice on that topic. Prerequisites: Limited to students enrolled in the Masters of Engineering (M.E.) in Geotechnics Program.

GEO ENG 6407 Inca Civilization Geotechnical Engineering Practices (LEC 3.0)
An in-depth study of geotechnical engineering practices in the mountains of Peru, including the Cuzco-Machu Picchu corridor, with emphasis on the inter-relationships between tectonics, geology, geomorphology, climate, hydrology, agriculture, quarrying, construction practices, irrigation, culture and history. A week-long field trip to Peru during Spring Break is required at student's expense. Prerequisite: Geo Eng 1150 or Civ Eng 3715 or Geo Eng 5471 or equivalent; Graduate standing. (Co-listed with Civ Eng 6760).

GEO ENG 6441 Geotechnical Construction Practice (LEC 3.0)
Advanced level lecture topics on procedures used for site characterization, standards for earthquake grading and construction, including embankments, building pads, retention structures, roads, levees, and earthen dams. Specific emphasis on preparation of documents involved in such work and engineer's responsibilities. Prerequisite: Geo Eng 5441.

GEO ENG 6477 Discontinuous Rock (LEC 3.0)
Nature and properties of discontinuous rock masses, genesis and properties of joints, role of joints in rock shear strength, slope of stability of jointed rock, fracture flow hydrogeology. Modeling of the mechanical behavior of fractured rock. Prerequisite: Min Eng 4823 or Geo Eng 5471.

GEO ENG 6625 Applications in Geological Engineering (LEC 3.0)
Content is focused on practical aspects of geological engineering. Geotechnical, environmental and geohyrdologic case studies are presented to illustrate concepts and relate theory to applications.

GEO ENG 6736 Advanced Geophysical Methods (LAB 1.0 and LEC 2.0)
Geophysical field data will be acquired at selected study sites with the objective of imagine the shallow subsurface and/or built structures. Registrants will process and interpret the acquired non-invasive imaging data using ground truth as a constraint. Prerequisite: Graduate Standing.

GEO ENG 6782 Surface Waves (MASW) and Ground Penetrating Radar (GPR) (LAB 1.0 and LEC 2.0)
Geological engineering applications of surface wave and ground penetrating radar methods are emphasized. Field data will be acquired, processed and interpreted. Prerequisites: Geo Eng 1150 or Civ Eng 3715 or equivalent, and graduate standing.

GEO ENG 6784 Advanced Engineering And Environmental Geophysics (LEC 3.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential induced polarization, seismic, electromagnetic and GPR methods as applied to the solution of engineering and environmental problems. Prerequisite: Admittance into USAES-S&T Co-operative Degree Program. (Co-listed with Geophys 5251).

Information Science and Technology
Information science and technology (IS&T) offers an M.S. degree program. Information technology has transformed every aspect of our economy and society. Rapid spread of technology has generated the need for highly trained professionals to implement and maintain information systems. The M.S. in information science and technology is designed to educate students in the design, development, and successful application of information systems in organizations.

Also offered are a number of graduate certificates:
- Business analytics and data science
- Business intelligence
- Business project management
- Cybersecurity and information assurance management
- Digital media and web design
- Digital supply chain management
• Electronic and social commerce
• Enterprise resource planning
• Entrepreneurship and technological innovation
• Finance
• Financial technology
• Human-computer interaction and user experience
• Information systems project management
• Management and leadership
• Mobile business and technology

These graduate certificates are intended for students who wish to specialize and for working professionals who want to stay ahead of rapidly changing technology. Each graduate certificate program consists of a four-course sequence from existing graduate-level courses. Certificate credits earned by students admitted to the M.S. program will count toward their master’s degree. Students admitted just to the certificate program will have non-matriculated status. However, if they complete the four-course sequence with a grade of “B” or better in each of the courses taken, they will be admitted to the M.S. program if they so choose. In addition, successful completion of the graduate certificate offered in the business program, with grades of “B” or better in each of the courses will also enable admission to the IS&T M.S. program. Admitted students must still meet the admissions requirements relative to undergraduate coursework prerequisites.

The faculty is active in studying the design and application of the web and has external support for research. Research experiences are integrated into the classroom experience. Specially equipped research laboratories are available to support studies in human-computer interaction and experiments with computer networks, as are general purpose computing laboratories that are available to all students. A large number of computing languages and special-purpose software tools are available on various platforms. While instruction and research are on the leading edge of information systems, the department endeavors to keep class sizes small to facilitate student and faculty interactions.

Financial Assistance
Financial assistance is available to graduate students in the form of assistantships and fellowships. Research opportunities for advanced students exist. For application forms, contact the department.

Additional Information
Contact us at 573-341-7216, bit@mst.edu or visit http://bit.mst.edu.

Admission Requirements
In addition to the requirements set by the office of admissions and the office of graduate studies, specific requirements for admission to the M.S. in information science and technology (thesis or non-thesis) are as follows:

• Successful completion of an undergraduate degree from a recognized college or university with a GPA (grade point average or international equivalent) of 3.0/4.0 or better.
• Submission of scores from the Graduate Record Exam (GRE) or the Graduate Management Admissions Test (GMAT).
• TOEFL or IELTS scores must be submitted if English is not the candidate’s natural language.
• Undergraduate coursework in Calculus; Statistics; Object-oriented Programming with Data Structures; Information Systems; Relational Database Management Systems; and Computer Architecture must be shown.

Please note that meeting the above requirements does not guarantee admission into the M.S. in information science and technology, but, rather, is used by the admissions committee in the decision-making process.

Degree Requirements
M.S. with thesis: The M.S. degree with thesis requires the completion of 24 hours of graduate course work (5000-level or above), 6 hours of research, and the successful completion and defense of a research thesis.

M.S. without thesis: The M.S. degree without thesis requires the completion of 30 hours of graduate course work (5000-level and above). Courses below the 5000-level will not count toward the M.S. degree, even if they are taken to fulfill prerequisites.

The following core courses are required of all M.S. students in information science and technology. These courses are designated to ensure that all IS&T masters students study the four information systems perspectives of networks and web design, human perception, application implementation, and organizational systems.

- IS&T 5251 Technology Innovation Management and Leadership
- IS&T 5885 Human-Computer Interaction
- IS&T 6261 Advanced Information Systems Project Management
- IS&T 6336 Foundations of Internet Computing

The department of business and information technology offers a variety of graduate certificates. Each certificate program consists of four courses and is open to persons holding a bachelor’s, master’s or Ph.D. degree in areas such as business, social sciences, technology, engineering, or related disciplines who have the required pre-requisites for the courses in the program. A student must maintain an average cumulative grade point of 3.0 or better on a 4.0 scale in the certificate courses in order to receive the graduate certificate.

Students may apply to be admitted only to a graduate certificate program. If admitted, the student will have non-degree graduate status but will earn graduate credit for the courses completed. If a student completes the four graduate certificate courses with a grade of B or better in each of the courses taken, the student may be admitted to the master of business administration or to the master of science in information science and technology if the student so chooses. A student must, however, follow the normal application process and meet the undergraduate coursework prerequisites. The graduate certificate credits will count toward the student’s MBA or M.S. degree.

Details about some of the graduate certificates are listed below; others are listed in the business administration section of the catalog.

AI, Machine Learning and Automation in Business
Artificial Intelligence is a disruptive technology in the business realm with transformational impact. From detecting malware and preventing money laundering to automating insurance claims and optimizing inventory and improving product recommendations and more, AI will continue to necessitate changes in core business processes and models. Within the past few years, machine learning, while not fully tapped in the business sphere, has become more effective and widely utilized. Tomorrow’s
leaders and managers will need to integrate machine learning where appropriate, incorporating its capabilities with those of humans. The design and implementation of new combinations of technologies with human skills to meet customers’ needs will require critical thinking skills, creativity, and project planning.

A student admitted to this graduate certificate must complete four courses:

- BUS 5730 Machine Learning and Artificial Intelligence for Business
- IS&T 5535 Machine Learning Algorithms and Applications

And two of the following:

- BUS 6723 Artificial Intelligence, Robotics, and Information Systems Management
- IS&T 5520 Data Science and Machine Learning with Python
- IS&T 6443 Information Retrieval and Analysis
- IS&T 6445 Database Marketing

Business Analytics and Data Science

Data analytics facilitates realization of objectives by identifying trends, creating predictive models for forecasting, and optimizing business processes for enhanced performance. Three main categories of analytics are:

- **Descriptive** - the use of data to find out what happened in the past.
- **Predictive** - the use of data to find out what could happen in the future.
- **Prescriptive** - the use of data to prescribe the best course of action for the future.

Big data is an emerging phenomenon. Computing systems today are generating 15 petabytes of new information every day—eight times more than the combined information in all the libraries in the U.S.; about 80% of the data generated every day is textual and unstructured data.

This graduate certificate is one of three graduate certificates offered by cooperating departments at Missouri S&T to fulfill the needs in the area described as “big data.” The other two graduate certificates are:

- **Big Data and Security**
- **Big Data Management and Analytics**

A student admitted to this graduate certificate must complete four courses:

- IS&T 5420 Business Analytics and Data Science
- IS&T 6450 Information Visualization

One course from the following:

- IS&T 5001 Special Topics (Data Methodologies Using Python)
- ERP 5410 Use of Business Intelligence
- COMP SCI 5204 Regression Analysis
- COMP SCI 5402 Introduction to Data Mining
- COMP SCI 6304 Cloud Computing and Big Data Management
- COMP ENG 6330 Clustering Algorithms
- STAT 5814 Applied Time Series Analysis

One course from the following:

- IS&T 6443 Information Retrieval and Analysis
- IS&T 6444 Essentials of Data Warehouses
- IS&T 6445 Database Marketing
- IS&T 6448 Building the Data Warehouse
- IS&T 6887 Research Methods in Business and IS&T
- ERP 5210 Performance Dashboard, Scorecard and Data Visualization

Business Intelligence

Interest in business intelligence has been a recent strong theme among employers. Medium and large-sized businesses are especially interested. In order to make appropriate decisions, upper-level administration of an organization needs to draw data together from different systems in order to get a unified picture of the status and performance of an organization and present it in helpful ways. Examples include the development of organizational scorecards, dashboards, and other tools that provide a picture of how an organization is performing. People capable of creating and maintaining such information are needed.

This graduate certificate focuses on the technologies that allow an organization to make effective business decisions based on operational data pulled together from many different sources inside and organization. The target audience consists of any individual who would manage any type of IT professionals, database administrators, business analysts, and any person who would need to understand the technologies and their capabilities.

A student admitted to this graduate certificate must complete four courses:

- ERP 5410 Use of Business Intelligence
- IS&T 6444 Essentials of Data Warehouses
- IS&T 6445 Database Marketing

Two courses from the following list:

- ERP 5110 Enterprise Resource Planning Systems Design and Implementation
- ERP 5210 Performance Dashboard, Scorecard and Data Visualization
- ERP 6610 Advanced Customer Relationship Management in ERP Environment
- ERP 6220 Data Modeling & Visualization Prototyping for Enterprise Decision Dashboards
- IS&T 6443 Information Retrieval and Analysis
- IS&T 6445 Database Marketing

Cybersecurity and Information Assurance Management

Cybersecurity is one of the fastest growing employment segments in IT. As technology grows and progresses, with our devices and lives becoming more and more interconnected, the challenges of cybersecurity and information assurance will continue to grow. This presents a career to those with the necessary skills that will be exciting, rewarding, fast-paced, and highly sought after.

A student admitted to this graduate certificate must complete four courses:

- BUS 5910 Privacy and Information Security Law
- IS&T 6780 Adv Human and Organizational Factors in Cybersecurity

Two courses from the following list:

- ERP 5240 Enterprise Application Development and Software Security
- IS&T 6335 Mobile Technology for Business
- IS&T 6336 Foundations of Internet Computing
- IS&T 6641 Advanced Digital Commerce and the Internet of Things
Digital Media and Web Design
Digital media is growing as consumers change the way they access information. In pursuing this certificate, students will acquire the skills and knowledge to create, design and analyze digital media. The focus will be on the media itself, the social/digital network that connects these media, the interfaces that connect these media with users, and the application of these skills in business and other creative contexts. Thus this certificate program will address the pressing demand and opportunities for graduates with advanced knowledge and skills in areas such as networked communication and marketing, web-based media creation and design, and methods for designing and building effective human-media interfaces.

A student admitted to this graduate certificate must complete four courses:

<table>
<thead>
<tr>
<th>IS&T 6654</th>
<th>Advanced Web and Digital Media Development</th>
</tr>
</thead>
</table>

Two courses from the following list:

<table>
<thead>
<tr>
<th>IS&T 5885</th>
<th>Human-Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 6680</td>
<td>Advanced Web and New Media Studies</td>
</tr>
<tr>
<td>MKT 5310</td>
<td>Digital Marketing and Promotions</td>
</tr>
</tbody>
</table>

One course from the following:

<table>
<thead>
<tr>
<th>IS&T 5652</th>
<th>Advanced Web Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS&T 5886</td>
<td>Prototyping Human-Computer Interactions</td>
</tr>
</tbody>
</table>

Electronic and Social Commerce
Social commerce is just one sub-set of e-commerce, however it is growing rapidly. The department of business and information technology (BIT) has leveraged its’ strengths in both business and technology for this program, which is designed to create successful students by developing skills in technological business practices that will provide opportunities for succeeding in today’s fast paced world. To that end, the program focuses on the following competencies:

- Management concepts applied to IT
- Management concepts applied to support of electronic commerce
- Use of business processes in IT integration
- Competitive advantage through IT
- Electronic commerce through collaborative shopping

A student admitted to this graduate certificate must complete four courses:

| IS&T 6641 | Advanced Digital Commerce and the Internet of Things |

One course of the following:

| IS&T 5251 | Technological Innovation Management and Leadership |
| BUS 6723 | Artificial Intelligence, Robotics, and Information Systems Management |

Two courses from the following list:

IS&T 5168/5926	Law and Ethics in E-Commerce
IS&T 5652	Advanced Web Development
IS&T 5885	Human-Computer Interaction
IS&T 5886	Prototyping Human-Computer Interactions
IS&T 6335	Mobile Technology for Business
IS&T 6445	Database Marketing
IS&T 6680	Advanced Web and New Media Studies
MKT 5310	Digital Marketing and Promotions
MKT 6580	Advanced Marketing Strategy

Digital Supply Chain Management
Success in today’s marketplace requires that organizations deliver products and services that provide easily identified value for their customers. This certificate draws on strengths within two departments to integrate source (strategic procurement and supply management), production (manufacturing and service operations), and delivery processes (demand fulfillment), with a focus on the use of information technologies as the critical enabler of supply chain efficiencies and responsiveness.

The certificate is designed to give students the tools and ideas that help shape and define the various components of value creation. Students can gain knowledge and skills in the full spectrum of supply chain activities: supplier relationships, purchasing management, operations and inventory management, logistics and transportation, quality management, and information technology.

A student admitted to this graduate certificate must complete four courses:

| ERP 5110 | Enterprise Resource Planning Systems Design and Implementation |
| ERP 5310 | Supply Chain Management Systems in an ERP Environment |

One course from the following list:

| MECH ENG 5708 | Rapid Product Design And Optimization |
| BUS 6425 | Supply Chain and Project Management |

One course from the following list:

ERP 5410	Use of Business Intelligence
ERP 6120	Enterprise Resource Planning: Systems Config and Integration
ERP 6610	Advanced Customer Relationship Management in ERP Environment
MECH ENG 5556	Design For Manufacture
MECH ENG 5757	Integrated Product And Process Design
MECH ENG 5760/1	Probabilistic Engineering Design
AERO ENG 5760	
MECH ENG 5763	Computer Aided Design: Theory and Practice

Enterprise Resource Planning (ERP)
Corporations worldwide have focused on improving business processes for the past two decades. In fact, while most Fortune 500 companies have already adopted enterprise resource planning (ERP) systems, many midsize companies are also planning ERP implementations. With a commitment to keep pace with these changes in business processes and technology, the University of Missouri system joined SAP’s™ University Alliance and Microsoft’s™ University Alliance programs in order to continue and expand classroom capabilities for integrating ERP software into the curriculum.

ERP systems can be used to reinforce many of the concepts covered in the business discipline. ERP systems incorporate state-of-the-art technology, providing a comprehensive teaching tool for business and for information systems. Universities that have successfully incorporated an ERP system into their curricula find unprecedented student demand for those subjects.

ERP can be viewed as a combination of business management practice and technology, where information technology integrates with a company’s core business processes to enable the achievement of specific business objectives. This certificate prepares students for positions as both technical and business consultants in the ERP field.

A student admitted to this graduate certificate must complete four courses:
Mobile Business and Technology

Interest in the use of mobile technology among organizations has seen a strong, upward trend over the past few years. The proliferation of smart phone and tablet devices has presented organizations with new challenges creating and developing a coherent strategy associated with this new innovation. In order to create this strategy, organizations will need an understanding of the mobile industry in general and specific technologies supporting the trend. People capable of creating and maintaining mobile technology strategies are needed.

This certificate is designed to cover the mobile industry as well as the technologies, devices, operating systems, user interface design, and tools of mobile applications. The focus will be on the mobile industry and technologies that allow an organization to make decisions in this dynamic domain.

A student admitted to this graduate certificate must complete four courses:

- IS&T 6335 Mobile Technology for Business
- ERP 5240 Enterprise Application Development and Software Security

Two courses from the following list:

- ERP 5210 Performance Dashboard, Scorecard and Data Visualization
- ERP 5310 Supply Chain Management Systems in an ERP Environment
- ERP 6610 Advanced Customer Relationship Management in ERP Environment
- IS&T 5652 Advanced Web Development
- IS&T 5886 Prototyping Human-Computer Interactions

Carla Pauline Bates, Assistant Teaching Professor
PhD University of Missouri-Columbia
Learning styles, learning technologies.

Randy Lawrence Canis, Adjunct Professor
JD University of Missouri-Columbia
Privacy and information security law, patent law, intellectual property for computer scientist, legal environment for engineers.

Langtao Chen, Assistant Professor
PhD Georgia State University
Data analytics, human-computer interaction, social media, health informatics, machine learning, gameful design.

Yu Hsien Chiu, Associate Teaching Professor
MASTER University of Wisconsin-Milwaukee
Enterprise resource planning, accounting information systems.

Craig C Claybaugh, Associate Professor
PhD University of Wisconsin-Milwaukee
Enterprise resource planning, information technology vendor-client relationships, online trust, social networking.

Cassandra Carlene Elrod, Associate Professor
PhD University of Missouri-Rolla
Marketing in higher education, operations management, supply chain management, continuous improvement, project management, quality, and lean enterprise.
Li-Li Eng, Associate Professor
PHD University of Michigan Ann Arbor
Financial and managerial accounting, international accounting.

Hanqing Fang, Assistant Professor
PHD Mississippi State University
Strategic management, family business, entrepreneurship.

Barry B Flachsbart, Professor
PHD Stanford University
Large databases, manufacturing information systems, information systems project management, team building and leadership, machine learning, and artificial intelligence.

Nobuyuki Fukawa, Associate Professor
PHD Louisiana State University
Consumer behavior, marketing research, marketing strategy.

Richard H Hall, Professor
PHD Texas Christian University
Human-computer interaction with a focus on learning technologies.

Michael Gene Hilgers, Professor
PHD Brown University
Modeling and simulation, learning technologies, and human-computer interaction.

Bih-Ru Lea, Associate Professor
PHD Clemson University
Enterprise resource planning, performance dashboards, accounting information systems, data visualization, business process integration, and supply chain management.

Yu Liu, Assistant Professor
PHD University of Oregon
Empirical corporate finance, investment, OTC market, public finance, and political economics.

Chris J Merz, Adjunct Instructor
PHD University of California-Irvine
Utilization of statistics and databases in marketing activities.

Fiona Fui-Hoon Nah, Professor
PHD University of British Columbia
Management information systems, E-commerce, mobile commerce, human-computer interaction.

Nicholas Oswald, Adjunct Instructor
MASTER Missouri University of Science & Technology
Human-computer interaction, implementing information systems, management information system, system analysis and design.

Keng Leng Siau, Professor
PHD University of British Columbia
Artificial intelligence/machine learning, business intelligence/analytics, design science, mobile, and ubiquitous business.

Sarah Margaret Stanley, Assistant Professor
PHD Saint Louis University
Brand relationships, advertising effectiveness, social marketing and its effects on consumer brand choice.

Nathan W Twyman, Assistant Professor
PHD University of Arizona
Deception detection, human-computer interaction, human risk assessment, auditing, security, and forensic systems.

Wen-Bin Yu, Associate Professor
PHD University of Louisville
Business intelligence, text mining, data mining, demand forecasting, simulation, and agent based systems.

Hongxian Zhang, Assistant Professor
PHD University of Texas at San Antonio
Corporate finance, investments, public pension funds.

IS&T 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IS&T 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

IS&T 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

IS&T 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

IS&T 5131 Foundations of Computer Architecture (LEC 3.0)
Design-oriented foundations of computer components and operation. Standard codes; number systems; base conversions; computer arithmetic; boolean algebra; operating system components including memory management, device management; plus related computer architecture topics. Research paper required. Prerequisites: Graduate Standing, strong programming knowledge.

IS&T 5168 Law and Ethics in E-Commerce (LEC 3.0)
Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. (Co-listed with Philos 4368).
IS&T 5251 Technological Innovation Management and Leadership (LEC 3.0)
The course focuses on the knowledge and skills necessary for the
development and implementation of effective strategies for the
management of technology-based organizations. This involves:
developing a general management perspective on technology and
innovation, examining the problems of new product development,
identifying distinctive technological competencies, licensing and
marketing technologies, assessing the organizational and industrial
context of technology. Prerequisite: Senior or Graduate Standing.

IS&T 5420 Business Analytics and Data Science (LEC 3.0)
Analysis of large business data sets via statistical summaries, cross-
tabulation, correlation, and variance matrices. Techniques in model
selection, prediction, and validation utilizing general linear and logistic
regression, Bayesian methods, clustering, and visualization. Extensive
programming in R is expected. Prerequisites: Calculus, Statistics, and
Programming Knowledge.

IS&T 5423 Foundations of Data Management (LEC 3.0)
Foundational concepts of database management systems. Issues in
database architecture, design, administration, and implementation.
Extensive use of SQL with Oracle to create and manage databases.
Significant project dealing with triggers or stored procedures.
Prerequisites: Graduate Standing, knowledge of MIS, programming ability.

IS&T 5520 Data Science and Machine Learning with Python (LEC 3.0)
Examines data science methodologies for scraping, manipulating,
transforming, cleaning, visualizing, summarizing, and modeling large-
scale data as well as supervised and unsupervised machine learning
algorithms applied in various business analytics and data science
scenarios. Python libraries such as Pandas, NumPy, Matplotlib, and
Scikit-learn are utilized. Prerequisites: One of Stat 3111, Stat 3113, Stat
3115, Stat 3117 and either IS&T 1552 or Comp Sci 1575; for Graduate
Students: Graduate Standing and Knowledge of Calculus, Statistics, and
Programming.

IS&T 5535 Machine Learning Algorithms and Applications (LEC 3.0)
Introduces techniques of modern machine learning methods with
applications in marketing, finance, and other business disciplines.
Topics include regression, classification, resampling methods, model
selection, regularization, decision trees, support vector machines,
principal component analysis, and clustering. R programming is required.
Prerequisites: One of Stat 3111, Stat 3113, Stat 3115, Stat 3117 and
either IS&T 1552 or Comp Sci 1575; or Graduate Standing with knowledge
of calculus, statistics, and programming.

IS&T 5552 Advanced Web Development (LEC 3.0)
Advanced Web development techniques to provide dynamic interaction;
methods for extracting and delivering dynamic information to/from Web
servers - a hands-on approach. Emphasis on interaction with servers;
mobile software development; processing of graphics and web video.
Project work is required. Prerequisites: IS&T 1551 and IS&T 4654.

IS&T 5885 Human-Computer Interaction (LEC 3.0)
Introduction to the field of Human-Computer Interaction (HCI). Students
examine issues and challenges related to the interaction between
people and technology. The class explores the social and cognitive
characteristics of people who use information systems. Students
learn techniques for understanding user needs, interface prototyping &
interface evaluation.

IS&T 5886 Prototyping Human-Computer Interactions (LEC 3.0)
This course explores novel HCI and UX technologies as well as methods
and tools for creating system prototypes, including best practices and
guidelines for optimal user experiences. Example concepts include
mobile applications, behavioral monitoring, gamification, natural user
interfaces, haptics, and computers as social actors. Prerequisite:
Preceded or accompanied by IS&T 5885.

IS&T 5887 Human-Computer Interaction Evaluation (LEC 1.5 and LAB 1.5)
This course covers research and analysis methods and tools for
evaluation of the impact of information technology systems on humans
and organizations. The focus will be on practical evaluation with the goal
of providing recommendations for improving system functionality and
usability. Prerequisite: Preceded or accompanied by IS&T 5885.

IS&T 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

IS&T 6001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new
course. Variable title.

IS&T 6050 Continuous Registration (LEC 1.0)
Doctoral candidates who have completed all requirements for the degree
except the dissertation, and are away from the campus must continue
to enroll for at least one hour of credit each registration period until the
degree is completed. Failure to do so may invalidate the candidacy. Billing
will be automatic as will registration upon payment.

IS&T 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a
thesis or dissertation. Consent of instructor required.

IS&T 6261 Advanced Information Systems Project Management (LEC 3.0)
Project management principles, first from a general perspective, and then
focused specifically on information system application development are
explored. Topics include requirements analysis, project scheduling, risk
management, quality assurance, testing, and team coordination. Report
writing and research literature searches are required. Prerequisites: IS&T
MS Entrance requirements, with strong programming knowledge.

IS&T 6335 Mobile Technology for Business (LEC 3.0)
Overview of mobile technology use in business environments. Topics
include: mobile industry; mobile network and wireless standards; mobile
devices; mobile web design and app development; social and user
experience issues; mobile marketing and commerce. Project required.
IS&T 6336 Foundations of Internet Computing (LEC 3.0)
The foundations of Internet Computing include computer networks and Web sites. Networks are covered thoroughly and research directions for networking and information security are discussed. Web site design and research findings about site usability considerations are examined. Prerequisite: IS&T MS entrance requirements, including solid programming knowledge.

IS&T 6443 Information Retrieval and Analysis (LEC 3.0)
Covers the applications and theoretical foundations of organizing and analyzing information of textual resources. Topics include information storage and retrieval systems, web search engines, text mining, collaborative filtering, recommender systems. Students will also learn the techniques with the use of interactive tools such as SAS. Prerequisite: ERP 5410 or statistics knowledge.

IS&T 6444 Essentials of Data Warehouses (LEC 3.0)
This course presents the topic of data warehouses and the value to the organization. It takes the student from the database platform to structuring a data warehouse environment. Focus is placed on simplicity and addressing the user community needs. Project required. Prerequisite: IS&T 5423 or equivalent relational database experience. (Co-listed with ERP 6444).

IS&T 6445 Database Marketing (LEC 3.0)
Intro to methods and concepts used in database marketing: 1) predictive modeling techniques (e.g., regression, decision trees, cluster analysis) and 2) standard processes for mapping business objectives to data mining goals to produce a deployable marketing model. Metrics like lifetime value of a customer and ROI will be covered. Several application areas covered. Prerequisite: Statistics understanding, programming understanding, familiarity with spreadsheets.

IS&T 6448 Building the Data Warehouse (LEC 3.0)
Data modeling and processes needed to populate a data warehouse; tradeoffs among several models and tools; technical issues that are faced, such as security, schemas, Web access, other reporting techniques. Prerequisite: IS&T 6444.

IS&T 6450 Information Visualization (LEC 3.0)
Topics/activities include: the visualization development framework, traditional presentations of data, human perception and aesthetics, colorspace theory, visualization algorithms and software, case studies of modern topology, research into visualization algorithms and implementations in R. Students will produce significant programs and visualizations. Prerequisites: Statistics, Calculus, and Programming Knowledge.

IS&T 6641 Advanced Digital Commerce and the Internet of Things (LEC 3.0)
Fundamental concepts of management and application to IT and support of commerce. Examines use of IT in business processes and everyday interactions such as IoT. Explores management issues of integrating IT into processes to run businesses better. Includes a major end-of-semester project. Prerequisites: Knowledge of management information systems.

IS&T 6654 Advanced Web and Digital Media Development (LEC 3.0)
This course covers advanced techniques and tools for the design and development of web-based media, including text, graphics, animation, audio, and video. This course is an advanced version of Web and Digital Media Development, with additional assignments.

IS&T 6680 Advanced Web and New Media Studies (LEC 3.0)
The course covers web culture, including topics such as social media; citizen journalism, crowd intelligence, privacy, and copyright. This course is an advanced version of Intro to Web Studies, with additional assignments.

IS&T 6780 Adv Human and Organizational Factors in Cybersecurity (LEC 3.0)
In-depth examination of human and organizational factors in cybersecurity and information assurance. Examines current challenges to protecting the integrity, availability, and confidentiality of information, as well as tools, methods, principles, and analytics for fraud prevention, insider threat detection, and forensic investigations. Project Required. Prerequisite: None, but recommended: IS&T 3333 or IS&T 6336 or Comp Sci 3600 or another introductory cybersecurity or information assurance course.

IS&T 6887 Research Methods in Business and IS&T (LEC 3.0)
This course covers quantitative and qualitative research methods for exploring the interaction between people and information technologies. The course covers techniques and tools for carrying out literature reviews, forming research goals, designing research, conducting data analyses; and preparing manuscripts and live presentations. (Co-listed BUS 6887).

Manufacturing Engineering

Manufacturing uses advanced technologies to transform materials into new products or parts of products. Today's manufacturing industry includes (but is not limited to) aerospace, biotechnology, electronic equipment manufacturing, engineering in machining and equipment, food processing and supply, light metals, marine industries, etc.

Missouri S&T's manufacturing engineering education program offers the interdisciplinary master of science (M.S.) and master of engineering (M.E.) degrees on campus or through distance learning via the internet. Both degree programs are intended for a student with a B.S. degree in engineering to learn about modern manufacturing technologies involving computers and automation.

Also offered are graduate manufacturing engineering certificate programs, including manufacturing systems and CAD/CAM and rapid product realization for working professionals who want to stay ahead of rapidly changing technology.

The M.S. program is a research-oriented degree where the courses supplement the thesis research. The M.E. program is designed such that the course selection is flexible and the student is allowed to take courses pertaining to his or her area of interest. A practice-oriented project is required by the M.E. program, which provides an opportunity for the student to participate in a practical project related to a manufacturing process. The M.E. program is structured so that individuals, such as working engineers, who wish to improve their knowledge and skills can complete their degree in one year.
The M.S. program requires 30 credit hours and a thesis:

- 12 credit hours from the manufacturing core areas
- 6 credit hours of 6000-level courses in manufacturing
- 6 to 9 credit hours for thesis research
- 3 to 6 credit hours of graduate courses in manufacturing as approved by the academic advisor

The M.E. program requires 30 credit hours and a practice-oriented project. The course requirements include 12 credit hours from the manufacturing core areas, 6 credit hours of 6000-level courses in manufacturing, 3 credit hours of approved mathematics/computer science or any suggested manufacturing courses, 3 credit hours for work related to the practice-oriented project, and 6 credit hours of graduate courses in manufacturing. The practice-oriented project is defined by the student and academic advisor. At the end of the project experience, the student should demonstrate not only the proficiency of operating certain manufacturing processes, but also the capability to improve the process. At the end of the M.E. program, a presentation and a report documenting the practice-oriented projects are required. For both programs, at most 6 credit hours of 4XXX level classes can be completed in the degree.

For both programs, each student must take at least one course from each of the core areas in manufacturing engineering during his or her first two semesters of graduate work. The core requirements may be deemed satisfied if a student has already taken a core course as a technical elective in his or her undergraduate program, thus allowing more freedom in the selection of other courses. The related courses in manufacturing core areas are selected and offered from various departments.

The manufacturing core areas include:

- Materials and Manufacturing Processes
- Process, Assembly and Product Engineering
- Manufacturing Competitiveness
- Manufacturing System Design

The graduate committee for each student in the interdisciplinary Master of Science degree program will consist of three faculty of which at least two must be from the Manufacturing Education Committee (MEC). The major advisor should also be a member of the Manufacturing Education Committee. The master of engineering student does not need a committee, but the advisor should be from MEC. MEC is formed by over 40 faculty members from various departments, such as ceramic engineering, chemical engineering, computer science, electrical and computer engineering, engineering management, mechanical and aerospace engineering, metallurgical engineering, mining engineering, and business administration. For details regarding the application, curriculum, courses in manufacturing core areas, and MEC faculty, you may also wish to explore the program's web page at: http://mae.mst.edu.

Some examples of research areas in which you can specialize include:

- Design for Manufacturing/Assembly
- CAD/CAM/CIM
- Product/Process Development
- Manufacturing Management
- Manufacturing Processes
- Manufacturing Materials
- Lean Manufacturing
- Rapid Product Realization

- Programable Controllers
- Assembly & Automation
- Manufacturing Plant Layout
- Jig, Fixture & Tool Design
- CNC machining
- Environmentally Friendly Manufacturing
- Product Quality Control

This is a truly interdisciplinary program, which will provide you with a variety of options in manufacturing. The existing laboratories which can be used in this proposed program include Computer Integrated Manufacturing Lab (CIM lab), Agile Manufacturing and Automated Inspection Lab (AMAIL), Rapid Prototyping Lab, Laser Aided Manufacturing Processes (LAMP) Lab, Augmented Reality Lab, High Pressure Water Jet Lab, Sustainable Design Lab, Laser Welding Lab, Composite Manufacturing Lab, Computer Vision Lab, Lab for Industrial Automation and Flexible Machining, Automated PC Board Milling Machine, Foundry to Melt and Cast Ferrous and Non-ferrous Alloys, Intelligent Control of Machining Lab and Digital Image and Signal Processing Lab.

The graduate certificate program consists of a four-course sequence from existing graduate-level courses. While the students admitted to the Certificate Program will have non-matriculated status, if they complete the four-course sequence with a grade of "B" or better in each of the courses taken, they will be admitted to the M.S. program if they so choose. The Certificate credits taken by students admitted to the M.S. program will count toward their master's degree.

CAD/CAM & Rapid Product Realization Certificate

One each from the four core areas in the Manufacturing Engineering program as outlined below:

<table>
<thead>
<tr>
<th>Course I</th>
<th>Course II</th>
<th>Course III</th>
<th>Course IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH ENG 5763</td>
<td>Computer Aided Design: Theory and Practice</td>
<td>MECH ENG 6659</td>
<td>Advanced Topics in Design and Manufacturing</td>
</tr>
<tr>
<td>MECH ENG 5757</td>
<td>Integrated Product And Process Design</td>
<td>MECH ENG 5708</td>
<td>Rapid Product Design And Optimization</td>
</tr>
<tr>
<td>MECH ENG 5763</td>
<td>Design For Manufacture</td>
<td>AERO ENG 5760</td>
<td>Probabilistic Engineering Design</td>
</tr>
<tr>
<td>MECH ENG 5659</td>
<td>MECH ENG 5656</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing Systems Certificate

For the Manufacturing Systems Graduate Certificate Program the students will need to take four course sequences, one each from the four core areas in the Manufacturing Engineering program as outlined below:

<table>
<thead>
<tr>
<th>Course I-Materials and Manufacturing Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>MECH ENG 5220</td>
</tr>
<tr>
<td>MECH ENG 5236</td>
</tr>
<tr>
<td>MECH ENG 5282</td>
</tr>
<tr>
<td>MECH ENG 6659</td>
</tr>
</tbody>
</table>
metallurgy, metals casting, joining and forming, and manufacturing

carries out research in physical and mechanical metallurgy, extractive
properties under controlled temperature and atmospheric conditions.

A

functional ceramics. The department has extensive facilities for the
and processing, forming, and microstructure control of structural and
for biomedical applications such as drug delivery and medical implants;
superconducting ceramics; ferroelectric ceramics; glasses and ceramics
and glasses; defect chemistry, thermochemistry and phase equilibria;
electrical, dielectric, optical, thermal and mechanical properties of
Ceramic-ceramic, ceramic-metal, and ceramic-polymer
compositions; compositional effects on the optical properties and
chemical corrosion of glass; solid oxide fuel cells; high temperature
superconducting ceramics; ferroelectric ceramics; glasses and ceramics
for biomedical applications such as drug delivery and medical implants;
and processing, forming, and microstructure control of structural and
functional ceramics. The department has extensive facilities for the
synthesis, forming, and fabrication of ceramics and glasses, as well as
for the detailed characterization of the properties of ceramics. A
mechanical testing laboratory is available for characterizing mechanical
properties under controlled temperature and atmospheric conditions.

In the areas of metallurgical science and engineering, the department
carries out research in physical and mechanical metallurgy, extractive
metallurgy, metals casting, joining and forming, and manufacturing

metallurgy. Principal research interests include steel manufacturing
and processing, additive manufacturing of advanced metallic materials,
electro-metallurgical processes, computation methods for materials
synthesis and processing, radiation effects on materials, environmental
aspects of metal manufacturing, and treatment of metals industry
wastes. Capabilities for research in these areas include: (1) a department
foundry with facilities for green sand casting, centrifugal casting,
lost foam casting, and permanent mold casting, and metal joining,
(2) controlled hot rolling and quenching, (3) multiple advanced
additive manufacturing systems, (4) physical testing of metals under
controlled temperature and atmospheric conditions, and (5) pilot scale
electrowinning, electrorefining and solvent extraction facilities.

In the area of biomaterials the department carries out research in the
synthesis and characterization of novel biomaterials, the design and
fabrication of scaffolds for tissue engineering of biological tissues,
interactions of biomaterials with living systems, and tissue-engineered
restoration of biological tissues.

The department also has a strong affiliation with the Materials Research
Center (MRC) at Missouri S&T, which houses major instrumentation for
materials characterization. Faculty members within the MSE department
are either senior research investigators or research investigators in
this nationally recognized center. Facilities available within the MRC to
support graduate research include electron microscopy, thermal analysis,
Auger Electron Spectroscopy, FIB (Focused Ion Beam) x-ray diffraction,
together with grazing incidence for film analysis, among others. Extensive
capabilities for materials coatings, preparation and analysis are also
available.

Degree Requirements

M.S. and Ph.D. degrees are offered in materials science and engineering.
Students may apply for either degree and may be admitted directly to
the Ph.D. program upon approval (i.e., there is no M.S. requirement).
Depending upon their intended career path, students may be encouraged
to pursue one of the MSE graduate degrees or other degree programs
noted above.

The total number of hours required for the M.S. in materials science
and engineering is 30. The M.S. with thesis is oriented toward the
completion of a research project and the degree requirements are 18
hours of course work and 12 hours of research. It is recommended
that the student complete the core courses offered by the department
including MS&E 6110, MS&E 6120, and MS&E 6130 which are graduate
level crystallography, thermodynamics and kinetics. At least 6 hours of
course work must be 6000-level courses. It is recommended that six
additional hours be completed outside of the department. The other
courses are chosen with the approval of the advisor.

For the non-thesis M.S. degree in materials science and engineering, 30
hours of course work must be completed with a minimum of 12 hours at
the 6000-level.

The total number of hours required for the Ph.D. degree in materials
science and engineering is 72. Ph.D. students are required to complete
the three core courses, MS&E 6110, MS&E 6120, and MS&E 6130. To
advance to Ph.D. candidacy, the student must take and pass a qualifying
exam. This must be completed prior to the beginning of the fifth semester
after entering the graduate program. Students must also take and pass
the comprehensive exam in accordance with Missouri S&T rules.

Course II-Process, Assembly and Product Engineering
Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5515/</td>
<td>Integrated Product And Process Design</td>
</tr>
<tr>
<td>MECH ENG 5757</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 5708</td>
<td>Rapid Product Design And Optimization</td>
</tr>
<tr>
<td>MECH ENG 5763</td>
<td>Computer Aided Design: Theory and Practice</td>
</tr>
</tbody>
</table>

Course III-Manufacturing Competitiveness
Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5710</td>
<td>Six Sigma</td>
</tr>
<tr>
<td>ENG MGT 5613</td>
<td>Value Analysis</td>
</tr>
<tr>
<td>ENG MGT 5615</td>
<td>Production Planning And Scheduling</td>
</tr>
<tr>
<td>ENG MGT 5714</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>ENG MGT 6611</td>
<td>Lean Systems</td>
</tr>
<tr>
<td>AERO ENG 5760</td>
<td>Probabilistic Engineering Design</td>
</tr>
<tr>
<td>ERP 5110</td>
<td>Enterprise Resource Planning Systems Design and Implementation</td>
</tr>
</tbody>
</table>

Course IV-Manufacturing Systems Design
Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG MGT 5314</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 5478</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MECH ENG 5555</td>
<td>Manufacturing Equipment Automation</td>
</tr>
<tr>
<td>MECH ENG 5556</td>
<td>Design For Manufacture</td>
</tr>
</tbody>
</table>

Materials Science and Engineering

The materials science and engineering department offers a variety of
educational and research opportunities for graduate study including
degree programs in materials science and engineering, ceramic
engineering, and metallurgical engineering. The department offers
the following degrees: M.S. and Ph.D. in materials science and
engineering, M.S. and Ph.D. in ceramic engineering, and M.S. and Ph.D.
in metallurgical engineering. Further information regarding these degree
programs may be found below and under the individual degree programs
within this catalog.

The requirement for entry into one of these programs includes a
baccalaureate degree in materials science or engineering, ceramic
engineering or science, glass science or technology, or metallurgical
science or engineering. A baccalaureate degree in physics, chemistry,
chemical engineering, or related discipline may also be acceptable.

In the areas of glass, ceramic, and biomaterials, the department carries
out research in electronic ceramics, high temperature materials,
structural ceramics, composites, ceramic processing, laser glasses,
and nuclear waste encapsulation glasses. Fundamental and applied
interests include structure and its relation to the properties of ceramics
and glasses; defect chemistry, thermochemistry and phase equilibria;
electrical, dielectric, optical, thermal and mechanical properties of
ceramics; ceramic-ceramic, ceramic-metal, and ceramic-polymer
composites; compositional effects on the optical properties and
chemical corrosion of glass; solid oxide fuel cells; high temperature
superconducting ceramics; ferroelectric ceramics; glasses and ceramics
for biomedical applications such as drug delivery and medical implants;
and processing, forming, and microstructure control of structural and
functional ceramics. The department has extensive facilities for the
synthesis, forming, and fabrication of ceramics and glasses, as well as
for the detailed characterization of the properties of ceramics. A
mechanical testing laboratory is available for characterizing mechanical
properties under controlled temperature and atmospheric conditions.

In the areas of metallurgical science and engineering, the department
carries out research in physical and mechanical metallurgy, extractive
metallurgy, metals casting, joining and forming, and manufacturing
Mohsen Asle Zaeem, Assistant Professor
PHD Washington State University
Phase transformation, solidification, integrated computational materials engineering.

Laura Bartlett, Associate Professor
PHD Missouri University of Science and Technology
Melt processing and solidification phenomena, ferrous and non-ferrous casting, physical and mechanical metallurgy of irons and steels.

Richard K Brow, Curators Professor
PHD Pennsylvania State University
Physics and chemistry of inorganic glasses; spectroscopic characterization of glass structure; biomaterials; optical materials.

Fatih Dogan, Professor
PHD Technical University of Berlin
High temperature superconductors, solid oxide fuel cells, dielectrics, nanostructured electronic ceramics.

William G Fahrenholtz, Curators Professor
PHD University of New Mexico
Thermodynamics, phase equilibria, reactive processing, ultra-high temperature ceramics.

Gregory E Hilmas, Curators Professor
PHD University of Michigan-Ann Arbor
Interim Chair. Microstructure-processing-mechanical property relationships in structural ceramics; novel processing techniques for the fabrication of ceramics and ceramic composites; biomaterials.

Wayne Huebner, Professor
PHD University of Missouri-Rolla
Structure-property relationships in ferroelectric, piezoelectric, and ionically-conducting materials.

Aditya Kumar, Assistant Professor
PHD Ecole Polytechnique Federale de Lausanne (EPFL)
Composition-structure-property relationships in cementitious, silicate, and aluminosilicate materials.

Simon Lekakh, Research Professor
PHD Belorussian Polytechnic Institute
Thermodynamics of liquid metals, solidification, metal casting and metallurgical processes.

David Lipke, Assistant Professor
PHD Georgia Institute of Technology
Composite materials, reaction processing, materials in extreme environments.

F Scott Miller, Teaching Professor
PHD University of Missouri-Rolla
Electron microscopy, materials characterization.

Michael Scott Moats, Associate Professor
PHD University of Arizona
Extractive metallurgy, aqueous processing of metals, electrometallurgy.

Ronald J O'Malley, Professor
PHD Massachusetts Institute of Technology
F. Kenneth Iverson Chair Professor of Steelmaking Technologies.

Mark E Schlesinger, Professor
PHD University of Arizona
Thermodynamics, pyrometallurgy, metals recycling.

Robert Schwartz, Professor
PHD University of Illinois
Electronic ceramics, property control, graduate workforce readiness, rural entrepreneurship.

Jeffrey D Smith, Associate Professor
PHD University of Missouri-Rolla
Thermochemistry and high temperature phase equilibria of condensed and non-condensed ceramic systems; chemical, mineralogical and microstructural analysis of refractory materials.

David C Van Aken, Curators Teaching Professor
PHD University of Illinois Urbana
Thermal spraying, fatigue and fracture, rapid solidification, advanced alloy design, electron microscopy.

Jeremy Lee Watts, Research Assistant Professor
PHD Missouri S&T
Structure property relations, ultra-high temperature ceramics, thermomechanical properties, additive manufacturing.

Haiming Wen, Assistant Professor
PHD University of California-Davis
Bulk nanostructured metals, high-entropy alloys, advanced microstructural characterization, nuclear materials.

Mingzhi Xu, Assistant Research Professor
PHD Missouri University of Science and Technology
Metal casting, investment casting, wear resistant materials, physical metallurgy.

Caizhi Zhou, Assistant Professor
PHD Iowa State University
Mechanical metallurgy, multiscale modeling, nanostructured materials, severe plastic deformation.

MS&E 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MS&E 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MS&E 5010 Seminar (RSD 0.0-6.0)
(Variable) Discussion of current topics.
MS&E 5040 Oral Examination (IND 0.0)
(Variable) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D students may be processed during intersession. Off-campus M.S. students must be enrolled in an oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with use of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MS&E 5050 Chemistry of Construction Materials (LEC 3.0)
The objective of the course is to utilize fundamental concepts of materials science and chemistry to understand, analyze, and describe the chemistry of construction materials. Special focus is given to describe composition-reactivity-microstructure-property relations in various cementitious materials. Prerequisites: At least Senior standing.

MS&E 5099 Research (IND 0.0-15)
(Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MS&E 5210 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with Bio Sci 5240).

MS&E 5220 Advanced Phase Equilibria (LEC 3.0)
Advanced aspects of unary, binary and ternary organic, phase equilibria. Includes practical examples of the applications of phase diagrams to solve engineering problems. Prerequisite: Graduate standing.

MS&E 5230 Energy Materials (LEC 3.0)
The objectives of the course are to understand how the rational design and improvement of chemical and physical properties of materials can lead to energy alternatives that can compete with existing technologies. Discussions on the present and future energy needs from a viewpoint of multidisciplinary scientific and technological approaches. Prerequisite: Senior standing.

MS&E 5310 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisites: Senior undergraduate standing. (Co-listed with BIO SCI 5210, CHEM ENG 5200).

MS&E 5517 Materials Selection in Mechanical Design (LEC 3.0)
This course will introduce the basics of materials selection in mechanical design. It will also introduce the benefits of computational materials and process selection. The students will also learn to use a commercially available materials selection software. This course will be offered as Distance Ed. Prerequisite: Met Eng 2110.

MS&E 5810 Introduction to Polymeric Materials (LEC 3.0)
A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Credit may not be given for both Chem 5810 and Chem 4810. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with Chem 5810).

MS&E 5819 Polymer Synthesis and Characterization Lab (LAB 1.0)
Laboratory experiments dealing with polymerization syntheses and solution, bulk and solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Credit may not be given for both Chem 5819 and Chem 4819. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810 or Chem Eng 5310, preceded or accompanied by Chem 1100 or Chem 5100 or an equivalent training program approved by S&T. (Co-listed with Chem 5819).

MS&E 5850 Introduction to Coating Chemistry (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Credit may not be given for both Chem 5850 and Chem 4850. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with Chem 5850).

MS&E 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MS&E 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MS&E 6010 Seminar (RSD 0.0-6.0)
(Variable) Discussion of current topics.

MS&E 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MS&E 6060 Advanced Chemistry of Construction Materials (LEC 3.0)
To describe fundamental composition-reactivity-microstructure-property relationships in construction materials. Tests will include quizzes, written-exams, as well as a term paper and a presentation on a topic relevant to the course.

MS&E 6085 Internship (IND 0.0-15)
(Variable) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.
MS&E 6099 Research (IND 0.0-15)
(Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MS&E 6110 Bonding, Crystallography, and Structure-Property Relationships (LEC 3.0)
Principles of electronic structure and chemical bonding in solids and their relationships to electrical, mechanical, thermal, and optical properties. An exploration of reciprocal lattices and tensor properties of crystals; consideration of the impact of crystal symmetry on anisotropy. The influence of defects and grain boundary phenomena on material behavior. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6120 Thermodynamics and Phase Equilibria (LEC 3.0)
Classical thermodynamic treatment of materials and material processing based on the 1st and 2nd Laws of Thermodynamics and phase equilibria considerations. The course will cover equilibria in gaseous systems, gas-solid reactions including passive and active oxidation, solution thermodynamics, phase equilibria in solution systems, and electrochemistry. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6130 Kinetic Theory for Materials (LEC 3.0)
Phenomenological and atomistic theories of diffusion in materials including discussion of short circuit diffusion and ionic diffusion in an electric field. Fundamentals of phase transformation in materials; chemical fluctuation, nucleation and growth theory; kinetic models for evaluating and predicting diffusion controlled transformation kinetics. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6210 Tissue Engineering II (LEC 3.0)
The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with Bio Sci 6240).

MS&E 6220 Advanced Energy Materials (LEC 3.0)
The objectives of the graduate level course are to review the recent developments on advanced energy materials and systems in addition to basic understanding how chemical and physical properties of materials can lead to energy alternatives. Prerequisite: Graduate standing.

MS&E 6230 Nanomaterials (LEC 3.0)
Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with Chem Eng 6310).

MS&E 6310 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. (Co-listed with BIO SCI 6210, CHEM ENG 6300).

MS&E 6820 Polymer Synthesis (LEC 3.0)
The methods of organic monomer and polymer syntheses will be explored. Mechanistic and structural components, modern and current industrial methods for polymer syntheses will be discussed. Topics include linear, branched, graft, and dendritic polymers, nano-technology and macromers. Prerequisites: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; Chem 2220 or Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with Chem 6820).

MS&E 6840 Polymer Physical Chemistry and Analysis (LEC 3.0)
A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; thermodynamics. (Co-listed with Chem 6840).

Mathematics and Statistics

The department of mathematics and statistics offers programs leading to the M.S. in applied mathematics, either with or without a thesis, the master of science for teachers degree, and the Ph.D. in Mathematics. The M.S. in applied mathematics can be pursued with either a mathematics or a statistics emphasis, while the Ph.D. in mathematics can be pursued with an emphasis in mathematics, computational and applied mathematics, or statistics. The M.S. is recommended, but not required, as a prerequisite for the Ph.D. If you intend to pursue the doctorate without obtaining a master's degree, during the first two academic years you are required to obtain at least 32 hours of graduate credit, with emphasis placed on subject areas that will provide you with a solid foundation in mathematics and/or statistics relevant to your chosen emphasis area. Specifically, these hours should be selected so that you will have obtained an introduction to (a) modern algebra, analysis, statistics and topology if selecting the mathematics emphasis, (b) real analysis, differential equations, partial differential equations, statistics as well as either complex analysis or modern algebra if choosing the computational and applied mathematics emphasis, and (c) linear algebra, probability, and statistical inference, if choosing the statistics emphasis.

The mathematics and statistics department also offers graduate certificates in actuarial science, statistical methods in psychology, and statistics. Fellowships and graduate assistantships are available to qualified applicants. Detailed information about these opportunities may be obtained from the department chair or the director of graduate studies. Additional information is available electronically at: http://math.mst.edu/.

The department faculty and graduate students, along with graduate instruction and research activities, are housed in the Rolla Building. The Rolla Building, erected 1871, was the original home of the University of Missouri School of Mines and Metallurgy.
The program for the M.S. degree without a thesis must include at least 33 hours of graduate credit, nine hours of which must be lecture courses at the 6000-level. For the M.S. degree with thesis, the program must include at least 30 hours of graduate credit, at least six hours of which must be lecture courses at the 6000-level and six or more hours of which must be Graduate Research, MATH 6099 or STAT 6099. Candidates in a thesis program must pass an oral thesis defense. All M.S. candidates are encouraged to include in their program courses in engineering and science which are closely related to their research in mathematics or statistics. For those intending to terminate study at the M.S. level, specializations supporting specific career goals are possible.

The master of science for teachers program is primarily designed for secondary school teachers in the physical sciences and mathematics. The program of study must include at least 32 hours of courses numbered at the 4000-level or above in science and mathematics, three hours of which must be at the 6000-level. A student may substitute up to six credit hours of coursework at the 3000 level in place of six hours of 4000 level courses; any such courses must be from departments other than mathematics and statistics and are subject to the approval of the student's master's committee.

A program for the Ph.D. degree includes about 30 hours of breadth in graduate level mathematics and statistics, about 30 hours of courses in or outside of the department representing a field of specialization, and a minimum of 30 hours devoted to the dissertation. In particular, the Ph.D. requires a total of at least 30 hours of Math/Stat 6099. Math/Stat 6099 hours used to complete an M.S. thesis cannot be counted toward the doctoral research requirements.

The specific program for a candidate is designed jointly by the candidate and the candidate's advisory committee. A qualifying examination, usually taken soon after completion of the M.S. degree or equivalent course work, is required. For those obtaining a doctoral degree with emphasis in Mathematics a reading knowledge of one modern foreign language, typically either French, German, or Russian, is required. Those whose doctoral emphasis is computational and applied mathematics, statistics, knowledge in a programming language such as C, C++, or FORTRAN and programming expertise demonstrated through an approved project is required. At times approved by the advisory committee, candidates must pass both written and oral comprehensive examinations. These examinations may cover courses outside the department. The dissertation is expected to represent original research and to meet the standard ordinarily required for publication in one of the journals devoted to reporting research in the selected field.

Graduate certificates are offered in the following:

- Actuarial Science
- Statistical Methods in Psychology
- Statistics

Akim Mouhamadou Adekpédjou, Associate Professor
PHD University of South Carolina Columbia
Recurrent event data analysis, stochastic processes, survival analysis.

Elvan Akin, Professor
PHD University of Nebraska Lincoln
Dynamic equations on time scales, differential equations, difference equations, oscillation, boundary value problems.

Martin Bohner, Curators' Distinguished Professor
PHD University of Ulm, Germany
Ordinary differential equations, dynamic equations on time scales, difference equations, Hamiltonian systems, variational analysis, boundary value problems, control theory, oscillation.

Wlodzimierz Jan Charatonik, Professor
PHD University of Warsaw, Poland
Topology, continuum theory, hyperspaces, inverse limits.

Stephen L Clark, Professor
PHD Univ. of Tennessee-Knoxville
Differential and difference equations, operator theory, direct and inverse spectral theory, inequalities.

David E Grow, Associate Professor
PHD University of Nebraska Lincoln
Analysis, Fourier analysis, lacunary series.

Daozhi Han, Assistant Professor
PHD Florida State University
Applied analysis of PDE’s, numerical analysis and computation, fluid dynamics.

Xiaoming He, Associate Professor
PHD Virginia Polytechnic Institute

Wenqing Hu, Assistant Professor
PHD University of Maryland-College Park
Stochastic analysis, stochastic differential equations, random dynamical systems, (stochastic) partial differential equations.

Eugene M Insall Jr, Associate Professor
PHD University of Houston
Logic, nonstandard methods, nonstandard models, algebra, topological algebra, topological model theory

Nan Jiang, Assistant Professor
PHD University of Pittsburgh
Numerical methods for partial differential equations, numerical analysis, computational fluid dynamics, turbulence modeling.

Vy Khoi Le, Professor
PHD University of Utah
Nonlinear differential equations, bifurcation, calculus of variations.

Jason Murphy, Assistant Professor
PHD University of California-Los Angeles
Harmonic analysis and nonlinear dispersive PDE's.

Gayla Renee Olbricht, Associate Professor
PHD Purdue University
Statistical genomics and epigenomics, hidden Markov models, modeling dependent data, mixed models.

Robert L Paige, Professor
PHD Colorado State University
Statistical shape analysis.
Robert Paul Roe, Associate Professor
PHD University of Wyoming
Chaotic dynamical systems, topological dynamics, geometric topology, geometric analysis.

V A Samaranayake, Curators' Distinguished Teaching Professor
PHD Kansas State University
Reliability, time series analysis, statistical applications in biology, economics, and engineering.

John R Singer, Associate Professor
PHD Virginia Polytechnic Institute
Computational methods for reduced order modeling, control and sensitivity analysis of partial differential equations, numerical analysis, applied mathematics, fluid dynamics.

Xuerong (Meggie) Wen, Associate Professor
PHD University of Minnesota
Nonlinear and nonparametric regression, regression graphics, computational statistics and statistical genetics, with an emphasis on sufficient dimension reduction in the context of regression.

Yanzhi Zhang, Associate Professor
PHD National University of Singapore
Multiscale modeling and simulations in material science, optimal control problems in superconductivity and superfluidity, Bose-Einstein condensation, quantized vortex dynamics, numerical algorithms for partial differential equations.

MATH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 5010 Graduate Seminar (SEM 1.0)
Discussion of advanced or current topics.

MATH 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

MATH 5105 Modern Algebra I (LEC 3.0)
Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange's Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 3109 or graduate standing; preceded or accompanied by Math 3108.

MATH 5106 Modern Algebra II (LEC 3.0)
This course is a continuation of Math 5105. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 5105.

MATH 5107 Combinatorics And Graph Theory (LEC 3.0)
Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Comp Sci 1200 or Math 3109.

MATH 5108 Linear Algebra II (LEC 3.0)
Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 3108.

MATH 5154 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Eng 5803, Comp Sci 5203 and Philos 4354).

MATH 5215 Introduction To Real Analysis (LEC 3.0)
Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 4209.

MATH 5222 Vector And Tensor Analysis (LEC 3.0)
Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 2222; Math 3103 or Math 3108.

MATH 5302 Intermediate Differential Equations (LEC 3.0)
Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 3304 or Math 3329.

MATH 5325 Partial Differential Equations (LEC 3.0)
Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 3304 with a grade of "C" or better.

MATH 5351 Introduction To Complex Variables (LEC 3.0)
The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 3304.
MATH 5483 Operational Calculus (LEC 3.0)
The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 3304.

MATH 5530 Topics in Geometry - Graduate Option (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Students will demonstrate graduate-level mastery of the subject matter. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: MATH 3108.

MATH 5585 Introduction To Topology (LEC 3.0)
Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 4209.

MATH 5603 Methods of Applied Mathematics (LEC 3.0)
Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 3304 or 3329 with a grade of "C" or better, programming competency.

MATH 5604 Introduction to Numerical Methods for Differential Equations (LEC 3.0)
An introduction to finite difference methods for ordinary and partial differential equations, including (1) the derivation of the numerical methods, (2) implementation of the methods in Matlab, and (3) the mathematical accuracy and stability analysis of the methods. Prerequisites: MATH 3304 and programming competency (preferably Matlab).

MATH 5737 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Finance 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Econ 5337).

MATH 5940 Mathematical Analysis For Secondary Teachers (LEC 3.0)
Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 2222 or equivalent.

MATH 5948 Mathematical Analysis For Secondary Teachers Practicum (LEC 1.0)
An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 5940.

MATH 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 6010 Graduate Seminar (RSD 1.0-3.0)
Discussion of topics of current interest. Prerequisite: Graduate standing.

MATH 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MATH 6099 Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

MATH 6105 Finite Fields And Applications (LEC 3.0)
After reviewing basic group theory and introducing basic properties of commutative rings, the main focus of the course will be on topics such as structure of finite fields, polynomials over finite fields, and applications such as coding theory and cryptography. Prerequisite: Math 5105.

MATH 6106 Introduction to Ring Theory (LEC 3.0)
Properties of rings with an emphasis on commutative rings. Ideals, factor rings, ring homomorphisms, polynomial rings; factorization, divisibility, and irreducibility. Introduction to extension fields and Galois theory. Applications may be chosen based on the interests of the students. Prerequisite: Math 5105.

MATH 6107 Group Theory (LEC 3.0)
Groups, subgroups, and factor groups; homomorphisms, isomorphisms, and associated theorems; abelian groups; Sylow theorems and p-groups; permutation groups; free groups and generators; representation theory; cohomology theory. Prerequisite: Math 5106.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6108</td>
<td>Applied Matrix Theory</td>
<td>A second course in matrix theory directed toward applications. Linear spaces, linear operators, equivalence and similarity, spectral theorem, canonical forms, congruence, inertia theorem, quadratic forms, singular value decomposition and other factorizations, generalized inverses. Applications to optimization, differential equations, stability. Prerequisites: Math 3103, 3108, or 5302.</td>
<td></td>
</tr>
<tr>
<td>MATH 6215</td>
<td>Functions Of A Real Variable I</td>
<td>Measure spaces, extensions of measures, probability spaces, measures and distributions in normed linear spaces, product measures, independence, integral and expectation, convergence theorems, Radon-Nikodym theorem and applications. Lp spaces, selected topics. Prerequisite: Math 5215.</td>
<td></td>
</tr>
<tr>
<td>MATH 6216</td>
<td>Functions Of A Real Variable II</td>
<td>Abstract measures and integrals, the Daniell integration theory, integration on locally compact Hausdorff spaces, integration in function spaces, selected topics. Prerequisite: Must be preceded by Math 6215.</td>
<td></td>
</tr>
<tr>
<td>MATH 6330</td>
<td>Theory Of Differential Equations I</td>
<td>Stability theory, Liapunov's direct method, periodic solutions, Poincare-Bendixson theory, applications. Prerequisite: Math 5302.</td>
<td></td>
</tr>
<tr>
<td>MATH 6351</td>
<td>Functions Of A Complex Variable I</td>
<td>Complex plane, complex function theory, elementary Riemann surfaces, conformal mapping, complex integration, infinite complex series and sequences, calculus of residues with applications. Prerequisite: Math 4211.</td>
<td></td>
</tr>
<tr>
<td>MATH 6352</td>
<td>Functions Of A Complex Variable II</td>
<td>Argument principle and consequences; harmonic functions and Dirichlet's problem; infinite products; entire, meromorphic and rational functions; analytic continuation; symmetry principle; conformal mapping; functions of several complex variables. Prerequisite: Preceded by Math 6351.</td>
<td></td>
</tr>
<tr>
<td>MATH 6375</td>
<td>Theory Of Partial Differential Equations</td>
<td>Sobolev spaces; existence, uniqueness, and regularity of weak solutions to linear elliptic, parabolic, and hyperbolic PDEs; selected topics. Prerequisite: Math 6417.</td>
<td></td>
</tr>
<tr>
<td>MATH 6383</td>
<td>Special Functions</td>
<td>Infinite products, gamma and beta functions, asymptotic series, the hypergeometric function, generalized hypergeometric functions, Bessel functions, generating functions; polynomials of legendre, Hermite, Laguerre, and Jacobi; elliptic functions, theta functions, Jacobian elliptic functions. Prerequisites: Math 4209 and 5351.</td>
<td></td>
</tr>
<tr>
<td>MATH 6417</td>
<td>Functional Analysis I</td>
<td>Banach spaces, Hilbert spaces, linear transformations, Hahn-Banach theorem, duality, uniform boundedness principle, weak topologies, convexity, bounded linear maps, compact operators, and spectral theory. Prerequisites: Math 5215; Math 5108 or Math 5585.</td>
<td></td>
</tr>
<tr>
<td>MATH 6418</td>
<td>Functional Analysis II</td>
<td>A continuation of Math 6417 with additional topics related to bounded and unbounded operators and their applications. Prerequisites: Math 6215 and Math 6417.</td>
<td></td>
</tr>
<tr>
<td>MATH 6461</td>
<td>Harmonic Analysis I</td>
<td>Fourier series, norm and pointwise convergence of Fourier series, the conjugate and maximal functions, analytic functions in the unit disk and Hardy spaces, interpolation of linear operators and the Haussdorff-Young-Riesz Theorem, Sidon sets. Prerequisites: Math 5215 and Math 5351.</td>
<td></td>
</tr>
<tr>
<td>MATH 6462</td>
<td>Harmonic Analysis II</td>
<td>Fourier integrals, almost-periodic functions on the real line, Banach algebras, Wiener’s Tauberian Theorem and the prime number theorem, the Paley-Wiener Theorems, band-limited functions and Shannon's Theorem, the continuous wavelet transform, discrete wavelet transforms and frames, orthonormal bases of wavelets and multi-resolution analysis. Prerequisite: Must be preceded by Math 6461.</td>
<td></td>
</tr>
<tr>
<td>MATH 6540</td>
<td>Geometric Structures</td>
<td>Selected topics in non-Euclidean, solid, projective, and fractal geometry. Prerequisite: Math 4530.</td>
<td></td>
</tr>
<tr>
<td>MATH 6548</td>
<td>Geometric Structures Practicum</td>
<td>An instructional unit based on material learned in Math 6540 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 6540.</td>
<td></td>
</tr>
<tr>
<td>MATH 6585</td>
<td>Topology I</td>
<td>Topological spaces, uniform and quasi-uniform spaces, product and quotient spaces, separation properties and connected spaces, compactness. Prerequisite: Math 5585.</td>
<td></td>
</tr>
<tr>
<td>MATH 6586</td>
<td>Topology II</td>
<td>Metrizability conditions, the theory of convergence using both filters and nets, completions and compactifications, and papers from the recent literature. Prerequisite: Math 6585.</td>
<td></td>
</tr>
<tr>
<td>MATH 6601</td>
<td>Numerical Analysis</td>
<td>A proof based course emphasizing theoretical analysis of convergence and accuracy of various numerical methods including approximate solutions of linear and nonlinear equations, numerical integration, and function approximation, with implementation to validate results and illustrate the methods. Prerequisites: Any 4000 or higher level MATH course, or any instructor approved 4000 or higher level course from another discipline with a significant computational component.</td>
<td></td>
</tr>
</tbody>
</table>
MATH 6602 Mathematical Foundation of Finite Element Methods (LEC 3.0)
Implementation and theoretical analysis of the finite element method for the approximate solution of partial differential equations. Implementation of finite element methods for elliptic and parabolic equations. Theoretical analysis of convergence, accuracy, and stability of approximate solutions. Prerequisites: Any 4000 or higher level Mathematics course, or any instructor approved 4000 or higher level course from another discipline with a significant computational component.

MATH 6655 Mathematical Programming (LEC 3.0)
An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 3113 or equivalent and (Eng Mgt 5414 or Math 3103 or Math 3108). (Co-listed with Eng Mgt 6412).

MATH 6737 Financial Mathematics II (LEC 3.0)
Continuation of Math 5737/Econ 5337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 5737 or Econ 5337. (Co-listed with Econ 6337).

MATH 6802 Mathematical Physics I (LEC 3.0)
Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green’s functions in one dimension. (Co-listed with Physics 6403).

MATH 6803 Mathematical Physics II (LEC 3.0)
Green’s functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 6802 or Physics 6403. (Co-listed with Physics 6413).

STAT 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

STAT 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

STAT 5260 Statistical Data Analysis Using SAS (LEC 2.0 and LAB 1.0)
This course will introduce the student to selected data analytic tools implemented in the Statistical Analysis System (SAS) and appropriate and effective use of these tools. Focus would be on both the use of SAS data analytic tools and the theoretical and methodological rationale that form the basis of such analyses. Prerequisite: One of Stat 3113 or 3115 or 3117 or 5643; and one of Stat 5346 or 5353 or 6841 or 6343 or 6344 or 6545.

STAT 5346 Regression Analysis (LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, 3117, or 5643. (Co-listed with Comp Sci 5204).

STAT 5353 Statistical Data Analysis (LEC 3.0)
Introduction to methods for analyzing statistical data from experiments and introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 2222 and one of Stat 1115, 3113, 3115 and 3117.

STAT 5425 Introduction to Biostatistics (LEC 3.0 and LAB 1.0)
Introduction to common biostatistical methods for designing research studies, collecting and analyzing data, with application to problems originating from the biological, environmental, and health sciences. Topics include randomization, means comparisons, ANOVA, regression, and analysis of count data. Prerequisites: A grade of "C" or better in Math 1120, Math 1140, Math 1208, Math 1212, or Math 1214.

STAT 5425H Introduction to Biostatistics-Honors (LEC 3.0 and LAB 1.0)
Introduction to methods for analyzing statistical data from experiments and introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 2222 and one of Stat 1115, 3113, 3115 and 3117.

STAT 5643 Probability And Statistics (LEC 3.0)
Introduction to the theory of probability and its applications, sample spaces, random variables, binomial, Poisson, normal distributions, derived distributions, and moment generating functions. Prerequisite: Math 2222.

STAT 5644 Mathematical Statistics (LEC 3.0)
A continuation of Stat 5643 with introduction to the theories of point estimation, hypothesis testing, and interval estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 5643.

STAT 5755 Statistical Models in Actuarial Science (LEC 3.0)
This course covers the statistical foundation of actuarial models and their applications. Topics include survival and severity models, Kaplan-Meier and Nelson-Aalen estimators, aggregate and credibility models for insurance losses, discrete time Markov chains, ruin theory, and simulation. Prerequisite: Stat 5643 and either Stat 5644 or a 3000-level Stat course. (Co-listed with Econ 4350).
STAT 5756 Statistical Models for Life Contingencies (LEC 3.0)
The basic statistical theory of actuarial models for life uncertainties such as time of death. Multiple life and multiple decrement models, statistical models for life and contingent insurance; last survivor, disability, withdrawal, retirement and reserving models for life insurance. Prerequisite: Stat 5643.

STAT 5756H Stat Models for Life Cont-Honors (LEC 3.0)

STAT 5814 Applied Time Series Analysis (LEC 3.0)
Introduction to time series modeling of empirical data observed over time. Topics include stationary processes, autocovariance functions, moving average, autoregressive, ARIMA, and GARCH models, spectral analysis, confidence intervals, forecasting, and forecast error. Prerequisites: One of Stat 3113, 3115, 3117, 5643 and one of Math 3103, 3108, or 5108.

STAT 5904 Science Education and Quantitative Literacy for Middle School Teachers (LEC 3.0)
An integrated science-mathematics course for middle school teachers. Course covers selected science/mathematics topics/skills specified in Missouri standards for grades 5-7. Inquiry based methods of teaching these topics in an integrated manner will be emphasized. Prerequisite: Current enrollment in a Teacher Education Program or a full or part-time teacher in a K-12 school. (Co-listed with Physics 4625).

STAT 5905 Making Sense Of Data For Elementary School Teachers (LEC 3.0)
An activity based course that is intended to provide elementary school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint. Prerequisite: Graduate Standing.

STAT 5906 Making Sense Of Data For Middle School Teachers (LEC 3.0)
An activity based course that is intended to provide middle school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

STAT 5907 Making Sense Of Data For High School Teachers (LEC 3.0)
An activity based course that is intended to provide high school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

STAT 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects in the department. Consent of instructor required.

STAT 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

STAT 6050 Continuous Registration (LEC 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

STAT 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

STAT 6238 Stochastic Optimization (LEC 3.0)
Introduction to stochastic modeling theory and application. Topics include probability theory, Markov processes, renewal theory, and queuing theory. Additional topics include stochastic dynamic programming and stochastic programming. Prerequisite: Eng Mgt 5412. (Co-listed with Eng Mgt 6414).

STAT 6239 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 6330, Elec Eng 6340, Sys Eng 6214 and Comp Sci 6405).

STAT 6342 Categorical Data Analysis (LEC 3.0)
A graduate-level introduction to statistical methods for analyzing categorical data. The topics include: contingency tables, generalized linear models including logistic regression models, log-linear models, ordinal and nominal regression models, Poisson regression, etc. The course will involve practical applications of the ideas and their implementations. Prerequisites: Stat 5644 and one of Stat 5346, Stat 5353, Stat 6344, or Stat 6553.

STAT 6343 Nonparametric Statistical Methods (LEC 3.0)
A course covering distribution free statistical methods. Topics include: order statistics, tests of hypotheses for one-sample and two-sample problems, analyses of variance, goodness-of-fit tests, runs test, independence and regression problems, point and interval estimation, ARE. Prerequisite: Stat 5644.
STAT 6344 Design And Analysis Of Experiments (LEC 3.0)
Experimental designs and their statistical analysis. Includes completely randomized designs, complete and incomplete blocking designs, factorial and fractional factorial experiments, multiple comparisons, response surface analysis. Prerequisites: One of Stat 5353, Eng Mgt 5715 and one of Stat 3111, 3113, 3115, 3117, 5643; or Stat 5643 and one of Stat 3111, 3113, 3115, 3117.

STAT 6545 Multivariate Statistical Methods (LEC 3.0)
Analysis of data consisting of simultaneous measurements on many variables. Multivariate normal distribution, multivariate analysis of variance, canonical correlation, principal components, classification and clustering techniques. Prerequisites: Stat 5644 and Stat 3103.

STAT 6553 Linear Statistical Models I (LEC 3.0)
Includes a development of the theory of the distribution of quadratic forms, and the estimation of parameters and testing hypotheses in linear statistical models. Prerequisites: Math 3108 and Stat 5643 and either Stat 5353 or 5644.

STAT 6554 Linear Statistical Models II (LEC 3.0)
Includes the theory of polynomial models, regression models, experimental design models, incomplete block models, nonlinear models, with emphasis on optimum properties of point and interval estimation and the power of tests. Prerequisite: Stat 5653.

STAT 6570 Theory Of Reliability (LEC 3.0)
Statistical analyses of life-testing distributions such as the Weibull, gamma, exponential, logistic, and normal. Reliability estimation, tolerance limits, censored sampling, and applications of Monte-Carlo simulation. Prerequisite: Stat 5644.

STAT 6657 Advanced Mathematical Statistics I (LEC 3.0)

STAT 6658 Advanced Mathematical Statistics II (LEC 3.0)
A continuation of Stat 6657 with the emphasis on hypothesis testing. Prerequisite: Stat 6657.

STAT 6814 Statistical Time Series Analysis (LEC 3.0)
A formal introduction to the fundamentals of statistical modeling and analysis of discrete time series. Topics include autoregressive and moving average processes, ARMA models, second order stationarity, vector processes, autocorrelation function, Fourier representation, estimation and prediction of time series. Prerequisites: Stat 5643 and Math 3103 or 3108.

STAT 6841 Stochastic Processes (LEC 3.0)
Development and application of Poisson and nonhomogeneous Poisson processes; renewal processes; Markov chains and processes including birth and death processes; and normal processes, including Brownian motion. Prerequisites: Stat 5643 and Math 3304 or 3329.

STAT 6846 Advanced Probability Theory (LEC 3.0)
Probability spaces, random variables, distribution functions, expectations, independence, convergence theorems, characteristic functions, moment generating functions, and central limit theorem. Prerequisites: Stat 5644 and Math 5215.

Mechanical Engineering

The mechanical engineering program in the department of mechanical and aerospace engineering offers comprehensive graduate education in a number of areas. The principal areas include: dynamics and controls; manufacturing; materials and structures; mechanical design; and thermal and fluid systems. A wide variety of interdisciplinary programs meeting specific objectives are available. The mechanical engineering program offers the master of science, doctor of philosophy, and direct doctor of philosophy degrees. The department also offers several graduate certificate programs in both aerospace engineering and mechanical engineering.

The mechanical and aerospace engineering department has many well-equipped laboratories located on the main campus, and a subsonic-flow laboratory in an off-campus facility. Some of the specially equipped laboratories on campus include: aerospace flow laboratory; advanced machining laboratory, augmented reality laboratory, composite materials manufacturing and characterization laboratory, computational radiative transfer laboratory, convection heat transfer laboratory, electromechanical transducer development laboratory, environmental control group laboratory, fluid dynamics and combustion laboratories, internal combustion engine and spray laboratories, laboratory for industrial automation and flexible manufacturing, laser-based manufacturing laboratory, rapid prototyping laboratory, radiative heat transfer laboratory, robotics laboratory, structural health monitoring laboratory and welding laboratory.

Some examples of research areas a candidate could specialize in are: acoustics; biomechanics; combustion and I. C. engines; computational fluid dynamics; computer-aided design; design methodology; dynamics and controls; heating, ventilation and air-conditioning (environmental control); heat transfer; laser-aided manufacturing; manufacturing and machining processes; materials and structures; mechanisms and robotics; mechatronics; micro-electromechanical systems (MEMS); thermal-fluid and energy systems; tribology; virtual reality and rapid prototyping.

The master of science thesis program consists of a minimum of 30 credit hours, including the following requirements: at least 21 credit hours of lecture courses, at least 6 credit hours of MECH ENG 6099, at least 9 credit hours of lecture courses in the MAE department (of which at least 3 credit hours must be at the 6000-level), at least 3 credit hours of mathematics, statistics, or computer science (AERO ENG 5830/MECH ENG 5830 Applied Computational Methods may be used to satisfy this requirement), and at least 6 credit hours of 6000-level lecture courses. A master of science non-thesis program consists of a minimum of 30 credit hours, including the following requirements: at least 24 credit hours in the MAE department and at least 9 credit hours of 6000-level lecture courses (of which at least 6 credit hours must be in the MAE department). Note that no course below the 5000-level may be applied to the degree requirements.
A student pursuing the doctor of philosophy degree normally follows a program of 90 semester hours beyond the B.S. degree or 60 semester hours beyond the M.S. degree. For those with M.S. degree, the 60 hours will consist of 24 hours of course work and 36 hours of thesis research. The Ph.D. course work must satisfy the departmental core course requirements for the M.S. degree. For the 24 hours of course work, a minimum of 12 hours must be completed within the department and at least three credit hours of mathematics/statistics. At least nine credit hours of course work must be at the 6000-level in the major field of study. In addition to these course requirements, a candidate must prepare a dissertation based on analytical and/or experimental research in a major area. This research must be equivalent to a minimum of 36 hours beyond the M.S. degree. There are no foreign language requirements for the master of science, doctor of engineering and doctor of philosophy degrees in mechanical engineering. However, a reading knowledge of one foreign language, German, French or Russian, may be required for the doctor of philosophy degree if the candidate's advisory committee feels that it is necessary.

A candidate for the degree of doctor of philosophy must pass a qualifying examination. The qualifying examination consists of taking a minimum of nine credit hours of approved graduate course work at the 5000- and 6000-level, including six hours in the major field, of which three hours must be at the 6000-level, and three hours of mathematics/statistics. To pass the qualifying examination, a student must have obtained a grade of B or better for all the courses with a GPA of at least 3.25.

A student holding a B.S. degree and pursuing the direct doctor of philosophy degree must complete at least 90 total credit hours, including the following requirements: at least 45 credit hours of lecture courses, at least 45 credit hours of MECH ENG 6099, at least 21 credit hours of course work in the MAE department, at least 6 credit hours of mathematics, statistics, or computer science (AERO ENG 5830/MECH ENG 5830 Applied Computational Methods may be used to satisfy three credit hours of this requirement), and at least 15 credit hours of 6000-level courses (of which at least 9 credit hours must be in the MAE department). In addition to these course requirements, a candidate must prepare a dissertation based on analytical, numerical, and/or experimental research. Note that no course below the 5000-level may be applied to the degree requirements.

A candidate for the degree of doctor of philosophy must pass a qualifying examination. The candidate is considered to have passed the qualifying examination if the candidate has taken at least four courses and has a GPA ≥ 3.5 at the end of the candidate's fourth semester. At least two courses must be in the MAE department, one of which must be at the 6000-level. The candidate must also pass a comprehensive examination and a final examination, which consists of the dissertation defense. These examinations are conducted according to the rules of the graduate faculty and the department. The graduate faculty has residency requirements which must be satisfied by all doctoral students.

The mechanical and aerospace engineering department offers five graduate certificate programs. The certificate program consists of a four-course sequence from existing graduate-level courses. The graduate certificate program is available to all individuals holding a B.S. degree in an appropriate engineering discipline who have a minimum of two years of professional experience or are currently accepted into a graduate degree program in the mechanical and aerospace engineering department. While the students admitted to the certificate program will have non-matriculated status, if they complete the four-course sequence with a grade of B or better in each of the courses taken, they will be admitted to the M.S. program if they so choose. The certificate credits taken by students admitted to the M.S. program will count toward their master's degrees. Currently, most classes offered in the graduate certificate are offered over the internet.

Composite Materials and Structures

Students enrolled in this graduate certificate program will take three required courses and one elective course offered by the mechanical and aerospace engineering graduate degree programs. Alternative courses may be substituted with the departmental approval dependent on the availability of the courses listed below:

<table>
<thead>
<tr>
<th>Required courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH ENG 5236/</td>
<td>Fracture Mechanics</td>
</tr>
<tr>
<td>AERO ENG 5236</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 5282/</td>
<td>Introduction to Composite Materials & Structures</td>
</tr>
<tr>
<td>AERO ENG 5282</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 6284/</td>
<td>Analysis of Laminated Composite Structures</td>
</tr>
<tr>
<td>AERO ENG 6284</td>
<td></td>
</tr>
</tbody>
</table>

Choose one of the following:

MECH ENG 5212/	Introduction to Finite Element Analysis
AERO ENG 5212	
MECH ENG 6222/	Theory of Elasticity
AERO ENG 6222	
MECH ENG 6230	Theory Of Plates

Control Systems

Students pursuing a graduate certificate in control systems will select two courses from Group I and two courses from Group II.

Group I

<table>
<thead>
<tr>
<th>Select two of the following:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO ENG 5361</td>
<td>Flight Dynamics-Stability And Control</td>
</tr>
<tr>
<td>MECH ENG 5481/</td>
<td>Mechanical And Aerospace Control Systems</td>
</tr>
<tr>
<td>AERO ENG 5481</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 5001/</td>
<td>Special Topics</td>
</tr>
<tr>
<td>AERO ENG 5001</td>
<td></td>
</tr>
<tr>
<td>MECH ENG 6479/</td>
<td>Analysis And Synthesis Of Mechanical And Aerospace Systems</td>
</tr>
<tr>
<td>AERO ENG 6479</td>
<td></td>
</tr>
</tbody>
</table>
Group II
Select two of the following:

- AERO ENG 5361 Flight Dynamics-Stability And Control
- ELEC ENG 5300 Digital Control
- ELEC ENG 6300 Linear Control Systems
- ELEC ENG 6310 Optimal Control And Estimation

Energy Conversion and Transport
A total of four courses from the list below are required for successful completion of the certificate. At least two of these courses must be from core MECH ENG or AERO ENG graduate courses (5000-level) and at least one must be an advanced course (6000-level).

Choose at least two of the following courses:

- MECH ENG 4001/ AERO ENG 4001 Special Topics
- MECH ENG 4001/ AERO ENG 4001 Special Topics
- MECH ENG 5131/ AERO ENG 5131 Intermediate Thermofluid Mechanics
- MECH ENG 5139/ AERO ENG 5139 Computational Fluid Dynamics
- MECH ENG 5525/ AERO ENG 5525 Intermediate Heat Transfer
- MECH ENG 5527/ AERO ENG 5527 Combustion Processes
- MECH ENG 5533/ AERO ENG 5535 Internal Combustion Engines
- MECH ENG 5541/ AERO ENG 5566 Applied Energy Conversion
- MECH ENG 6123/ AERO ENG 6123 Viscous Fluid Flow
- MECH ENG 6131/ AERO ENG 6131 Gas Dynamics I
- MECH ENG 6135/ AERO ENG 6135 Turbulent Flows - Theory, Measurements and Modeling
- MECH ENG 6137/ AERO ENG 6137 Physical Gas Dynamics I
- MECH ENG 6527/ AERO ENG 6527 Heat Transfer by Convection

Choose at least one of the following courses:

- MECH ENG 4001/ AERO ENG 4001 NUC ENG 4001/ PHYSICS 3001 Special Topics
- MECH ENG 4001/ AERO ENG 4001 NUC ENG 4001/ PHYSICS 3001 Special Topics
- MECH ENG 5131/ AERO ENG 5131 Intermediate Thermofluid Mechanics
- MECH ENG 5139/ AERO ENG 5139 Computational Fluid Dynamics
- MECH ENG 5527/ AERO ENG 5527 Combustion Processes
- MECH ENG 5533/ AERO ENG 5535 Internal Combustion Engines
- MECH ENG 6123/ AERO ENG 6123 Viscous Fluid Flow
- MECH ENG 6527/ AERO ENG 6527 Heat Transfer by Convection

Choose one of the following courses:

- MECH ENG 4001/ AERO ENG 4001 NUC ENG 4001/ PHYSICS 3001 Special Topics
- MECH ENG 4001/ AERO ENG 4001 NUC ENG 4001/ PHYSICS 3001 Special Topics
- MECH ENG 5131/ AERO ENG 5131 Intermediate Thermofluid Mechanics
- MECH ENG 5139/ AERO ENG 5139 Computational Fluid Dynamics
- MECH ENG 5527/ AERO ENG 5527 Combustion Processes
- MECH ENG 5533/ AERO ENG 5535 Internal Combustion Engines
- MECH ENG 6123/ AERO ENG 6123 Viscous Fluid Flow
- MECH ENG 6527/ AERO ENG 6527 Heat Transfer by Convection

Engineering Mechanics
Students enrolled in this graduate certificate program will have a choice from the following list of courses offered to graduate students in mechanical or aerospace engineering:

- MECH ENG 5211 Introduction To Continuum Mechanics
- MECH ENG 5212 Advanced Mechanics of Materials
- MECH ENG 5220/ AERO ENG 5220 Stability of Engineering Structures
- MECH ENG 5236/ AERO ENG 5236 Fatigue Analysis
- MECH ENG 5238/ AERO ENG 5238 Fatigue Analysis
- MECH ENG 5262/ AERO ENG 5262 Advanced Finite Element Analysis
- MECH ENG 6212 Theory Of Plates
- MECH ENG 6264/ AERO ENG 6264 Analysis Of Laminated Composite Structures

Manufacturing Automation
Students pursuing a graduate certificate in manufacturing automation through the mechanical engineering program will complete the following:

Required course:

- MECH ENG 5655 Manufacturing Equipment Automation

Select three of the following:

- ELEC ENG 5340 Advanced PLC
- ELEC ENG 5350 Plantwide Process Control
- MECH ENG 5478/ AERO ENG 5478/ COMP ENG 5820/ ELEC ENG 5870 Mechatronics

Victor Birman, Professor
PHD Technion, Haifa, Israel
Director Engineering Education Center in St. Louis. Composite material structures, smart structures and materials, structural dynamics and vibration, buckling and dynamic stability.
Douglas A Bristow, Associate Professor
PHD University of Illinois Urbana-Champaign
Dynamical modeling and control of micro- and nano-positioning systems, atomic force microscopes and additive manufacturing systems; volumetric error compensation; iterative learning control, multidimensional control, and signal processing.

K Chandrashekhara, Curators Distinguished Professor
PHD Virginia Polytechnic Institute
Composite materials, smart structures, structural dynamics, finite element analysis, composite manufacturing and experimental characterization.

Lianyi Chen, Assistant Professor
PHD Zhejiang University
Additive manufacturing, nanomanufacturing, smart manufacturing, solidification processing, laser materials processing, metal matrix composites, metallic glasses, materials for energy efficiency, materials for additive manufacturing, mechanical behavior of materials, and synchrotron radiation based x-ray scattering/imaging.

Alfred Linden Crosbie, Curators Distinguished Professor
PHD Purdue University
Multidimensional radiative heat transfer; laser processing of materials, radiative heat transfer in combustion processes, microscale heat transfer; biomedical optics, interaction of radiation with conduction and convection, multiple scattering and polarization of laser beams, solutions of integral equations, and numerical heat transfer.

L R Dharani, Curators Distinguished Professor
PHD Clemson University
Senior Investigator in Graduate Center for Materials Research. Micromechanics of bi-material interfaces, composite materials, fracture mechanics, fatigue and failure analysis of welded structures, wear and friction in composites, fracture and failure of laminated glass.

Xiangyang Dong, Assistant Professor
PHD Purdue University
Mechanics/microstructural evolution of advanced manufacturing & materials processing, multiscale modeling of materials by bridging first-principles calculations, molecular dynamics simulations, & finite element methods, materials design & manufacturing processes of composite & ceramics, relationships between the microstructure, properties, and processing of materials.

James A Drallmeier, Curator Distinguished Teaching Professor
PHD University of Illinois Urbana-Champaign
Department Chair. Combustion, laser based diagnostics for sprays and combustion, optical measurement systems, fuel injection, and internal combustion engines.

Xiaoping Du, Curators Distinguished Teaching Professor
PHD University of Illinois at Chicago
Design optimization, multidisciplinary optimization design, probabilistic/statistical methods, system/structural reliability, robust design, kinematics, mechanism synthesis, and petroleum machinery.

Jie Gao, Assistant Professor
PHD Columbia University
Nanophotonics devices based on silicon photonics, plasmonics and metamaterials; light-matter interactions in photonic nanostructures; optical sensing; quantum dots; quantum optics and quantum information processing; solar energy harvesting; light emitting devices.

Kelly O Homan, Associate Professor
PHD University of Illinois Urbana-Champaign
Fluid dynamics, heat transfer and thermodynamics of energy systems, heat and mass transfer in buoyant flows, second-law and energy analysis, numerical simulation of transport phenomena and experimental methods.

Edward C Kinzel, Assistant Professor
PHD Purdue University
Infrared metamaterials for radiation heat-transfer, optical antennas, near-field optics, and nanophotonics for laser based manufacturing, particularly at the micro/nanoscale and direct energy conversion.

Umit O Koaylu, Professor
PHD University of Michigan
Combustion, environmental technology, soot formation, turbulent flames, laser diagnostics, flame radiation, formation and emission of pollutants, synthesis of nanoparticles, micro-energy systems.

K Krishnamurthy, Professor
PHD Washington State University
Vice Provost for Research. Advanced manufacturing systems, intelligent control, micro-electromechanical systems, nanotechnology, robotics.

Robert G Landers, Curators Distinguished Professor
PHD University of Michigan
Manufacturing, systems, and control; modeling, analysis, monitoring, and control of manufacturing processes; metal cutting processes; laser metal deposition; friction stir welding; freeze extrusion fabrication; integrated design and control; control of alternative energy systems; digital control applications.

Ming C Leu, Keith & Pat Bailey Distinguished Professor
PHD University of California-Berkeley
Rapid prototyping, intelligent manufacturing, virtual reality, CAD/CAM, robotics, mechatronics, automatic control.

Fue-Wen Frank Liu, Michael and Joyce Bytnar Product Innovation and Creativity Professor
PHD University of Minnesota at Twin Cities
Michael and joyce Bytnar Product Innovation and Creativity Professor of Mechanical Engineering; Director of Manufacturing Engineering. Computer-aided design and manufacturing, rapid prototyping, rapid manufacturing, virtual manufacturing, and micro-machining.

Ashok Midha, Professor
PHD University of Minnesota at Twin Cities
Director of the Product Innovation Creativity Center. Mechanical design, rigid-body and compliant mechanism design, high-performance machinery analysis and design, machine vibration and stability.

J Keith Nisbett, Associate Professor
PHD University of Texas-Arlington
Associate Chair for Mechanical Engineering. Kinematics, mechanical design, and synthesis of mechanisms.
Anthony Chukwujekwu Okafor, Professor
PHD Michigan Technological University
Manufacturing including intelligent machining, metal forming, machine tool dynamics, acoustic emission, sensors, multi-sensor fusion and signal processing, CNC, CAD/CAM, virtual manufacturing, machine tool metrology, neural network and expert system applications; smart structures including intelligent health monitoring, damage assessment of composite structures; non-destructive evaluation.

Heng Pan, Assistant Professor
PHD University of California-Berkeley

Jonghyun Park, Assistant Professor
PHD University of Michigan-Ann Arbor
Advanced li-ion battery, beyond li-ion battery, energy storage systems, renewable energy systems, grid energy storage systems, nano-/macro-mechanics of materials, self-assembly of nanoparticles, nanostructures, multiphysics/multiscale experiment and simulations.

Yun Seong Song, Assistant Professor
PHD Massachusetts Institute of Technology

Daniel S Stutts, Associate Professor
PHD Purdue University
Dynamics, vibrations, modeling and development of piezo-actuators and transducers-mechatronics, mechanics of bone, design of orthopedic implants, structural dynamics, optimal design, acoustics.

Hai-Lung Tsai, Professor
PHD University of California-Berkeley
Solidification processes, heat transfer and fluid mechanics in materials processing and manufacturing (alloy casting, welding, crystal growth, metal matrix composites, injection molding), laser-based manufacturing (laser welding, cladding, micro-machining, rapid prototyping).

Cheng Wang, Assistant Professor
PHD University of Illinois at Urbana-Champaign
Fluid dynamics, micro/nanoscale heat and mass transport, interfacial phenomena, micro/nanofluidics, bioMEMS, lab-on-a-chip, micro/nano-fabrication, bubble dynamics, droplet dynamics, acoustics, acoustic streaming, electrohydrodynamics, electokinetics, and multi-phase flow.

Xiaodong Yang, Associate Professor
PHD Columbia University
Optical materials and devices in nanophotonics and plasmonics; physics and applications of optical metamaterials; nanoscale optomechanics, optical nanoelectromechanical systems (NEMS); integrated optofluidic devices and optical sensors; photon management for solar/thermal energy harvesting; optical device micro-/nano-fabrication.

MECH ENG 5000 Special Problems
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MECH ENG 5001 Special Topics
This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Aero Eng 5001).

MECH ENG 5131 Intermediate Thermofluid Mechanics
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 3131 or Aero Eng 3131. (Co-listed with Aero Eng 5131).

MECH ENG 5135 Fluid Machinery
Fundamental investigation of positive displacement and turbomachinery including pumps, fans, compressors, turbines, and oil hydraulic systems. Operating characteristics, selection, and comparison of types are studied. Prerequisite: Mech Eng 3131 or Aero Eng 5135.

MECH ENG 5139 Computational Fluid Dynamics
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; one course in fluid mechanics. (Co-listed with Aero Eng 5139).

MECH ENG 5205 Lubrication
Development of basic principles of bearing analysis including manufacture and properties of lubricants, hydrodynamics and hydrostatic lubrication, journal and thrust bearings, ball and roller bearings, boundary considerations, and bearing materials. Prerequisite: Mech Eng 3131.

MECH ENG 5211 Introduction To Continuum Mechanics
Introductory cartesian tensor analysis to aid in the development of the theory of a continuum. Kinematics of deformation, stress tensor, equations of motion, equations of mass and energy balance. Examples from specific material theories in solid and fluid mechanics. Prerequisites: Civ Eng 2210, Math 3304.

MECH ENG 5212 Introduction to Finite Element Analysis
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisites: Math 3304; senior or graduate standing. (Co-listed with Aero Eng 5212).

MECH ENG 5214 Applications Of Numerical Methods To Mechanics Problems
Numerical solutions of statics, vibrations, and stability problems. Direct stiffness formulations are developed and user-oriented computer codes are used to solve practical structures problems. Computer graphics techniques are utilized to prepare data and display results. Prerequisites: Civ Eng 2210; Mech Eng 2360 or Aero Eng 2360.
MECH ENG 5220 Advanced Mechanics of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 2210, Math 3304. (Co-listed with Aero Eng 5220).

MECH ENG 5222 Introduction To Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Mech Eng 5211. (Co-listed with Aero Eng 5222).

MECH ENG 5229 Smart Materials And Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Aero Eng 5229, Elec Eng 5270 and Civ Eng 5118).

MECH ENG 5234 Stability of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 2210, Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Aero Eng 5234).

MECH ENG 5236 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concepts of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5236).

MECH ENG 5238 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints, components and structures, design to prevent fatigue. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5238).

MECH ENG 5254 Variational Formulations Of Mechanics Problems (LEC 3.0)
Introduction and study of variational problems in classical dynamics and solid mechanics emphasizing the concepts of virtual work, minimum potential energy, and complementary energy. Variational inequalities. Prerequisites: Civ Eng 2210; Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Eng Mech 354).

MECH ENG 5282 Introduction to Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, laminate theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5282).

MECH ENG 5283 Industrial Applications Of Composite Materials Technology (LEC 3.0)
Composite materials-industrial applications. Fibers and matrices. Fabrication and NDI. Lamination theory overview. Composite joints. Postbuckling. Fatigue and environmental effects. Testing and certification of composite structures. A majority of the presentations will be made by engineers in the industry. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 303).

MECH ENG 5307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems and multidegree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studies. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Aero Eng 5307).

MECH ENG 5309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Aero Eng 5309).

MECH ENG 5313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mech Eng 3313 or Aero Eng 3613. (Co-listed with Aero Eng 5313).

MECH ENG 5420 Signal Processing for Instrumentation and Control (LEC 3.0)
The course presents fundamental techniques for analysis and processing of experimental data and real-time signals. Continuous- and discrete-time development of signal spectra, Fourier Transform, convolution, filter design, and system identification. The emphasis is on practical problems that arise in instrumentation and control applications. Prerequisites: Math 3304; Mech Eng 3411 or permission of instructor for non-Mech Eng majors.
MECH ENG 5449 Robotic Manipulators and Mechanisms (LAB 1.0 and LEC 2.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Mech Eng 3313; Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972 or Comp Sci 1570. (Co-listed with Aero Eng 5449).

MECH ENG 5478 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Aero Eng 5478, Elec Eng 5870 and Comp Eng 5820).

MECH ENG 5481 Mechanical And Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 4479 or Aero Eng 3361. (Co-listed with Aero Eng 5481).

MECH ENG 5519 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 2519. (Co-listed with Aero Eng 5519).

MECH ENG 5523 Transport Phenomena In Manufacturing Processes (LEC 3.0)
A study of the important role that transport phenomena (heat and mass transfer and fluid flow) play during various manufacturing processes including metal casting, joining and welding extrusion, forging, crystal growth, chemical deposition, and thermal spray deposition. Prerequisites: Mech Eng 3525 and 3131.

MECH ENG 5525 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 3525. (Co-listed with Aero Eng 5525).

MECH ENG 5527 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 3521. (Co-listed with Aero Eng 5527).

MECH ENG 5533 Internal Combustion Engines (LEC 3.0)
A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels, and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mech Eng 3521.

MECH ENG 5537 Fuel Cell Principles (LEC 3.0)
Fuel cell fundamentals including thermodynamics, reaction kinetics, mass transport, characterization, and modeling are discussed. Different types of fuel cells such as proton exchange membrane and solid oxide are covered together with subsystem design and system integration as well as environmental impacts. Prerequisites: MECH ENG 3521.

MECH ENG 5541 Applied Energy Conversion (LEC 3.0)
The study of the principles of energy conversion. Specific applications include fuel cells and other direct energy conversion devices used in plug-in hybrid electric vehicles. Prerequisite: Mech Eng 3521.

MECH ENG 5544 Non-Intrusive Measurement Methods (LEC 3.0)
Fundamentals of non-contact measurement methods for engineers. Basic engineering optics with a focus on radiation measurement methods including the effects of various sources and detectors. Prerequisites: Phys 2135; Mech 3525 or consent of instructor for non-Mech Eng majors.

MECH ENG 5566 Solar Energy Technology (LEC 3.0)
Introduction to the nature of solar radiation and associated thermal energy transfers. Methods of collecting and storing solar energy. Analysis and design of systems for utilizing solar energy, including heating and cooling. Prerequisite: Mech Eng 3525, or consent of instructor for non-Mech Eng majors.

MECH ENG 5567 Heat Pump And Refrigeration Systems (LEC 3.0)
The various methods used in the thermal design and analysis of both refrigeration and heat pumps systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, and thermoelectric systems. Prerequisites: Mech Eng 3521, 3525.

MECH ENG 5570 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3131 or Physics 3211 or Nuc Eng 3221 or Elec Eng 3600. (Co-listed with Aero Eng 5570, Nuc Eng 4370, Physics 4543).

MECH ENG 5571 Environmental Controls (LEC 3.0)
Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 3521 and accompanied or preceded by Mech Eng 3525; or Mech Eng 2527 and Civ Eng 3330.

MECH ENG 5575 Mechanical Systems For Environmental Control (LEC 3.0)
Analysis of refrigeration, heating, and air-distribution systems. Synthesis of environmental control systems. Prerequisites: Mech Eng 3521 and 3525; or Mech Eng 2527 and Civ Eng 3330.
MECH ENG 5606 Material Processing By High-Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques, and basic calculations. Application of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. Prerequisite: Mech Eng 3131 or undergraduate fluids course. (Co-listed with Min Eng 5413).

MECH ENG 5644 Interdisciplinary Problems In Manufacturing Automation
(LEC 2.0 and LAB 1.0)
The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Mech Eng 4479, Eng Mgt 5315).

MECH ENG 5653 Computer Numerical Control of Manufacturing Processes
(LEC 2.0 and LAB 1.0)
Fundamental theory and application of computer numerical controlled machine tools from the viewpoint of design principles, machine structural elements, control systems, and programming. Projects include manual and computer assisted part programming and machining. Prerequisites: Preceded or accompanied by Mech Eng 3653.

MECH ENG 5655 Manufacturing Equipment Automation
(LAB 1.0 and LEC 2.0)
Manufacturing automation at the equipment level. Topics include sensors, actuators, and computer interfacing for manufacturing equipment, dynamic modeling and control of manufacturing equipment, interpolation, coordinated motion control, kinematic and geometric error modeling, and runout. Prerequisites: Preceded or accompanied by Mech Eng 4479 or equivalent.

MECH ENG 5656 Design For Manufacture (LEC 3.0)
Course covers the approach of concurrent product and process design. Topics includes: principle of DFM, New product design process, process capabilities and limitations, Taguchi method, tolerancing and system design, design for assembly and AI techniques for DFM. Prerequisites: Mech Eng 3708, Mech Eng 3653.

MECH ENG 5702 Synthesis Of Mechanisms (LEC 3.0)
Synthesis of planar mechanisms for function generation, path generation, and motion generation. Emphasis is on analytical methods for synthesis. Prerequisite: Mech Eng 3313.

MECH ENG 5704 Compliant Mechanism Design (LEC 3.0)
Introduction to compliant mechanisms; review of rigid-body mechanism analysis and synthesis methods; synthesis of planar mechanisms with force/energy constraints using graphical and analytical methods; pseudo-rigid-body models; force-deflection relationships; compliant mechanism synthesis methods; and special topics, e.g., bistable mechanisms, constant-force mechanisms, parallel mechanisms, and chain algorithm in design. Emphasis will be on applying the assimilated knowledge through a project on compliant mechanisms design. Prerequisites: Mech Eng 3313, Civ Eng 2210.

MECH ENG 5708 Rapid Product Design And Optimization (LEC 3.0)
Product Life cycle design; Finding design solutions using optimization technique; Rapid product realization using rapid prototyping and virtual prototyping techniques. Prerequisite: Mech Eng 3708.

MECH ENG 5709 Machine Design II (LEC 3.0)
A continuation of the study of machine elements; bearings, spur, bevel, worm, and helical gearing, and indeterminate machine elements; impact and shrink stresses. Prerequisite: Mech Eng 3708.

MECH ENG 5715 Concurrent Engineering (LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 3313 or Aero Eng 3131, Civ Eng 2210. (Co-listed with Aero Eng 5715).

MECH ENG 5757 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, and end of product life options. Prerequisites: Junior or above standing. (Co-listed with ENG MGT 5515).

MECH ENG 5758 Integrated Product Development (LAB 2.0 and LEC 1.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 5515 or Mech Eng 5757 or Mech Eng 3653 or Mech Eng 5708. (Co-listed with Eng Mgt 5516).

MECH ENG 5760 Probabilistic Engineering Design (LEC 3.0)
The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 3708 or Aero Eng 3361. (Co-listed with Aero Eng 5760).

MECH ENG 5761 Engineering Design Methodology (LEC 3.0)
This course examines structured engineering design theory and methodologies for conceptual design and redesign of products. Topical coverage includes customer needs gathering, functional modeling, engineering specifications creation (OFD), concept generation, selection and design embodiment. Team work/hands-on projects emphasized. Prerequisite: At least Senior standing in engineering.
MECH ENG 5763 Computer Aided Design: Theory and Practice (LEC 2.0 and LAB 1.0)
Lectures cover the fundamentals of computer-aided design with emphasis on geometric modeling of curves, surfaces and solids, CAD/CAM data exchange, and computer graphics. In the lab session, students practice with commercial CAD/CAM systems including NX and SolidWorks to gain practical experience. Prerequisites: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; Mech Eng 2761; Math 2222; at least Junior standing.

MECH ENG 5764 Introduction to Decision Analysis (LEC 3.0)
This course is an introduction to decision analysis, a decision-making method under uncertainty. The course topics include probability theory, influence diagram, decision tree, subjective probability, sensitivity analysis, value of information, risk attitude, and utility models. Prerequisite: Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117.

MECH ENG 5830 Applied Computational Methods (LEC 3.0)
Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisites: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; Math 3304. (Co-listed with Aero Eng 5830).

MECH ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MECH ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MECH ENG 6010 Seminar (LEC 0.0-1.0)
Discussion of current topics. (Co-listed with Aero Eng 6010).

MECH ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MECH ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MECH ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

MECH ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MECH ENG 6123 Viscous Fluid Flow (LEC 3.0)
Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Aero Eng 6123).

MECH ENG 6131 Gas Dynamics I (LEC 3.0)
A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Aero Eng 6131).

MECH ENG 6135 Turbulent Flows - Theory, Measurements and Modeling (LEC 3.0)
Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Aero Eng 6135).

MECH ENG 6137 Physical Gas Dynamics I (LEC 3.0)
Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and non-equilibrium gas properties and gas flows are included. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Aero Eng 6137).

MECH ENG 6212 Advanced Finite Element Analysis (LEC 3.0)
MECH ENG 5222 Theory of Elasticity (LEC 3.0)

MECH ENG 6230 Theory Of Plates (LEC 3.0)
General coverage of various approaches to plate problems and the application of these methods to practical problems. Special topics include applications to elastic foundations, buckling and energy methods in plate theory. Prerequisite: Math 5325.

MECH ENG 6232 Theory Of Shells (LEC 3.0)
General theory of stress analysis of shells based on topics in differential geometry and general elasticity theory. Theory is applicable to studies of the elastic behavior of flat plates and shells, buckling and post-duckling behavior of shells, and provides a basis for all shell theories which account for anisotropy, plasticity, creep, thermal strains, internal reinforcements, and transverse shearing deformations. Prerequisite: Math 5325.

MECH ENG 6236 Advanced Fracture Mechanics (LEC 3.0)
Mathematical theories of equilibrium cracks and brittle fracture, mathematical analysis of elastic-plastic fracture mechanics, COD, R-curve and J-integral analysis. Prerequisite: Aero Eng 5236 or Mech Eng 5236.

MECH ENG 6248 Analysis of Laminated Composite Structures (LEC 3.0)
An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Aero Eng 6284).

MECH ENG 6258 Mechanics Of Composite Materials (LEC 3.0)
Effective moduli of spherical, cylindrical, and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Aero Eng 6285).

MECH ENG 6307 Advanced Vibrations (LEC 3.0)
Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems, and random excitations. Prerequisite: Mech Eng or Aero Eng 5307. (Co-listed with Aero Eng 6307).

MECH ENG 6309 Engineering Acoustics II (LEC 3.0)

MECH ENG 6313 Advanced Dynamics Of Machinery (LEC 3.0)
Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations; stability of systems, to include approximate techniques. Prerequisite: Mech Eng or Aero Eng 5313. (Co-listed with Aero Eng 6313).

MECH ENG 6479 Analysis And Synthesis Of Mechanical And Aerospace Systems (LEC 3.0)
A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mech Eng 5481 or Aero Eng 5481. (Co-listed with Aero Eng 6479).

MECH ENG 6481 Advanced Topics in Decision and Control (LEC 3.0)
This course will deal with latest topics in the areas of decision and control. Course may be repeated if topics vary. Prerequisite: Aero Eng 5481 or Mech Eng 5481 or equivalent. (Co-listed with Aero Eng 6481).

MECH ENG 6525 Heat Transfer by Conduction (LEC 3.0)
A study of conduction heat transfer in solids by analytical and other methods. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Aero Eng 6525).

MECH ENG 6526 Micro-/Nano-Scale Thermophysics and Energy Transport (LEC 3.0)
Introduces advanced statistical thermodynamics, nonequilibrium thermodynamics, kinetic theory, and quantum theory to analyze thermophysics and energy transport for microscale and nanoscale systems. Covers the fundamental concepts of photons, electrons, and phonons in the forms of waves and particles. Includes applications to ultrafast laser processing. Prerequisite: Mech Eng 5525.

MECH ENG 6527 Heat Transfer by Convection (LEC 3.0)
An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Aero Eng 6527).
MECH ENG 6529 Heat Transfer by Radiation (LEC 3.0)
A study of the nature of thermal radiation; implications from
electromagnetic theory; radiative characteristics of surfaces; enclosures;
configuration factors; radiosity; specular and diffuse reflection; transfer
in absorbing, emitting and scattering media; combined radiation
conduction and convection; experimental methods. Prerequisite: Mech
Eng or Aero Eng 5525. (Co-listed with Aero Eng 6529).

MECH ENG 6541 Advanced Energy Conversion (LEC 3.0)
An analytical study of power producing systems with emphasis on new
techniques and energy sources. All basic methods of energy conversion
are covered from detailed physical descriptions to mathematical
analysis. Included are advanced heat engines, nuclear power reactors,
thermoelectric engines, magnetohydrodynamic devices, solar energy, fuel
cells, and recent developments. Prerequisite: Mech Eng (or Aero Eng)
5519, or Mech Eng (or Aero Eng) 5525.

MECH ENG 6575 Advanced Environmental Control (LEC 3.0)
The study of environmental control systems including their sizing,
control, and energy requirements. Use of major energy analysis programs
for system evaluation. Prerequisite: Mech Eng 5575.

MECH ENG 6585 Advanced Optical Materials and Structures (LEC 3.0)
Fundamental principles and advanced topics in optical materials and
structures covering areas of photonics, plasmonics and metamaterials,
and nanofabrication techniques. Prerequisite: Elec Eng 5200 or
equivalent.

MECH ENG 6653 Advanced Cnc Of Manufacturing Processes & Engineering
Metrology (LAB 1.0 and LEC 2.0)
Advanced treatment of Computer Numerical Control (CNC) part
programming and machine tool metrology. Topics include mathematical
modeling and characterization of machine tools and Coordinate
Measuring Machines (CMMs); Measurement and analysis of dimensional
accuracy, surface finish, precision, and uncertainty; Machine tool error
modeling and compensation; Virtual Numerical Control (VNC) Machine
Tool modeling, programming, simulation and process verification/
optimization. Projects include advanced CNC programming and
simulation. Prerequisite: Mech Eng 5653.

MECH ENG 6655 Modeling And Control Of Manufacturing Processes (LEC 3.0)
This course covers control-oriented modeling, simulation, and control
of manufacturing processes. Topics include digital control, control
system hardware, servomechanisms, interpolation, coordinated motion
control, regenerative chatter, and control of machining and non-traditional
processes. Control algorithms are implemented on a machining center.
Prerequisites: Mech Eng 5655, Mech Eng 5481.

MECH ENG 6657 Laser Aided Manufacturing And Materials Processing (LEC 3.0)
Fundamental studies in laser aided manufacturing and materials
processing including laser principles and optics, physics of laser-
materials interaction, interface responses for rapid solidification, theories
on non-equilibrium synthesis, modeling of transport phenomena, optical
sensing techniques, current topics and considerations for lasers in
manufacturing. Prerequisite: Mech Eng 5525.

MECH ENG 6659 Advanced Topics in Design and Manufacturing (LEC 3.0)
Various topics in the area of design and manufacturing will be covered
in this course: development of flexible manufacturing systems, CAD/CAM
integration, rapid prototyping, etc. Prerequisites: Mech Eng 5655 or Mech
Eng 5708 or equivalent.

MECH ENG 6663 Advanced Digital Design and Manufacturing (LEC 3.0)
This course covers freeform modeling, reverse engineering, numerical
control path generation for material removal and addition, and virtual
reality based digital design and manufacturing. Students learn theoretical
and fundamental aspects of these topics from lectures and project
exercises. Prerequisites: Mech Eng 5708 or Mech Eng 5757 or Mech Eng
5763 or equivalent.

MECH ENG 6704 Mechanics of Machinery (LEC 3.0)
Rigid-body kinematics, dynamics, and synthesis of mechanisms;
cam-follower mechanisms; mathematical modeling of mechanisms
containing elastic elements; transient and steady-state vibration
response; parametric instability in elastic mechanisms; advanced
topics in compliant mechanisms; high performance mechanisms
will be emphasized. Prerequisites: Vector & matrix analysis; introductory
planar kinematic & dynamic analysis of mechanisms; MECH ENG 5704 or
equivalent.

MECH ENG 6761 Modern Product Design (LEC 3.0)
Modern product development, design and prototyping are examined from
a product architecture standpoint in this course. Functional modeling
techniques are used to establish the architecture of a product and
recently developed theories and techniques for design are covered. A
prototyping project is required to provide immediate application of the
theories. Prerequisite: Aero Eng 5758 /Eng Mgt 4312 or Mech Eng 5708 or
Mech Eng 5666.

Metallurgical Engineering

The metallurgical engineering program in the department of materials
science and engineering offers comprehensive graduate education in a
number of areas including physical and mechanical metallurgy, extractive
metallurgy, metals casting, joining and forming, and advanced additive
manufacturing. Further information on these opportunities and facilities
available to carry out research in metallurgical engineering may be found
under materials science and engineering.

Degree Requirements

M.S. and Ph.D. degrees are offered in metallurgical engineering.
Recognizing the educational value of research, most metallurgical
engineering M.S. degree candidates complete a thesis program. Non-
thesis exceptions may be granted in special circumstances.

The total number of hours required for the M.S. in metallurgical
engineering is 30. A minimum of 6 hours of 6000-level lectures and a
minimum of 11 hours graduate research on the Missouri S&T campus are
required. A maximum of 6 hours of 4000-level lectures may be accepted.

The minimum number of hours (beyond the bachelor’s degree) required
for the Ph.D. in metallurgical engineering is 72. At least 12 hours of
course work outside metallurgy is recommended, a minimum of 24 hours
will be dissertation research, and a minimum of 24 hours must be course
work. Students will also be required to take and pass qualifying and comprehensive exams in accordance with Missouri S&T rules.

Degree Requirements

M.S. and Ph.D. degrees are offered in metallurgical engineering.

The minimum number of hours (beyond the bachelor's degree) required for the Ph.D. in metallurgical engineering is 72. At least 12 hours of course work outside metallurgy is recommended, a minimum of 24 hours will be dissertation research, and a minimum of 24 hours must be course work. Students will also be required to take and pass qualifying and comprehensive exams in accordance with Missouri S&T rules.

Mohsen Asle Zaeem, Associate Professor
PHD Washington State University

Laura Bartlett, Associate Professor
PHD Missouri University of Science and Technology

Simon Lekakh, Research Professor
PHD Belorussian Polytechnic Institute

F Scott Miller, Teaching Professor
PHD University of Missouri-Rolla
Associate Chair for Undergraduate Programs

Michael Scott Moats, Associate Professor
PHD University of Arizona
Associate Chair for Graduate Programs

Joseph W Newkirk, Associate Professor
PHD University of Virginia

Ronald J O'Malley, Professor
PHD Massachusetts Institute of Technology
F. Kenneth Iverson Chair Professor in Steelmaking Technologies, Director of the Kent D. Peaslee Steel Manufacturing Research Center

Mark E Schlesinger, Professor
PHD University of Arizona

David C Van Aken, Curators Teaching Professor
PHD University of Illinois Urbana

Haiming Wen, Assistant Professor
PHD University of California-Davis

Mingzhi Xu, Assistant Research Professor
PHD Missouri University of Science and Technology

Caizhi Zhou, Assistant Professor
PHD Iowa State University

MET ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 5001 Graduate Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MET ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 5110 High Temperature And Corrosion Resistant Alloys (LEC 3.0)
Fabrication and use of nickel, titanium, and refractory metal based alloys for use at high temperatures or in chemically corrosive environments. Properties and strengthening mechanisms of these alloys. Theory of high temperature oxidation and corrosion and design of alloys to prevent them. Prerequisites: Met Eng 3130, 2125.

MET ENG 5150 Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 2110.

MET ENG 5160 Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 3120, 3125, Civ Eng 2210.

MET ENG 5170 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 2210; Nuc Eng 3205; Nuc Eng 3223; Met Eng 2110.(Co-listed with Nuc Eng 4241).

MET ENG 5171 Nuclear Materials II (LEC 3.0)
Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFBR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Met Eng 5170.

MET ENG 5220 Recent Advances In Extractive Metallurgy (LEC 2.0)
A survey of extractive processes recently developed in the light of modern requirements with respect to raw materials, product quality, environmental impact, energy consumption, capital cost and process control. Prerequisite: Met Eng 4350.
MET ENG 5270 Mineral Processing II (Mechanics and Design) (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 3412. (Co-listed with Min Eng 5424).

MET ENG 5330 Nonferrous Alloys (LEC 3.0)
Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. Prerequisite: Met Eng 3130 or Met Eng 5810.

MET ENG 5420 Advanced Metals Casting (LEC 3.0)
An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 3420 or Mech Eng 2653.

MET ENG 5425 Metals Casting Laboratory (LAB 1.0)
An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, high-quality castings. Prerequisite: Accompanied or preceded by Met Eng 4420.

MET ENG 5430 Metals Joining (LEC 2.0)
Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Met Eng 2110 or 3420.

MET ENG 5440 Metal Deformation Processes (LEC 3.0)
An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Met Eng 3120 and Met Eng 3420 both with "C" or better grade.

MET ENG 5450 Advanced Steelmaking (LEC 3.0)
This course is designed to provide students with an enhanced understanding of the chemistry and physics of ironmaking, steelmaking and casting, to apply these concepts to a wide range of problems in modern steelmaking and casting operations, and to perform advanced design and operational calculations associated with refining and continuous casting processes. Prerequisite: Grade of "C" or better in Cer Eng 3230 or Met Eng 3330.

MET ENG 5460 Metal Coating Processes (LEC 3.0)
Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisite: Senior or Graduate Standing.

MET ENG 5470 Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast iron and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment. Prerequisite: Met Eng 4420 or Met Eng 5420 or graduate standing with permission of instructor.

MET ENG 5480 Refining Of Metals (IND 2.0-3.0)
Principles and applications of refined metal production by electrochemical methods. The course will address basic copper and zinc processing, electrometallurgy, anodes and anodic processes, cathode deposit control and contamination mechanisms, Faraday's Law and current efficiency, and current state of practice. Prerequisite: Cer Eng 3230 and Met Eng 3220 or graduate standing.

MET ENG 5510 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 2135 or 2111. (Co-listed with Elec Eng 5670).

MET ENG 5515 Nondestructive Testing Laboratory (LAB 1.0)
Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of materials and manufactured parts. Prerequisite: Accompanied or preceded by Met Eng 5510.

MET ENG 5520 Electron Microscopy (LEC 3.0)
A course in the theory and application of both scanning and transmission electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Met Eng 3130 and Met Eng 2125, or a course in optical microscopy.

MET ENG 5525 Scanning Electron Microscopy Lab (LAB 1.0)
A course in the practical use and operation of scanning electron beam instruments and their associated techniques. Prerequisite: Preceded or accompanied by Met Eng 5520.

MET ENG 5560 Materials Behavior (LEC 3.0)
A course in crystal defects and deformation; mechanical testing; creep; fracture mechanics and fatigue. Prerequisites: Grade of "C" or better in both Met Eng 2110 and Met Eng 3120.

MET ENG 55630 Environmental Aspects Of Metals Manufacturing (LEC 3.0)
Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.
MET ENG 5810 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Cer Eng 5810).

MET ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MET ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 6160 Advanced Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication.

MET ENG 6325 Advanced Ferrous Microstructures (LAB 1.0 and LEC 1.0)
Course provides an in-depth explanation of microstructural development during solidification, thermo-mechanical processing, and heat treatment of steel. Topics: microscopy, metallography, the Fe-C phase diagram, solidification, homogenization, grain size control, formation of microstructures upon heating/cooling. Term paper and presentation required.

MET ENG 6440 Advanced Metal Deformation Processes (LEC 3.0)
Advanced metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisites: A grade of "C" or better in both Met Eng 3120 and Met Eng 3420.

MET ENG 6470 Advanced Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment.

MET ENG 6535 Transmission Electron Microscopy Lab (LAB 1.0)
A course in the practical use and operation of transmission electron beam instruments and their associated techniques. Prerequisite: Preceded or accompanied by Met Eng 5520.

Mining Engineering

The mining engineering program in the department of mining and nuclear engineering offers the graduate certificate, master of engineering (M.E.), master of science (M.S.), doctor of philosophy (Ph.D.) and doctor of engineering (D.E.) degrees in mining engineering. The M.S. with thesis and Ph.D.degrees require research components for program completion. The core research strengths include surface mining methods and heavy mining machinery, mine ventilation and mine atmospheric control, explosives engineering, sustainable development and mine optimization, rock mechanics and ground control, minerals, coal and materials processing, minerals and energy economics, and underground mining methods and equipment. Graduate students in any of these programs must consult the graduate degree requirements in mining engineering, the graduate catalog of Missouri S&T and their respective advisors.

The graduate certificate program requires 12 credit hours in core courses. Students must have a minimum cumulative GPA of 3.00/4.00 to receive the graduate certificate in mining engineering. The ME program requires a minimum of 30 credit hours, offered via distance (online). The required credit hours include 15 core credit hours, 12 credit hours in technical electives and 3 credit hours for a seminar project. The mining engineering program offers an M.S. degree with thesis for onsite students and an M.S. by coursework option for distance students. The M.S. degree with thesis option requires a minimum of 30 credit hours, including the required research for the thesis. The program requirements must include a minimum of 6 credit hours of 6000-level lecture courses, 6 credit hours of courses outside the major field, and 6 credit hours for thesis research. M.S. candidates must pass a final oral examination of the thesis to complete the program. The M.S. degree by coursework option requires a minimum of 30 credit hours, including a minimum of 9 credit hours of 6000-level lecture courses and 3 credit hours for a seminar project. The Ph.D. program requires a minimum of 3 years of full-time study beyond the bachelor's degree, including research work for the dissertation. Ph.D. candidates must complete at least 15 credit hours of course work at Missouri S&T and are required to pass the qualifying, comprehensive and final oral examinations of the Ph.D. program. The D.E. degree requires a minimum of 3 years of full-time study beyond the bachelor's degree, including research work for the dissertation. D.E. students must pass the qualifying, comprehensive and final oral examinations and must also satisfy an engineering internship requirement.

Major Research Areas

The eight research major areas include: (i) surface mining methods and heavy mining machinery; (ii) mine ventilation and mine atmospheric control; (iii) explosives engineering; (iv) sustainable development and mine optimization; (v) rock mechanics and ground control; (vi) mineral, coal and materials processing; (vii) minerals and energy economics; and (viii) underground mining methods and equipment. Surface mining methods and heavy mining machinery research focuses on surface mining, formation excavation, heavy machinery imaging and integration, mine safety and health, machine and component health, equipment vision, intelligent mining systems and stochastic processes and risks simulation. Specific research frontiers include (i) mining methods, design.
and production systems; (ii) formation failure dynamics, machineFormation interaction; (iii) kinematics, dynamics and virtual prototype simulation; (iv) machine health and longevity; (v) augmented equipment vision; (vi) machine vibrations and operator health; (vii) tire durability management; (viii) intelligent excavation; (ix) machine automation; (x) random fields and stochastic processes; (xi) numerical, parametric and stochastic simulation.

Mine ventilation and mine atmospheric control research focuses on mine ventilation network modeling and planning, diesel particulate matter (DPM), mine dust control, mine fire simulation and firefighting. Specific research frontiers include (i) ventilation network simulation, (ii) DPM discharge dissipation modeling and control strategies, (iii) spontaneous combustion modeling, firefighting and emergency planning; and (iv) computational fluid dynamics modeling of particulate matter. **Explosives engineering research** focuses on improvements in commercial explosives and blasting agents, mining-related uses of explosives, explosives safety, blast-resistant structures, barriers to blast, fragments, and ballistic penetration, and explosive-driven pulsed power. Specific research frontiers include (i) design, evaluation, analysis, and test; (ii) barrier concepts, standoff distance analysis, barrier design and test; (iii) design, evaluation, analysis, and test of explosive-driven pulsed power generator concepts and power conditioning systems.

Sustainable development and mine optimization research focuses on reserve estimation and ore control, production scheduling and optimization, and critical materials sustainability assessment and modeling. Specific research frontiers include (i) geostatistics, ore (dig) outline optimization; (ii) mixed integer LP formulations, computational efficiency, discrete event simulation, optimization, energy efficiency modeling; (iii) mining applications of life cycle assessment, life cycle sustainability assessment, social acceptance modeling, global critical material supply chain sustainability modeling, reclaimed mine land stray-gas hazards. **Rock Mechanics and ground control research** focuses on ground control, acoustic emission/microseismic, geophysical methods in mines, and non-destructive testing. Specific research frontiers include (i) pillar design, mine support, rockburst, slope stability; (ii) monitoring design, location methods, error analysis; (iii) geotomography, in-seam seismic method, void detection; and (iv) integrity of structures and monitoring of aging infrastructure.

Minerals, coal and materials processing research focuses on mineral processing, tailings management, polymer science, nanotechnology, interfacial science, colloidal interactions in aqueous systems clays. **Minerals and energy economics research** focuses on supply and use of minerals and energy in society, minerals and energy markets and electricity markets, minerals and energy and economic growth, economics of minerals and energy infrastructure, minerals and energy policy, minerals and energy derivatives, minerals and energy demand forecast, elasticity of supply and demand in minerals and energy markets, climate change and climate policy, and sustainable minerals and energy development. **Underground mining methods and equipment research** focuses on mass mining, machine design and automation, underground mine support, machine vibration, novel mining methods, numerical modeling, virtual prototype simulation and computational fluid dynamics.

Major Research Facilities

Mining, minerals and explosives engineering research initiatives are carried out in world-class environments at Missouri S&T. Major research facilities include the following:

- Energetic Materials Research Center (p. 44)
- Experimental Mine (http://catalog.mst.edu/graduate/specialfacilitiesandprograms/experimentalmine/#text)
- Mineral Processing Laboratory (p. 50)
- Rock Mechanics and Explosives Research Center (http://catalog.mst.edu/graduate/researchcentersandinstitutes/rockmechanicsandexplosivesresearchcentermerc/#text)
- Rock Mechanics Laboratory (p. 52)
- Virtual Surface Mining Simulator (p. 53)
- High Pressure Waterjet Laboratory (http://catalog.mst.edu/graduate/specialfacilitiesandprograms/highpressurewaterjetlaboratory/#text)

Lana Z Alagha
Assistant Professor
PHD University of Texas at Dallas
Mineral processing, tailings management, polymer science, nanotechnology, interfacial science, colloidal interactions in aqueous systems clays.

Nassib S Aouad
Assistant Professor
PHD Missouri Science and Technology
Mechanical design and automation, machine health and fatigue analysis, machinery and whole-body vibrations, advanced vibrations modeling and analysis, numerical modeling and simulation, virtual prototyping, computational fluid dynamics.

Kwame Awuah-Offei
Associate Professor
PHD University of Missouri-Rolla
Life cycle sustainability assessment, community acceptance modeling, energy efficiency modeling, production optimization, CO2 hazard delineation and innovative post-mining land uses for underground mines.

Samuel Frimpong
Professor¹
PHD University of Alberta, Canada
Surface mining, formation excavation, heavy machinery imaging and integration, intelligent mining systems, stochastic processes and risks simulation, extra heavy oil extraction, and mine safety, health and hazards engineering.

Grzegorz Galecki
Associate Professor
PHD Wrocław Tech University, Poland
System integration, modeling of mining processes supported by waterjets, novel methods of comminution, particulate processing, coal conversion into fuels, borehole mining, mineral processing.

Maochen Ge
Associate Professor
PHD Penn State University
Rock mechanics and ground control, underground mine design, acoustic emissions, micro-seismic phenomena in underground mines, theory and applications of geotomology, non-destructive structural testing, numerical methods.

Catherine Johnson
Assistant Professor
PHD University of Kentucky

Braden Lusk
Professor¹
PHD University of Missouri-Rolla
Kyle Perry, Assistant Professor
PHD University of Kentucky

Paul Nicholas Worsey, Professor
PHD University of Newcastle-upon-Tyne, United Kingdom

Explosives engineering, drilling and blasting, rock excavation, demolition, commercial pyrotechnics.

MIN ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MIN ENG 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 5113 Mine Atmosphere Control (LAB 1.0 and LEC 2.0)
Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Mech Eng 2527 and Civ Eng 3330; or Nuc Eng 3221.

MIN ENG 5212 Aggregates and Quarrying (LEC 3.0)
Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 3912; Preceded or accompanied by Civ Eng 3116.

MIN ENG 5322 Coal Mining Methods (LEC 3.0)
An in-depth study of all aspects of coal mining, including an overview of the coal industry, reserves and geology, planning and development of coal mines, surface and underground mechanized methods of face preparation, equipment, coal extraction, handling and preparation as practiced in the United States. Prerequisites: Min Eng 5912.

MIN ENG 5412 Aggregates Materials Sizing and Characterization (LAB 1.0 and LEC 2.0)
Geological formation of aggregates; aggregate properties and their measurements; aggregates for specific end-user applications; specifications and standards; processing (crushing, screening, classification, and washing); plant design and flow sheet analysis; quality control and assurance. Field trip to a nearby quarry required. Prerequisite: Min Eng 2412.

MIN ENG 5413 Material Processing by High Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mech Eng 5606).

MIN ENG 5422 Coal Preparation (LEC 2.0 and LAB 1.0)
Coal properties, sampling, testing, breaking, sizing, cleaning and dewatering. Disposal of refuse. Prerequisite: Min Eng 2412.

MIN ENG 5423 Flotation and Hydrometallurgy (LEC 2.0 and LAB 1.0)
Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisites: Min Eng 2412.

MIN ENG 5424 Mineral Processing II Mechanics And Design (LEC 2.0 and LAB 1.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisites: Min Eng 2412. (Co-listed with Met Eng 5270).

MIN ENG 5522 Ore Reserve Analysis and Geostatistics (LAB 1.0 and LEC 2.0)
Principles of geostatistics, theory of spatially correlated random variables, variance and co-variances and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 3304; Stat 3113 or Stat 3115.

MIN ENG 5532 Advanced Mining Economics (LEC 3.0)

MIN ENG 5562 Blasting Design And Technology (LEC 2.0 and LAB 1.0)
Advanced theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Exp Eng 5612).

MIN ENG 5561 Environmental Aspects of Mining (LEC 3.0)
Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Preceded or accompanied by Min Eng 5933 or Geo Eng 5441 or Env Eng 5619. (Co-listed with Geo Eng 5276).

MIN ENG 55622 Blasting Design And Technology (LEC 2.0 and LAB 1.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 5612. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 5622).

MIN ENG 5742 Flotation and Hydrometallurgy (LEC 2.0 and LAB 1.0)
Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisites: Min Eng 2412.

MIN ENG 5424 Mineral Processing II Mechanics And Design (LEC 2.0 and LAB 1.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisites: Min Eng 2412. (Co-listed with Met Eng 5270).

MIN ENG 5552 Ore Reserve Analysis and Geostatistics (LAB 1.0 and LEC 2.0)
Principles of geostatistics, theory of spatially correlated random variables, variance and co-variances and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 3304; Stat 3113 or Stat 3115.

MIN ENG 5532 Advanced Mining Economics (LEC 3.0)

MIN ENG 5612 Principles of Explosives Engineering (LAB 1.0 and LEC 2.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Exp Eng 5612).

MIN ENG 5622 Blasting Design And Technology (LEC 2.0 and LAB 1.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 5612. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 5622).

MIN ENG 5742 Environmental Aspects of Mining (LEC 3.0)
Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Preceded or accompanied by Min Eng 5933 or Geo Eng 5441 or Env Eng 5619. (Co-listed with Geo Eng 5276).
MIN ENG 5822 Strata Control (LEC 3.0)
A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 4823.

MIN ENG 5823 Rock Mechanics (LEC 2.0 and LAB 1.0)
Applications of the fundamental principles of mechanics to engineering problems of equilibrium, strength and stiffness of rock materials. Review of in-situ stresses, laboratory and field instrumentation, rock and rockmass properties. Ground Control; pillar design, roof span design, rock reinforcement, surface subsidence, slope stability, and violent failure. Prerequisites: Physics 2135; Civ Eng 2210; Geology 3310. Field trip required.

MIN ENG 5912 Mine Power and Drainage (LEC 2.0 and LAB 1.0)

MIN ENG 5913 Advanced Computer Aided Mine Design (LEC 2.0 and LAB 1.0)
Project-based mine planning and design course. Engineering design process applied to computer-aided mine planning and design. Mine layouts, production planning, and materials scheduling optimization. Prerequisite: Graduate standing.

MIN ENG 5922 Tunneling & Underground Construction Techniques (LEC 2.0 and LAB 1.0)
Mechanical and conventional excavation techniques in underground tunneling and construction. Topics include tunneling layouts design, equipment and performance modeling, ground control systems including support, drainage, and structural integrity. Construction specifications, advance rate and contractual and cost estimation. Prerequisite: Consent of instructor. (Co-listed with Exp Eng 5922).

MIN ENG 5932 Underground Mining Methods (LEC 3.0)

MIN ENG 5933 Surface Mining Methods (LEC 3.0)
Principles of planning, constructing, and operating economically viable surface mines. Cost effective mining methods: placer mining, strip mining, open pit mining, quarrying. Selection of equipment for surface mining operations. Optimization of mine performance. Field trip required. Prerequisites: Min Eng 3912; Min Eng 3512; preceded or accompanied by Min Eng 5823.

MIN ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MIN ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 6010 Seminar (RSD 1.0)
Discussion of current topics.

MIN ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MIN ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MIN ENG 6080 Graduate Project (IND 0.0-3.0)
Advanced engineering design, experimentation, evaluation and assessment leading to the preparation of a project report. For practicing professionals, this project could be based on an actual industry problem. Prerequisites: Graduate Standing.

MIN ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

MIN ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MIN ENG 6132 Advanced Mine Health And Safety Design (LEC 3.0)
Principles of design of mining operations with emphasis on the health and safety of the worker. Prerequisite: Graduate Standing.

MIN ENG 6133 Mine Atmospheric Control II (LEC 3.0)
Climatic measurements and temperature precalculations, emergency plans for fan failures and mine fires, mine air contaminants, mine noises, mine dust, refrigeration and cooling plant layout, radiation control. Prerequisite: Min Eng 4113.
MIN ENG 6432 Advanced Mineral Engineering Design II (LEC 1.0 and LAB 2.0)
Incorporation of principles developed in Min Eng 6132 in advanced design projects for mineral plants and systems, with emphasis on environmental protection, health, and safety. Prerequisite: Min Eng 6132.

MIN ENG 6522 Mining Property Feasibility Studies And Evaluation Procedure (LEC 2.0 and LAB 1.0)
A systematic phased approach is presented, designed to increase the level of confidence and accuracy of estimates, moving from exploration through to a "bankable" study. Liability, ethics, resource/reserves, political/social/investment risk, economic parameters, and due diligence are discussed. Prerequisite: Min Eng 3512 or Geology 3511 or Min Eng 4742 or Geophys 3251.

MIN ENG 6532 Mine Management II (LEC 3.0)
The course covers advanced concepts in managing mine operations. Topics to be covered include TQM, statistical process control, benchmarking, KPI, standards and standardization, ISO 9000: Quality Control, ISO 14000: Environmental systems, OHSAS 18000: Management systems, SA8000, Social Accountability and others. Prerequisite: Consent of instructor.

MIN ENG 6622 Environmental Controls For Blasting (LAB 1.0 and LEC 2.0)
Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 5612, Successful background check. (Co-listed with Exp Eng 6412).

MIN ENG 6632 Theory Of High Explosives (LEC 3.0)
Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Graduate Standing. (Co-listed with Exp Eng 6212).

MIN ENG 6712 Managing Social and Environmental Risks in Mining (Intro to Responsible Mining) (LEC 3.0)
This course is an introduction to responsible mining. It focuses on industry and NGO programs around sustainability and reporting in mining, financial community response, community of interest engagement and participation, and safety and crisis response and management. Prerequisites: Min Eng 4742 or Min Eng 5742.

MIN ENG 6735 Sustainability In Mining (LEC 3.0)
Sustainability defined: social, economic and environmental impacts. Mining as sustainable development interventions. Mine planning for sustainability, sustainability assessment and reporting, sustainable mine closure and post-mining land use. Case studies. Prerequisite: Min Eng 4742.

MIN ENG 6842 Advanced Rock Mechanics (LEC 3.0)
Advanced topics in static and dynamic rock mechanics; elasticity theory, failure theories and fracture mechanics applied to rock; stress wave propagation and dynamic elastic constants; rock mass classification methods for support design; pillar design in coal and metal mines; introduction to numerical models. Prerequisite: Min Eng 5823 or Civ Eng 3715.

MIN ENG 6843 Dynamic Rock Mechanics (LEC 3.0)
Advanced topics in dynamic rock mechanics. Stress wave propagation in the earth, dynamic elastic constants in isotropic and anisotropic rock. Hopkinson bar impact analysis, spallation and radial fracturing caused by stress pulses, shock wave generation in rock by explosives, shock wave propagation and effects. Prerequisite: Min Eng 5823 or Civ Eng 3715.

MIN ENG 6912 Simulation of Mining Systems (LEC 3.0)
Overview of stochastic simulation. Model formulation using general purpose process simulation software. Model verification and validation. Simulation experimentation. Prerequisites: Graduate standing or Stat 5643.

MIN ENG 6922 Optimization Applications In Mining I (LEC 3.0)
Mining applications of deterministic optimization techniques are covered, including linear, integer, mixed-integer, dynamic, unconstrained and constrained nonlinear, and heuristic programming. Prerequisite: Graduate standing or consent.

MIN ENG 6923 Geostatistics (LEC 3.0)
Definition of geostatistical data; theory of random fields; autocorrelation and measures of spatial variability including semivariograms, variograms and covariance functions; and spatial prediction and validation. Case studies in mineral resource estimation and environmental pollutant prediction will be presented. Prerequisites: Graduate standing or consent of instructor.

MIN ENG 6932 Advanced Mining Systems (LEC 3.0)
Principles of design for the development and production of hard rock mineral deposits that require integrated surface and underground mining methods. Cost considerations leading to optimization. Terminal feasibility report required. Prerequisites: Min Eng 4932 and Min Eng 4933.

MIN ENG 6935 Underground Mine Design (LEC 3.0)
This course will focus on the determinants of underground mine design, geomechanical mine design for underground mining; mine optimization; mine environmental systems; and underground mine design and optimization. Prerequisite: Min Eng 4932 or equivalent.

MIN ENG 6936 Surface Mine Design (LEC 3.0)
This course will focus on the determinants of surface mine design, geomechanical and geometrical mine design for open pit and strip mining; mine layouts optimization; mine environmental systems; and research directions in surface mine design and optimization. Prerequisite: Min Eng 4933 or equivalent.
MIN ENG 6992 Research Methods (LEC 3.0)

Foundations, dimensions, and methods for designing and investigating research problems. Focus on fundamentals and applied research, research methods, literature review, experimental design and experimentation, dissertation composition, concepts of originality and intellectual property. Prerequisites: PhD students only. (Co-listed with Exp Eng 6292).

Nuclear Engineering

The nuclear engineering graduate program offers the master of science, the doctor of engineering, and the doctor of philosophy degrees. B.S. in a field of engineering or suitable physical science is a prerequisite for admission into the nuclear engineering graduate program. The master’s degree program is designed to provide training and expertise in the design of nuclear energy systems, us of nuclear technology for medical as well as industrial applications. Both thesis and without thesis options are available for M.S. degree program with a minimum of 30 credit hours required for successful completion. Research areas of specialization include:

- Reactor design and safety
- Thermal hydraulics
- Radiation effects
- Radiation dosimetry, protection and health physics
- Radiation transport and shielding
- Space nuclear power
- Materials for nuclear applications
- Nuclear fuel cycle
- Radioactive waste management
- Radiation imaging and its applications in medicine and industry
- Radiation measurements and spectroscopy

For the Ph.D. program, a research project with a written dissertation of high caliber demonstrating candidate’s capacity to conduct independent and original research, to critically analyze results and to infer sound conclusions is necessary. The dissertation must produce original research results acceptable for publication in a refereed journal. To facilitate high quality research, the nuclear engineering program has the following laboratory facilities:

Nuclear Reactor

The Missouri University of Science and Technology Nuclear Reactor (MSTR) is a Nuclear Regulatory Commission (NRC) licensed 200 kW pool-type reactor that is used to support the engineering and science activities on campus. Using the facility, the reactor staff provides hands-on laboratory, research and development and project opportunities. The reactor itself uses uranium fuel and is cooled by natural convection in a pool containing approximately 30,000 gallons of water.

The open pool design allows access to the reactor core where experiments and samples to be irradiated can be positioned. The facility is equipped with a pneumatics sample irradiation system, a neutron beam port that provides a collimated neutron beam, and a thermal column.

Internet-Accessible Hot Cell Facility

A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the Missouri S&T 200 kW Research Nuclear Reactor (MSTR) allows authorized distance users to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected through a rapid pneumatic system with access to the MSTR nuclear reactor core. The total transportation time between the core and the hot cell is less than 3.0 seconds.

Radiation Measurement and Spectroscopy Laboratory (RMSL)

The Radiation Measurement and Spectroscopy Laboratory is equipped for measurement of alpha, beta and gamma particles with the help of various detectors such as Geiger-Mueller counters, NaI (TI) scintillation detectors, HPGe Semiconductor detectors, Ortec Ultra charged particle detectors, and Ortec partially depleted silicon surface barrier detectors. Detection systems including pre-amplifiers, amplifiers, single channel analyzers, counters, timers, multi-channel analyzers are also included in the laboratory. RMSL contains neutron and X-ray measurement modules using He-3 isotropic detectors and ion chambers respectively. All of the detectors in RMSL are compatible with state-of-the-art software and Lynx digital data analysis systems which allows remote web-based experimental capability. All of these things allows the RMSL tremendous potential for collaborative experiments and discoveries with local researchers and researchers around the world.

Nuclear Materials Laboratory

The facilities of the Materials Research Center, metallurgical engineering, and nuclear engineering programs are also available for nuclear materials-related research. These facilities include state of the art SEM/EDX, TEM, STEM, FIB/FESEM, and XRD.

Computer Laboratory

Students have the opportunity to use large computer codes commonly used in the nuclear industry for reactor core design, radiation transport, and thermal hydraulics analysis. The nuclear engineering program maintains an excellent laboratory with personal computers with access to a campus cluster of numerically intensive computing (NIC) systems.

Two-phase Flow and Thermal-Hydraulics Laboratory (TFTL)

The nuclear engineering TFTL is designed to perform both fundamental and advanced two-phase flow experiments simulating prototypic nuclear reactor conditions. The TFTL is equipped with state-of-the-art instrumentation such as a micro multi-sensor conductivity probe, a high-speed digital motion-corder, various flow measurement devices, and a data acquisition system and software. Topics of research studied in the TFTL include advanced two-phase flow modeling, two-phase flow characterization in various flow channel geometries, air-water two-phase bubble jet experiment, secondary flow analysis in liquid film flow, and development of two-phase flow instrumentation.

Advanced Radiography and Tomography Lab

The laboratory is designed to perform radiation imaging for medical or industrial purpose. Students have opportunities of running Monte Carlo
simulation codes for radiation imaging systems and experimenting with
digital x-ray radiography, x-ray computed tomography, neutron imaging,
etc. The technologies developed in the lab can be applied to either
medical imaging or non-destructive inspection of various materials or
objects.

Neutron Generator Laboratory
The neutron generator laboratory has a D-D neutron generator that
produces approximately 10^5 neutrons/sec. The neutron generator is
available for both graduate and undergraduate research and education
at Missouri S&T. Examples of research using the neutron generator are
reactor kinetics research, the study of two-phase flow, research in nuclear
forensics and radiochemistry, particle tracking in complex flows, and
the photon-neutron tomography for mechanical testing of structural
materials.

Muthanna Al Dahhan, Professor
DSc Washington University
Multiphase reaction and reactor engineering flow systems; transport-
kinetic integration; advanced measurement and computational
techniques; applications to green technology and sustainable
development in energy, products, and environment.

Joshua P Schlegel, Assistant Professor
PHD Purdue University
Two-phase flows, interfacial area transport, heat transfer and fluid
mechanics, nuclear reactor safety.

Joseph D Smith, Professor
PHD Brigham Young University
Laufer Chair of Energy, Hybrid energy generation, gas flare design,
process modeling, and control.
NUC ENG 5312 Nuclear Radiation Measurements and Spectroscopy (LAB 1.0 and LEC 2.0)
Contemporary radiation detection theory and experiments with high resolution gamma-ray spectroscopy, solid state detectors, neutron detection and conventional gas filled detectors. Neutron activation analysis of unknown material, statistical aspects of nuclear measurements. Prerequisite: Nuc Eng 3205.

NUC ENG 5347 Radiological Engineering (LEC 3.0)

NUC ENG 5350 Advanced Nuclear Medical Science (LEC 3.0)
Advanced level of technologies involved in medical modalities, such as digital radiography, digital mammography, modern computed tomography, gamma camera, SPECT and PET will be covered. Prerequisites: Nuc Eng 4312 or equivalent.

NUC ENG 5363 Applied Health Physics (LEC 3.0)
Radiation sources; external and internal dosimetry; biological effects of radiation; radiation protection principles; regulatory guides; radioactive and nuclear materials management. Prerequisite: Nuc Eng 3103 or Physics 2305.

NUC ENG 5365 Radiation Protection Engineering (LEC 3.0)

NUC ENG 5367 Radioactive Waste Management And Remediation (LEC 3.0)
Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues, history of disposal actions, and conduct of remedial actions and clean up. Prerequisite: Math 3304. (Co-listed with Geology 4421).

NUC ENG 5370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3131 or Physics 3211 or Nuc Eng 3221 or Elec Eng 3600. (Co-listed with Aero Eng 5570, Mech Eng 5570, Physics 4543).

NUC ENG 5428 Reactor Laboratory I (LEC 1.0 and LAB 1.0)
Acquaints the student with neutron flux measurement, reactor operation, control rod calibration, reactor power measurement and neutron activation experiments. Experiments with the thermal column and neutron beam port are also demonstrated. Prerequisites: Nuc Eng 4312, 3205.

NUC ENG 5438 Reactor Laboratory II (LEC 1.0 and LAB 1.0)
A continuation of Nuclear Engineering 304 with experiments of a more advanced nature. Prerequisite: Nuc Eng 4428.

NUC ENG 5456 Reactor Operation II (LAB 1.0)
The operation of the training reactor. The program is similar to that required for the NRC Reactor Operator’s license. Students from other disciplines will also benefit from the course. Prerequisite: Nuc Eng 2105, 2406.

NUC ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

NUC ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

NUC ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

NUC ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

NUC ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

NUC ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

NUC ENG 6203 Advanced Reactor Physics (LEC 3.0)
Transport and diffusion theory; multigroup approximation; criticality calculations; cross-section processing; buildup and depletion calculations; delayed neutrons and reactor kinetics; lattice physics calculations; full core calculations; analysis and measurement of reactivity coefficients. Prerequisite: Math 5325.
Graduate students studying for a masters degree with a thesis option in geology or geophysics will also need to complete all fundamental while in residence for the master's degree. Students with backgrounds remedial petroleum engineering coursework will be met by the student. The program accepts such students with the expectation that any chemical engineering, mechanical engineering, or geological engineering.

While the program encourages students with an undergraduate degree in petroleum engineering to pursue graduate study, many graduate students are accepted with backgrounds in other areas of engineering, such as chemical engineering, mechanical engineering, or geological engineering. The program accepts such students with the expectation that any remedial petroleum engineering coursework will be met by the student while in residence for the master's degree. Students with backgrounds in geology or geophysics will also need to complete all fundamental engineering courses required for a degree in engineering.

Graduate students studying for a masters degree with a thesis option typically find support for their study depending on current research projects and the availability of funding. Students preferring the non-thesis option are typically self-funding for their masters degree.

Each student's graduate degree program is designed around a set of core petroleum engineering courses and other courses selected to support the thesis topic of interest. Students identify their thesis topic by the end of their first semester.

Research specialties of the petroleum engineering program include reservoir enhancement, hydraulic fracturing, CO2 sequestration, gel treatments, drilling, well completion performance studies, and geomechanics of petroleum recovery.

The program emphasizes mechanical earth modeling (MEM) as a specialty. The MEM group owns part of the university numerical intensive computing cluster. Students with a strong background in geological engineering and geomechanics will likely find excellent opportunities for advanced studies.

The petroleum engineering laboratories contain modern equipment designed to study the many problems encountered in oil and gas production, as well as support research. The department laboratories include gas porosimeter and permeameter, liquid permeameter, viscometers, tensiometers, and a HPTP core flooding cell. The program also utilizes departmental facilities that include core cutting and preparation, laser ablation, XRD, SEM, and a triaxial and fracture cell and a direct shear apparatus for determining rock and fracture properties.

Students externally supported by international oil and gas operating companies may also suggest research topics related to their professional experience or special topics of interest to their companies.

For additional information regarding graduate study opportunity contact rocks@mst.edu. Additional information may also be found at the web pages at: http://gse.mst.edu/ or http://petroleum.mst.edu/.

Baojun Bai, Associate Professor
PHD New Mexico Institute of Mining
Lester Birbeck Chair. Conformance control, enhanced oil recovery (EOR), numerical modeling and reservoir simulation, multiple-phase fluid flow in porous media, unconventional oil and gas development, and carbon sequestration.

Shari Dunn Norman, Associate Professor
PHD Heriot-Watt University
Well completions, including completion reliability and benchmarking, well stimulation, well productivity, production engineering and offshore operations.

Andreas Eckert, Assistant Professor
PHD University of Karlsruhe
Mechanical earth modeling, finite element methods in petroleum engineering, petroleum geomechanics and geophysics.

Ralph E Flori Jr, Associate Professor
PHD University of Missouri-Rolla
Engineering mechanics, mechanical earth modeling, reservoir engineering, reservoir simulation, engineering education.

Peyman Heidari, Assistant Professor
PHD The Pennsylvania State University
Reservoir engineering, geochemistry and understanding of reactive transport processes.
Mingzhen Wei, Assistant Professor
PHD New Mexico Tech
Reservoir simulation, reservoir engineering, data modeling, data management, and advanced application development using artificial intelligence computation in the Petroleum Engineering.

PET ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects of projects in the department. Consent of instructor required.

PET ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

PET ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

PET ENG 5085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

PET ENG 5099 Research (IND 0.0-12)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

PET ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects of projects in the department. Consent of instructor required.

PET ENG 6001 Special Topics (LEC 2.0 and LAB 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.

PET ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

PET ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

PET ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

PET ENG 6099 Research (IND 0.0-12)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

PET ENG 6231 Drilling Optimization (LEC 3.0)
Optimization of the drilling process based on geomechanical model of the subsurface. Topics include drilling hydraulics, drilling bits, selection of operational parameters and analysis of drilling time and cost. Prerequisite: Pet Eng 4210.

PET ENG 6431 Advanced Well Completion Design (LEC 3.0)
Overview of hardware, fluids and processes employed in completing oil and gas wells. Types of well completions and design considerations. Downhole mechanics, tubing movement and stress calculations. Advanced concepts in well completion design and review of well completions literature. Prerequisites: Pet Eng 3520. Students may not earn credit for both Pet Eng 4431 and Pet Eng 6431.

PET ENG 6441 Advanced Well Stimulation (LEC 3.0)
This course builds on the basic theory and fundamentals of hydraulic fracturing through the use of STIMPLAN software and hands on industry examples. The course teaches the methods used to plan, execute and evaluate hydraulic fracturing treatments. An advanced exercise and a research assignment are required. Students may not earn credit for both Pet Eng 4441 and Pet Eng 6441. Prerequisites: Pet Eng 3520 and Pet Eng 3310.

PET ENG 6521 Advanced Well Test Analysis (LAB 1.0 and LEC 2.0)
Pressure transient analysis equations, well test analysis for fractured wells, horizontal wells, injection wells, and other special situations. Introduction to rate transient analysis. Prerequisites: Pet Eng 3520 and Pet Eng 4520.
PET ENG 6541 Advanced Reservoir Engineering I (LEC 3.0)
Advanced study of producing mechanisms. Prerequisites: Pet Eng 5631 and Pet Eng 4520.

PET ENG 6551 Advanced Reservoir Engineering II (LEC 3.0)
Flow through porous media: derivations and solutions for steady, semi-steady, and transient flow of single and multiple phase flow through porous media. Prerequisite: Pet Eng 3520.

PET ENG 6621 Advanced Applied Reservoir Simulation (LEC 3.0)
Advanced simulation of actual reservoir problems using both field and individual well models to determine well spacing, production effects of secondary and enhanced recovery processes, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Prerequisite: Pet Eng 5621.

PET ENG 6631 A Survey Of Improved Recovery Processes (LEC 3.0)
An overview of current advanced recovery methods including secondary and tertiary processes. An explanation of the primary energy mechanism and requirements of these methods and an analysis of laboratory results and their subsequent field applications. Prerequisite: Pet Eng 4611.

PET ENG 6711 Geodynamics (LEC 3.0)
The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisites: Math 2222 and Geology 3310. (Co-listed with Geology 6211).

Physics

The department of physics offers programs leading to both the master of science and doctor of philosophy degrees. The master’s degree can be earned with either a thesis or non-thesis option.

Most physics graduate students are supported by either teaching or research assistantships, although some fellowships are available for exceptionally promising students. Most entering graduate students are supported on teaching assistantships, and teach in the introductory physics laboratory. Thereafter, they are usually supported as research assistants on external research grants.

Entering graduate students usually have a physics undergraduate degree; however inquiries from students with other technical degrees and a good mathematics background are encouraged, since the program allows minor background deficiencies to be made up.

Each student’s graduate degree program is designed around a set of core graduate courses (classical mechanics, electrodynamics, quantum mechanics, and statistical mechanics) and graduate two physics electives. After their second year, Ph.D. students must take a qualifying examination based on the material taken from the undergraduate courses and the graduate core courses. Details of the program and course offerings may be obtained by calling 573-341-4702, or emailing the department chairman at physics@mst.edu. Additional information may also be found on the department’s web page at http://physics.mst.edu/.

The department’s research emphasis includes both fundamental and applied studies in three areas of physics: condensed matter, solid state, and materials physics; cloud, aerosol and environmental physics; and atomic, molecular, and optical physics. Experimental and theoretical research opportunities are available for study in each of these areas. Following their core coursework, graduate students in the department are able to work with faculty on a wide range of problems, including the characterization of magnetic materials, predicting the properties of quantum and classical phase transitions, establishing the structure and properties of atmospheric aerosols, investigating electron transport in polymers, determining electron-atom scattering events, characterizing the particulate in rocket engine exhaust, exploring the structural properties of thin magnetic films, computing the electronic structure of new materials, measuring and imaging ion-atom collisions, investigating water and sulfuric acid cluster interactions, analyzing and characterizing nanostructures on surfaces, ascertaining the properties of charged particles and atoms, studying the nucleation of vapors into droplets, growing and characterizing exotic materials, studying wave propagation in complex media, and exploring quantum electrodynamics’ descriptions of few-electron atoms and ions.

Most research facilities are in the Physics Building, but several research studies are being carried out in cloud and aerosol laboratories housed in Schrenk Hall. Several faculty working on condensed matter projects make use of extensive instrumentation and materials characterization facilities available in the Materials Research Center. Special facilities include a unique ion-atom accelerator and energy-loss spectrometer, custom UHV systems for preparing and characterizing in situ spin properties of magnetic films, state-of-the-art cloud simulation chambers developed to study nucleation of vapors and droplets, Auger and XPS surface characterization spectrometers, specially developed instrumentation for use in aircraft to study rocket and aircraft exhaust characteristics, high performance computer systems for computational physics studies, facilities for the growth of exotic materials, and low temperature transport measurement instruments.

Aleksandr Chernatynskiy, Assistant Professor
PHD University of Louisville
Theoretical condensed matter physics. Mechanical and transport properties of materials.

Daniel Fischer, Assistant Professor
PHD Heidelberg University
Experimental investigations of atomic fragmentation processes.

Yew San Hor, Associate Professor
PHD Rutgers University
Growth and characterization of exotic materials.

Ulrich Jentschura, Professor
PHD Dresden University of Technology
QED bound-state calculations, relativistic quantum dynamic process in laser fields, analysis of high-precision experiments.

Cihan Kurter, Assistant Professor
PHD Illinois Institute of Technology
Unconventional superconductivity, topological systems, and meta materials.

Don H Madison, Curators Professor
PHD Florida State University
Theoretical studies of electron-atom collisions.
Ioulia Y. Medvedeva, Professor
PHD Russian Academy of Science
Theoretical condensed matter physics. First principles computational methods.

Paul E Parris, Professor
PHD University of Rochester

Jerry L Peacher, Professor
PHD Indiana University Bloomington
Theoretical atomic and molecular collisions.

Michael Schulz, Curators Professor
PHD University of Heidelberg
Experimental atomic and molecular collisions.

John G Story, Associate Professor
PHD University of Southern California
Experimental atomic and molecular physics. Laser excitation of atoms.

Steffen Thomas Vojta, Curators Distinguished Professor
PHD Chemnitz University of Technology, Germany
Theoretical condensed matter and statistical physics. Quantum and classical phase transitions, transport, and disorder.

George D Waddill, Professor
PHD Indiana University Bloomington
Experimental solid state physics. Surface physics and nano-scale magnetism.

Gerald Wilemski, Professor
PHD Yale University
Theoretical chemical physics, nucleation, aerosols, and neutron scattering.

Alexey Georgiyevich Yamilov, Associate Professor
PHD The City University of New York
Theoretical optical Physics. Wave propagation in complex media.

PHYSICS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHYSICS 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 5201 Classical Mechanics I (LEC 3.0)
Methods of Newton, Lagrange, and Hamilton applied to the motion of particles and rigid bodies. Introduction to canonical transformations and Poisson brackets. Classical scattering and small oscillations. Prerequisites: Math 3304, Physics 3201.

PHYSICS 5211 Electrodynamics I (LEC 3.0)
A rigorous development of the fundamentals of electromagnetic fields and waves. Electrostatics, magnetostatics, Maxwell's equations—Green's function, boundary value problems, multipoles, conservation laws. Prerequisites: Physics 4211.

PHYSICS 5301 Quantum Mechanics I (LEC 3.0)
Basic formalism applied to selected problems. Schroedinger equation and one dimensional problems, Dirac notation, matrix mechanics, harmonic oscillator, angular momentum, hydrogen atom, variational methods, introduction to spin. Prerequisite: Physics 4301 or equivalent.

PHYSICS 5333 Subatomic Physics (LEC 3.0)
An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 3311.

PHYSICS 5403 Computational Physics (LEC 3.0 and LAB 1.0)
An introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 2305 or Physics 2311; Math 3304; programming experience.

PHYSICS 5413 Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0)
An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics covered include phase plane analysis, iterated maps, routes to chaos, Lyapunov exponents, strange attractors and pattern formation with applications to chaotic vibrations, population dynamics, chemical oscillations and lasers. Prerequisites: Math 3304; Physics 2135 or Physics 2111.

PHYSICS 5503 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Both Elec Eng 3430 and Elec Eng 3600 or both Physics 2401 and Physics 4211 (Co-listed with ELEC ENG 5210).

PHYSICS 5513 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 3600 or Physics 4211. (Co-listed with Elec Eng 5220).

PHYSICS 5503 Fourier Optics (LEC 3.0)
Introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 2305 or Physics 2311; Math 3304; programming experience.

PHYSICS 5513 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 3600 or Physics 4211. (Co-listed with Elec Eng 5220).

PHYSICS 5603 Advanced Physics Laboratory Teaching Methods (LEC 3.0)
Objectives, methods and problems related to teaching of introductory physics, with an emphasis on laboratory instruction, the development of educational laboratory experiments and techniques, student learning styles, student assessment, student work groups, computer-based data acquisition, and communication techniques. Prerequisite: Graduate standing.

PHYSICS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
PHYSICS 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 6002 Coop Registration (IND 0.0-1.0)
Doctoral candidates participating in a cooperative program with another UM campus must enroll for one hour of credit for their first semester in the program and zero hours of credit for successive registration periods until degree is completed. Failure to do so may invalidate candidacy. Billing is automatic as is registration upon payment.

PHYSICS 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

PHYSICS 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

PHYSICS 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

PHYSICS 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

PHYSICS 6211 Electrodynamics II (LEC 3.0)
A continuation of Physics 5211+D1067. Applications of time-dependent Maxwell's equations to such topics as plasmas, wave guides, cavities, radiation; fields of simple systems and multipoles. Relativity; covariant formulation of Maxwell's equations and conservation laws, fields of uniformly moving and accelerated charges. Prerequisite: Physics 5211.

PHYSICS 6300 Perturbation theory; treatment of spin, angular momentum addition, Wigner-Eckart theorem; scattering theory including partial wave analysis, born approximation, and formal scattering theory; identical particles, introduction to second quantization, and structure of complex atoms. Prerequisite: Physics 5301.

PHYSICS 6301 Statistical Mechanics (LEC 3.0)
A study of statistical ensembles; Maxwell-Boltzmann, Fermi-Dirac and Einstein-Bose distribution laws, application to some simple physical systems. Prerequisites: Physics 4563, 4301.

PHYSICS 6303 Mathematical Physics I (LEC 3.0)
Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension. (Co-listed with Math 6802).

PHYSICS 6304 Math. Physics II (LEC 3.0)
Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 6802 or Physics 6403. (Co-listed with Math 6803).
Master of Science in Industrial-Organizational Psychology

Admission Requirements

Students interested in the M.S. in I-O psychology program should review the admissions requirements listed on our website (http://psych.mst.edu/graduate/indorgpsych/).

Program Requirements

The M.S. in industrial-organizational psychology requires 40 credit hours which includes a thesis or non-thesis option. Students will complete 24 credit hours of core courses, 10 hours of methods courses, and either 6 hours of elective credits or 6 hours of thesis credits. Applied internship experiences are suggested, but not required as part of the program. The program will take at least 2 years to complete and classes are offered both on-campus and via distance.

Core Courses (24 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5020</td>
<td>Introduction to Industrial-Organizational Psychology</td>
</tr>
<tr>
<td>PSYCH 5601</td>
<td>Small Group Dynamics</td>
</tr>
<tr>
<td>PSYCH 5602</td>
<td>Organizational Development</td>
</tr>
<tr>
<td>PSYCH 5700</td>
<td>Job Analysis and Performance Management</td>
</tr>
<tr>
<td>PSYCH 6610</td>
<td>Leadership, Motivation, and Culture</td>
</tr>
<tr>
<td>PSYCH 6702</td>
<td>Personnel Selection</td>
</tr>
<tr>
<td>PSYCH 6602</td>
<td>Job Attitudes, Emotions, and Discretionary Behaviors</td>
</tr>
<tr>
<td>PSYCH 6700</td>
<td>Training and Development</td>
</tr>
</tbody>
</table>

Methods Courses (10 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5201</td>
<td>Psychometrics</td>
</tr>
<tr>
<td>PSYCH 5210</td>
<td>Advanced Research Methods</td>
</tr>
<tr>
<td>PSYCH 5012</td>
<td>Ethics and Professional Responsibilities</td>
</tr>
<tr>
<td>PSYCH 5202</td>
<td>Applied Psychological Data Analysis</td>
</tr>
</tbody>
</table>

Electives from list below or Thesis (6 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5710</td>
<td>Advanced Human Factors</td>
</tr>
<tr>
<td>PSYCH 5600</td>
<td>Advanced Social Psychology</td>
</tr>
<tr>
<td>PSYCH 5001.001</td>
<td>Advanced Cognitive Psychology</td>
</tr>
<tr>
<td>PSYCH 5001.002</td>
<td>Occupational Health and Safety</td>
</tr>
</tbody>
</table>

Students completing a thesis would need to complete the following in place of electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 6099</td>
<td>Research</td>
</tr>
</tbody>
</table>

Applied Workplace Psychology

The applied workplace psychology graduate certificate is designed to serve as a recruitment tool for the industrial-organizational psychology MS program. This program will offer students a set of foundational courses in industrial and organizational psychology. Students who pass all four courses with a grade of B or better in each course can gain entry to the I-O psychology MS program with the other application requirements being waived. The included courses cover an introductory seminar course, an advanced research methods course, a course on job analysis and performance appraisal and a small group dynamics course which will examine groups and teams in organizations.

All four courses included in the applied workplace psychology certificate curriculum will be offered once per year. All of these courses are available both on-campus as well as via distance.

Fall Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5010</td>
<td>Seminar for Industrial / Organizational Psychology</td>
</tr>
<tr>
<td>PSYCH 5210</td>
<td>Advanced Research Methods</td>
</tr>
</tbody>
</table>

Spring Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5700</td>
<td>Job Analysis and Performance Management</td>
</tr>
<tr>
<td>PSYCH 5601</td>
<td>Small Group Dynamics</td>
</tr>
</tbody>
</table>

The applied workplace psychology certificate program is open to all persons holding a B.S., M.S., or Ph.D. degree in psychology, business, or a related field and who have a minimum of one year of professional employment experience. Once admitted to the program, the student must take the four designated courses (provided in the curriculum section). In order to receive a graduate certificate, the student must have an average cumulative grade point of 3.0 or better in the certificate courses. Once admitted to the program, a student will be given three years to complete the program.

Students admitted to the applied workplace psychology certificate program will have non-degree graduate status, however, they will earn graduate credit for the course they complete. If the student completes the four-course sequence with a grade of B or better in each of the courses taken, they, upon application, will be admitted to the M.S. degree program in industrial organizational psychology. The certificate credits taken by the students admitted to the M.S. degree program will count towards their master’s degrees. Students who do not have all of the prerequisite courses necessary to begin the courses in the applied workplace psychology certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Statistical Methods in Psychology

This certificate program is designed to provide formalized education in the area of psychometrics. Psychometrics is the field of study concerned with the theory and technique of psychological measurement and includes the measurement of knowledge, abilities, attitudes, and personality traits. The field is primarily concerned with the study of differences between individuals and involves two major research tasks: (1) the construction of instruments and procedures for measurement; and (2) the development and refinement of theoretical approaches to measurement. After being admitted to the program, a student must take two courses from a group of three and an additional two courses from a second group of three.

The following two psychology courses will be required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 5201</td>
<td>Psychometrics</td>
</tr>
<tr>
<td>PSYCH 5202</td>
<td>Applied Psychological Data Analysis</td>
</tr>
</tbody>
</table>

And an additional two statistics courses chosen from these four:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 5346</td>
<td>Regression Analysis</td>
</tr>
<tr>
<td>STAT 5353</td>
<td>Statistical Data Analysis</td>
</tr>
<tr>
<td>STAT 5643</td>
<td>Probability And Statistics</td>
</tr>
<tr>
<td>STAT 5344</td>
<td>Design And Analysis Of Experiments</td>
</tr>
</tbody>
</table>

The psychometrics certificate program is open to all persons holding a bachelor's, masters, or Ph.D. degree and who have the required pre-requisites for the courses offered. In order to receive a graduate certificate, the student must have an average cumulative grade of 3.0 or better in the certificate courses.

Students admitted to the certificate program will have a non-matriculated status as a graduate student. If they complete each of the four courses with a grade of B or better, they may be admitted to the Missouri S&T master’s degree program in industrial-organizational psychology or mathematics and statistics if they apply and meet the program requirements.
requirements. Students who do not have all of the prerequisite courses necessary to take a course in the certificate program will be allowed to take “bridge” courses at either the graduate or undergraduate level to prepare for the formal certificate courses.

Jessica L. Cundiff, Assistant Professor
PHD Pennsylvania State University

Amber M Henslee, Assistant Professor
PHD Auburn University Main Campus

Brandi A Klein, Assistant Professor
PHD Bowling Green State University

Frances H Montgomery, Chancellor’s Professor
PHD Florida State University

Susan L Murray, Professor
PHD Texas A&M University

Nancy J Stone, Professor
PHD Texas Tech University

Nathan W Weidner, Assistant Professor
PHD Wayne State University

PSYCH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PSYCH 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new graduate level course. Variable title.

PSYCH 5010 Seminar for Industrial / Organizational Psychology (RSD 3.0)
A seminar course for general overviews of the most recent research in Industrial-Organizational Psychology. Prerequisite: Graduate standing.

PSYCH 5012 Ethics and Professional Responsibilities (LEC 1.0)
Case studies examining the ethical practice of psychology in organizations will be discussed. This will include covering both the legal and ethical standards surrounding the consulting and practice of I-O psychology and personnel management in organizations. Prerequisite: Graduate standing.

PSYCH 5020 Introduction to Industrial-Organizational Psychology (LEC 3.0)
Review of the most recent theoretical and applied research in advanced personnel and organizational psychology. Topics will include personnel selection, training and performance appraisal, job attitudes, motivation, work groups and teams, leadership, organizational culture, and organizational development. Prerequisites: Graduate Standing.

PSYCH 5200 Theories and Practice of Psychological Measurement (LEC 3.0)
An overview of psychological tests and batteries used in a variety of disciplines. An emphasis is placed on the proper development and use of these tests and test batteries. Tests examined will include tests of intelligence, aptitude, personality, and psychopathology. Prerequisite: Psych 4200 or graduate standing.

PSYCH 5201 Psychometrics (LEC 3.0)
An examination of statistical methods used to develop and refine measures of human performance, aptitudes, and personality. Topics include reliability and validity, data reduction, measuring inter-relationships among variables (e.g., factor analysis, multiple regression), and testing group differences. Prerequisite: Psych 5202.

PSYCH 5202 Applied Psychological Data Analysis (LEC 3.0)
This course will focus on those statistical methods most useful for advanced research in psychology. We will learn to use R, a powerful, open-source statistical programming platform, and work through examples with psychological data sets including such techniques as correlation, ANOVAs, regression, and chi-squared. Prerequisite: Graduate standing.

PSYCH 5210 Advanced Research Methods (LEC 3.0)
Research methods and techniques, with an emphasis on conducting psychological research in organizational settings. Topics discussed include: ethics, reliability and validity in measurement and application, proper uses of experimental, quasi-experimental, and survey methodologies, as well as advanced methodologies IRT, SEM, HLM, and Meta-Analyses. Prerequisite: Graduate standing.

PSYCH 5600 Advanced Social Psychology (LEC 3.0)
An advanced study of the behavior of individuals in interaction within groups. Consideration will also be given to the experimental literature dealing with the formal properties of groups, conformity and deviation, intergroup relations, and attitude formation and attitude change. Prerequisite: Psych 4600.

PSYCH 5601 Small Group Dynamics (LEC 3.0)
This course covers group perception, identification, leadership, structure, conflict, cohesion, commitment, performance, norms, roles, influence, and decisions, and groups’ relations, networks, and work teams. Students consider both theory and applications to their lives and organizations through observational, research, team and applied assignments. Prerequisite: Psych 4601 or graduate standing.

PSYCH 5602 Organizational Development (LEC 3.0)
Examination of the field of organizational development theories and interventions. An emphasis is placed on research methods and application of practices related to individual processes, group processes, and organizational structures and functions that impact change and development strategies and interventions. Prerequisite: Psych 4602 or graduate standing.

PSYCH 5603 Advanced Social Influence (LEC 3.0)
An in-depth review of the principles and procedures that affect the process of social influence, with consideration given to attitudinal, compliance inducing, and perceptual influences. Students will consider the theoretical implications and practical applications of topics in social influence in the form of independent reading, research proposals and/ or projects, and observational assignments. Prerequisite: Psych 4603 or graduate standing.
PSYCH 5700 Job Analysis and Performance Management (LEC 3.0)
A focus on the scientific measurement of job performance. An in-depth discussion of the science and methods of appropriate job and task analysis will be discussed. Additionally, students will focus on current issues in performance management and appraisal including scientific findings related to both objective and subjective measures of performance. Prerequisite: Psych 4700 or graduate standing.

PSYCH 5710 Advanced Human Factors (LEC 3.0)
An in-depth review of the foundations of human factors, focusing on the interaction of people with various forms of technology in a variety of environments. Topics include research and evaluation methods, displays (e.g., visual, auditory), attention and information processing, decision making, motor skills, anthropometry, and biomechanics. (Co-listed with Eng Mgt 5330).

PSYCH 5720 Advanced Human-Computer Interaction (LEC 3.0)
This course examines the psychological research and theories that contribute to the field of human-computer interaction. An emphasis will be placed on engaging in critical evaluation of research and applying theoretical knowledge to effectively use computers in organizations. Prerequisite: Psych 4720 or graduate standing.

PSYCH 5730 Environmental Psychology: Research and Practice (LEC 3.0)
An in-depth review of the theoretical perspectives in environmental psychology and the psychological effects of various environments. An emphasis is placed on the review and integration of the research to explain the psychological issues related to various environments as well as to understand ways to effectively design living, educational, work, and recreational environments. Prerequisite: Psych 4730 or graduate standing.

PSYCH 6085 Internship (IND 0.0-6.0)
Students will apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Requires a major report. Prerequisites: Completed Core and Methods courses; instructor consent.

PSYCH 6099 Research (IND 0.0-6.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisites: Consent of instructor required.

PSYCH 6602 Employee Affect and Behavior (LEC 3.0)
Theory and research surrounding employee attitudes, emotions, and behaviors with an emphasis on antecedents and outcomes of: job satisfaction, engagement, organizational justice, trait and state positive and negative affect, organizational citizenship, counterproductive work, and proactive behaviors and the Implications for both employees and organizations. Prerequisite: Psych 5010.

PSYCH 6610 Leadership, Motivation, and Culture (LEC 3.0)
Examination of research related to leadership, motivation, and the impact of organizational culture on organizational performance will be discussed. The course will focus on the application of psychological theories to enhance organizational functioning and to promote positive workplace behaviors. Prerequisite: Psych 5010.

PSYCH 6611 Leadership for Engineers (LEC 3.0)
Provides engineers with a background in leadership concepts and principles; enables students to develop practical skills in leading and managing through multiple personal assessment. Topics include leadership styles, managing commitments, conflict resolution, change management, emotional intelligence, team dynamics and business ethics. Prerequisite: Eng Mgt 5110 or Psych 4602. (Co-listed with Eng Mgt 6112).

PSYCH 6700 Training and Development (LEC 3.0)
Psychological theories of learning will be covered. Students will learn how evaluate training needs in an organization as well as how to subsequently develop, implement, and validate a training program in an organizational context. Prerequisite: Psych 5700.

PSYCH 6702 Personnel Selection (LEC 3.0)
Current trends and methods in personnel recruitment and selection including classification, and promotion will be examined. An emphasis will be placed on legal and methodological considerations that can impact proper testing and assessment procedures. Cognitive abilities, personality, physical abilities, and other non-cognitive assessments will be discussed. Prerequisite: Psych 5700.

Systems Engineering
Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems by defining customer needs and required functionality early in the development cycle. Systems engineers are responsible for the design and management of complex systems supported by systems requirements. There is a growing need for engineers who are concerned with the whole system and can take an interdisciplinary and top down approach. Systems engineers need to be problem definers, not just problem solvers, and be involved with a system through its life cycle, from development through production, deployment, training support, operation, and disposal.

Graduate programs leading to the M.S. and Ph.D. degrees are offered in systems engineering. The graduate program builds on sound engineering undergraduate education, experience, and maintains engineering specialization diversity in its graduates.

Systems engineering research is supported by interdisciplinary research and collaboration. Research areas include: model based engineering, systems architecting, modeling and simulation, complex adaptive systems, computational intelligence, human system integration and infrastructure systems. The systems engineering graduate program, with over 580 graduates since 2000, contributes to the research challenges of systems engineering imposed by today's complex, adaptive, distributed, cooperative and dynamically changing engineering systems. As one of the leading systems engineering program in the nation, Missouri S&T is the only university in the world to have four INCOSE (International Council on Systems Engineering) Stevens Doctoral Award recipients. Systems engineering faculty members are active leaders in systems engineering and architecting research, conferences and other professional activities and associations.

Requirements for Completion
Students following their approved program of study will be assured of graduation upon maintenance of good academic standing. A minimum of 30 hours of course work (non-thesis) or 36 hours of course work
(thesis) from the areas listed below must be completed with a cumulative grade point average of 3.00 (on a 4.00 scale) and a "C" grade or better in each course. Accumulation of more than 10 hours of "C" or "F" results in dismissal from the program. A maximum of nine hours of course work for M.S. degrees may be transferred from universities outside the University of Missouri System. Such credits for transfer must have been registered as graduate courses when they were taken. All courses applied to the degree require prior written advisor approval recorded on the study plan in the student's file. It is the responsibility of each student to apply for graduation with the Missouri S&T registrar's office during his or her last semester. Assistance on this final step can be provided by the engineering management and systems engineering department.

Departmental Laboratories

The department has several "hands on" laboratories that have both a research and teaching focus. Each of our labs is directed by faculty members that work closely with students to enhance their learning experience. The description below gives a brief introduction that will help you understand the purpose of each lab.

Smart Engineering Systems Lab (SESL)

The department established the Smart Engineering Systems Lab (SESL) to develop approaches in building complex systems that can adapt in the environments in which they operate. The term "smart" in the context indicates physical systems that can interact with their environment and adapt to changes both in space and time by their ability to manipulate the environment through self-awareness and perceived models of the world based on both quantitative and qualitative information. The emerging fields of cyber physical systems, deep neural networks, fuzzy logic, evolutionary programming, and complex adaptive systems provide essential tools for designing such systems.

The focus of the SESL is in developing smart engineering architectures that integrate and/or enhance the current and future technologies necessary for developing smart engineering systems while illustrating the real life applications of these architectures. The smart engineering systems design and operations cut across a diversity of disciplines, namely manufacturing, electrical, computer, and mechanical, biomedical, civil and other related fields such as applied mathematics, cognitive sciences, biology and medicine. Current research is on developing new models and tools for building complex systems architectures that are intelligent, modular, and adaptive.

Design Engineering Center (DEC)

The center is one of the outreach arms of the engineering management and systems engineering department. The focus is on research and service activities in support of the educational goals of the department through externally funded projects. Current areas of research include total quality management, concurrent engineering, Taguchi Methods®, quality engineering, the product development process, and design optimization.

Laboratory for Investment and Financial Engineering

The goal of the Laboratory for Investment and Financial Engineering is to develop techniques and computational tools for increasing investment and capital return while managing and reducing financial risk. This involves research into stocks and financial derivatives (options, futures, forwards, and swaps), financial risk and uncertainty, financial forecasting, market efficiency and behavioral finance, fundamental and technical analysis, equity valuation, real options, and engineering economics. In cooperation with the Smart Engineering Systems Lab, research in the lab may also involve the use of smart and intelligent systems, such as neural networks, fuzzy logic, genetic and evolutionary algorithms, expert systems, intelligent agents, artificial life, chaos and fractals, and dynamic and complex systems. Data mining, principal component analysis and various other forms of applied statistics are also used. Members of the lab have access to financial data and various financial modeling software packages.

Additional Information

For additional information you can call our main department phone at 573-341-4572 or you can visit our web page at http://emse.mst.edu/.

Master of Science Admission Standards

- **B.S. in engineering or a physical science**
- **Undergraduate courses:** Calculus Series (I, II, III), Differential Equations, Statistics, Physics (I, II) or Chemistry, Engineering Economy
- **GPA:** Regular status: 3.0 cumulative
- **Graduate Record Exam (GRE):** All students must submit current GRE scores. Students successfully completing one of the department's graduate certificates with a grade of B or better in all the certificate courses can be admitted without the GRE.
- **Regular status:** V+Q ≥ 1100, A ≥ 4.0 (former scoring) or V ≥ 155, Q ≥ 148, A ≥ 4.0
- **Condition:** Student must earn B or better in each of first four graduate (5000 or 6000 level) classes after conditional admission.
- **TOEFL:** All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study.
- **Regular status:** 580/237/92
- **Statement of Purpose:** All applicants must submit a statement of purpose.
- **Financial Support:** Students in conditional status are not eligible for financial support from the department.
- **Three reference letters**

The M.S. degree program is offered on the Rolla campus and several locations including the Missouri S&T Global - St. Louis, and by distance education throughout the United States and selected international locations. Distance course lectures are archived upon completion of the lecture and all lectures are available to students through streaming video during the semester for review. These courses can be reached from anywhere at any time. It is feasible to obtain a Missouri S&T non-thesis M.S. degree regardless of your location.

The M.S. non-thesis program requires completion of at least 10 three-credit hour courses approved by the academic advisor. The M.S. with thesis option requires 36 credit hours including the thesis. All students are required to take the following:

CORE Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS ENG 5101</td>
<td>System Engineering and Analysis</td>
</tr>
<tr>
<td>SYS ENG 6102</td>
<td>Information Based Design</td>
</tr>
<tr>
<td>SYS ENG 6103</td>
<td>Systems Life Cycle Costing</td>
</tr>
<tr>
<td>SYS ENG 6104</td>
<td>Systems Architecting</td>
</tr>
<tr>
<td>SYS ENG 6105</td>
<td>Complex Engineering Systems Project Management</td>
</tr>
<tr>
<td>SYS ENG 6196</td>
<td>Systems Engineering Capstone</td>
</tr>
</tbody>
</table>
Specialization Courses

Specialization courses provide students with the ability to address his/her technology needs in the context of the overall Systems Engineering program. These graduate courses can be selected from engineering or the physical science department as long as they are approved by the program director.

One of the graduate certificates may be substituted for a specialization track with the permission of the program director.

Choose 4 courses in an area or combination of areas. (Please refer to the engineering management and systems engineering department for course information in each area.)

Civil and Environmental
- Contemporary Structural Engineering
- Geoenvironmental Engineering
- Geotechnical Earthquake Engineering
- Infrastructure Renewal

Computer Science
- Big Data Management & Analytics
- Big Data Management & Security
- Computational Intelligence
- Information Assurance & Security Officer Essentials
- Multimedia & Information Systems
- Software Design & Development
- Systems and Software Architecture
- Wireless Networks and Mobile Systems

Electrical Engineering
- Computation Intelligence
- Electric Machines and Drives
- Electric Power Systems Engineering
- Information Assurance & Security Officer Essentials
- Network Centric Systems

Engineering Management
- Engineering Management
- Financial Engineering
- Human Systems Integration
- Leadership in Engineering Organizations
- Lean Six Sigma
- Project Management

Manufacturing Engineering
- CAD/CAM & Rapid Product Realization
- Manufacturing Systems

Mechanical and Aerospace Engineering
- Composite Materials and Structures
- Control Systems
- Energy Conversion & Transport
- Engineering Mechanics
- Manufacturing Automation

Doctor of Philosophy

Admission Standards
- GPA: M.S. GPA = 3.5
- Graduate Record Exam (GRE): All students must submit current GRE scores. V+Q: 1100, A: 4.0 (former scoring) or V: 155, Q: 148, A: 4.0
- TOEFL: All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study.
- Regular status: 580/237/92 (TOEFL)
- Statement of Purpose: All applicants must submit a statement of purpose.
- Three reference letters

A candidate for the Ph.D. in systems engineering must complete the equivalent of at least three years of full-time work beyond the bachelor's degree. The content of all Ph.D. programs is individually structured by the student in consultation with and approved by the student's advisory committee. All requirements for the degree must normally be completed within an eight-year period. At appropriate points in their program, Ph.D. students must pass both a Qualifying Exam and Comprehensive Exam. Off-campus students are expected to complete all requirements listed in the Missouri S&T Graduate Catalog under the section entitled Doctor of Philosophy Degree and follow all procedures listed under the Procedures for Ph.D. Candidates.

The total credit requirements for graduation are a minimum of 60 credit hours after the successful completion of M.S. degree in systems engineering. Actual courses taken will be determined by the candidate's committee and his/her plan of study. The student is expected to complete all requirements.

Residency Requirements

All students are expected to follow the Missouri S&T graduate student residency requirements. Off campus students can meet the 2-year residency requirement with the following requirements: the qualifying exam must be taken on campus within the first 5 semesters of enrollment; the student will have at minimum two video conferences per month with his/her research advisor; the Ph.D. committee will include one person from the student's professional work location, the appointment committee member must have a Ph.D. and be familiar with the chosen research; the student is expected to meet with the Ph.D. committee on a regular basis with at least two meetings per semester; the Ph.D. comprehensive exam must be taken on campus; the student has the option of conducting research that is beneficial to the student's professional work; and the defense of dissertation must take place on campus.

Major Requirements

May be taken during M.S. degree

<table>
<thead>
<tr>
<th>Core Curriculum</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS ENG 5101</td>
<td>System Engineering and Analysis</td>
</tr>
<tr>
<td>SYS ENG 6102</td>
<td>Information Based Design</td>
</tr>
<tr>
<td>SYS ENG 6103</td>
<td>Systems Life Cycle Costing</td>
</tr>
<tr>
<td>SYS ENG 6104</td>
<td>Systems Architecting</td>
</tr>
<tr>
<td>SYS ENG 6196</td>
<td>Systems Engineering Capstone</td>
</tr>
<tr>
<td>SYS ENG 6542</td>
<td>Model Based Systems Engineering</td>
</tr>
<tr>
<td>SYS ENG 6239</td>
<td>Smart Engineering System Design</td>
</tr>
<tr>
<td>SYS ENG 6321</td>
<td>Modeling Complex Systems</td>
</tr>
<tr>
<td>or COMP ENG 641</td>
<td>Modeling Complex Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS ENG 6099</td>
<td>Research</td>
</tr>
<tr>
<td>1-15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>36</th>
</tr>
</thead>
</table>
Requirements for Thesis

Students will conduct original research demonstrated by journal or referred proceedings, publication under the supervision of a doctoral advisor, and communicate their findings, write a dissertation on research conducted, and provide satisfactory defense of their dissertation in a final oral examination. Students will be required to sign up for one hour of SYS ENG 6099 under their research advisor and attend systems engineering seminars every fall and spring semester during their study. These courses may be included as fulfilling research credit requirements. Students are required to publish their work in approved journals and referred proceedings. A minimum of three courses is expected.

Qualifying Exam

The objective of the systems engineering Ph.D. qualifying exam is to test the knowledge and understanding of the graduate student on systems engineering fundamentals and assess the student’s level of knowledge in engineering statistics and optimization. The qualifying exam is a two day exam consisting of a written and oral part. For more information, contact the department graduate staff.

It is expected that the graduate student has a clear understanding of the research issues in the student's area of interest, its implications in industrial applications primarily in the industrial domain the student is working, possible impact of successful research contributions to systems engineering research and literature and should be able to identify up to five journals in this area. Prior to the oral exam, copies of the written exams prepared by the systems engineering faculty will be provided to all faculty for each student. The oral exam is restricted to the areas of research specialization selected by each student and will continue until there is a consensus not to ask further questions by the faculty.

Comprehensive Exam

The student’s advisory committee will administer the comprehensive examination after the student has completed seventy-five percent of the coursework for the Ph.D. program and one published refereed conference proceeding or journal paper. The examination is written and oral. Upon successful completion of the written examination, the student will be orally examined by the advisory committee.

Dissertation

The dissertation, embodying the results of an original investigation, must be written upon a subject mutually agreed upon between the student and the advisor.

Research Areas

Graduate Certificate Programs

This program is designed to appeal to working professionals. Certificate courses taken for graduate credit can be counted in the M.S. degree once accepted into the M.S. degree. If the four-course sequence is completed with a grade of "B" or better in each of the courses taken, they can apply to be admitted to the M.S. systems engineering. The certificate program may be followed by six to eight additional 3 credit hour courses to complete the M.S. degree. The certificate program is open to all persons holding a B.S., M.S., or Ph.D. degree in engineering or a physical science and who have a minimum of 12-months of professional employment experience or are currently accepted into a graduate degree program at Missouri S&T.

Admission Standards

- B.S. in engineering or a physical science
- Undergraduate courses: Calculus Series (I, II, III), Differential Equations, Statistics, Physics or Chemistry, Engineering Economy
- GPA: Regular status: 2.75 cumulative
- TOEFL: All international applicants must submit a current TOEFL score, regardless of prior academic experience or place of study
- Regular status: 580/237/92

Once admitted to the program, the student must take the four designated courses as given below. In order to receive a graduate certificate, the student must have an average cumulative grade point of 3.0 or better in the certificate courses.

Computational Intelligence Certificate

Recent advances in information technology and the increased level of interconnectivity that society has achieved through Internet and broadband communication technology created systems that are very much different. The world is facing an increasing level of systems integration leading towards systems of systems (SoS) that adapt to changing environmental conditions. The number of connections between components, the diversity of the components and the way the components are organized can lead to different emergent system behavior. Computational Intelligence tools are an integral part of these systems in enabling adaptive capability in their design and operation.

This graduate certificate program provides practicing engineers the opportunity to develop the necessary skills in the use and development of computational intelligence algorithms based on evolutionary computation, neural networks, fuzzy logic, and complex systems theory. Engineers can also learn how to integrate common sense reasoning with computational intelligence elective courses such as data mining and knowledge discovery.

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 5310</td>
<td>Computational Intelligence</td>
</tr>
<tr>
<td>ELEC ENG 5310</td>
<td></td>
</tr>
<tr>
<td>SYS ENG 5211</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS ENG 5212</td>
<td>Introduction to Neural Networks and Applications</td>
</tr>
<tr>
<td>ELEC ENG 5370</td>
<td></td>
</tr>
<tr>
<td>COMP SCI 5400</td>
<td>Introduction To Artificial Intelligence</td>
</tr>
<tr>
<td>COMP SCI 5401</td>
<td>Evolutionary Computing</td>
</tr>
</tbody>
</table>

Select two of the following not taken as a core course:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS ENG 5212</td>
<td>Introduction to Neural Networks and Applications</td>
</tr>
<tr>
<td>ELEC ENG 5370</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 5320</td>
<td>Neural Networks Control and Applications</td>
</tr>
<tr>
<td>COMP SCI 5400</td>
<td>Introduction To Artificial Intelligence</td>
</tr>
<tr>
<td>COMP SCI 5401</td>
<td>Evolutionary Computing</td>
</tr>
<tr>
<td>COMP SCI 6400</td>
<td>Advanced Topics In Artificial Intelligence</td>
</tr>
<tr>
<td>COMP SCI 6401</td>
<td>Advanced Evolutionary Computing</td>
</tr>
<tr>
<td>SYS ENG 6213</td>
<td>Deep Learning and Advanced Neural Networks</td>
</tr>
<tr>
<td>SYS ENG 6214</td>
<td>Clustering Algorithms</td>
</tr>
<tr>
<td>COMP ENG 6330</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 6340</td>
<td></td>
</tr>
<tr>
<td>STAT 6239</td>
<td></td>
</tr>
<tr>
<td>SYS ENG 6215</td>
<td>Adaptive Dynamic Programming</td>
</tr>
<tr>
<td>COMP ENG 6320</td>
<td></td>
</tr>
<tr>
<td>ELEC ENG 6360</td>
<td></td>
</tr>
</tbody>
</table>
Model Based Systems Engineering Certificate

Recent advances in technology demands and the increased level of interconnectivity achieved through Internet and broadband communication technology is leading to systems that are increasingly complex. To manage this complexity, computational modeling and data resources have become nearly ubiquitous in systems engineering, driving the profession from a document-centric paradigm to a model-centric one. Model based systems engineering provides the means to construct models that capture system structure, behavior, and requirements and maintain consistency of these models automatically between collaborating engineers. These models can then be used in tandem with engineering and mathematics tools to quickly gain insight into the overall system performance over the entire lifecycle before a system component is ever made.

This graduate certificate program provides practicing engineers the opportunity to develop the necessary skills in the use of current modeling techniques to develop and simulate complex, multi-disciplinary engineering systems. In addition, engineers will learn methods to automate data acquisition for system development, establish rules for usability of model resources, and acquire necessary skills for simulating the designed systems.

Network Centric Systems Graduate Certificate

The area of network centric systems has evolved from recent advances in information technology and the increased level of interconnectivity that society has achieved through the Internet and Broadband communication technology. The area of network centric systems has grown due to advances in information technology and increases in connectivity due to the convergence of computing and communications.

Network centric systems are frequently "systems of systems" with complex interfaces and interactions. The graduate certificate in network centric systems is a joint effort between computer engineering and systems engineering to provide practicing engineers with the necessary skills to develop and design the operation of network centric systems. These four courses count towards a M.S. degree in systems engineering or computer engineering and they address the intersection between network engineering, systems engineering, and architecting. The requirements are the successful completion of two core courses and two elective courses from the list below. A grade of "B" or better is required in each course before the student is eligible for the master of science program.

<table>
<thead>
<tr>
<th>Core Course</th>
<th>Elective Courses (Select two courses):</th>
</tr>
</thead>
</table>
| SYS ENG 6239 | COMP ENG 6430/
| SYS ENG 6541 | COMP ENG 5410/
| SYS ENG 6542 | COMP SCI 6410/
| ENG MGT 6411 | AERO ENG 6447/

<table>
<thead>
<tr>
<th>Advanced Topics in Data Mining</th>
</tr>
</thead>
</table>
| COMP ENG 6302/
| COMP SCI 6402/
| COMP ENG 6310/
| ENG MGT 6410/
| COMP SCI 6202/
| MECH ENG 6447/
| AERO ENG 6447/

<table>
<thead>
<tr>
<th>Markov Decision Processes</th>
</tr>
</thead>
</table>
| COMP ENG 5420/
| SYS ENG 6323/
| COMP ENG 5510/
| SYS ENG 6322/
| COMP ENG 6510/
| COMP ENG 6420/
| SYS ENG 6324/
| COMP ENG 6430/
| COMP SCI 6602/
| COMP SCI 6600/
| COMP SCI 6604/

<table>
<thead>
<tr>
<th>Wireless Networks</th>
</tr>
</thead>
</table>
| Controller Network
| High Speed Networks |
| Fault-Tolerant Digital Systems |
| Resilient Networks |
| Wireless Ad hoc and Sensor Networks |
| High Speed Networks |
| Network Performance Analysis |
| Formal Methods in Computer Security |
| Mobile And Sensor Data Management |

Systems Engineering Graduate Certificate

The graduate certificate in systems engineering is designed to provide graduate engineers with the advanced knowledge and skills necessary for the conception and implementation of complex systems. The emphasis is on the processes by which complex systems are conceived, planned, designed, built, tested, and certified. The systems engineering experience can be applied to defense, space, aircraft, communications, navigation, sensor, computer software, computer hardware, transportation, and other aerospace and commercial activities.

| System Engineering and Analysis |
| Information Based Design |
| Systems Life Cycle Costing |
| Systems Architecting |

Upon successful completion of the four courses as described above, students will be awarded certification. The student must complete the four courses with a grade of "B" or better in each course. Students may apply to the M.S. program with the completion of the certificate.

Venkat Allada, Professor
PHD University of Cincinnati
Sustainable produce development, product platform design, mass customization, product innovation, lean manufacturing, intelligent manufacturing systems, process planning supply chain management, systems engineering process and design.

K Chandrashekhar, Curators Distinguished Professor
PHD Virginia Polytechnic Institute
Structures and Composite Materials

Steven M. Coms, Associate Professor
PHD Iowa State University
Systems Engineering Research Focus Area: computational intelligence, modeling and simulation, risk modeling and assessment.

Elizabeth Anne Fargher Cudney, Associate Professor
PHD Missouri S&T
Quality, Six Sigma, Robust Engineering, and Lean Enterprise.

Cihan H Dagli, Professor
PHD University of Birmingham, UK
Systems Architecting and Engineering, Complex Adaptive Systems, Neural Networks, Fuzzy Logic, Evolutionary Programming, Nesting Problems. INCOSE Fellow, IIE Fellow

Quoc Do, Adjunct Professor
PHD University of South Australia

Graduate Catalog 2018-2019
David Enke, Professor
PHD University of Missouri-Rolla
Investments, Derivatives, Options and Futures, Financial Forecasting, Trading Strategies, Hedge Funds, Endowment Investing, Financial Risk Management, Engineering Economy, Computational Finance, Computational Intelligence, Neural Networks.

Abhijit Gosavi, Associate Professor
PHD University of South Florida
Lean manufacturing, supply chain management, revenue management, simulation-optimization.

Katie Grantham, Associate Professor
PHD University of Missouri-Rolla

Sheryl Hodges, Assistant Teaching Professor
DEng Louisiana Tech University

Gerald Hoffman, Assistant Adjunct Professor
PHD University of Missouri-Rolla

Suzanna K. Long, Professor
PHD University of Missouri-Rolla
Strategic management, change management, business logistics and marketing.

Robert Marley, Professor
PhD Wichita State University
Human System Integration, Ergonomics

Christopher Merz, Assistant Adjunct Professor
PHD University of California-Irvine

Louis Pape II, Assistant Adjunct Professor
PHD Missouri University of Science and Technology
The Boeing Company, Associate Technical Fellow

Ruwen Qin, Associate Professor
PHD Pennsylvania State University
Real options, financial engineering, and manufacturing and service operations.

Stephen A Raper, Associate Professor
PHD University of Missouri-Rolla
Packaging engineering, operations, productivity, total quality management, packaging systems design, environmental aspects of packaging and statistical process control.

Jagannathan Sarangapani, Professor
PHD University of Texas-Arlington
Adaptive Control, Wireless Networks.

Joan Barker Schuman, Associate Teaching Professor
PHD University of Southern Mississippi
Project Management and Engineering Economics.

David G Spurlock, Associate Teaching Professor
PHD University of Illinois Urbana
General Management

Zeyi Sun, Assistant Professor
PHD University of Illinois at Chicago
Energy efficiency management of manufacturing systems, electricity demand response of manufacturing systems, system modeling of cellulosic biofuel manufacturing, energy modeling and control in additive manufacturing, intelligent maintenance of manufacturing systems.

Donald C Wunsch II, Professor
PHD University of Washington
Adaptive critic designs, neural networks, fuzzy systems, surety, nonlinear adaptive control, intelligent agents, applications.

Gonca Yildirim, Adjunt Professor
PHD Missouri University of Science and Technology
The Boeing Company, Associate Technical Fellow

Joan Barker Schuman

SYS ENG 5000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SYS ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SYS ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

SYS ENG 5099 Research (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

SYS ENG 5101 System Engineering and Analysis (LEC 3.0)
The concepts of Systems Engineering are introduced through a project. Students work in virtual teams. The topics covered are architecture development, basic system architectural design techniques, functional decomposition, design and technical review objectives, and initial specifications. Prerequisite: Graduate Standing.

SYS ENG 5211 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Elec Eng 5310 and Comp Eng 5310).
SYS ENG 5212 Introduction to Neural Networks and Applications (LEC 3.0)
The course provides an introduction to basic neural network architectures and their applications. Students learn to construct neural networks and train them to solve engineering problems, specifically pattern recognition and function approximation. Mathematical analysis of network architectures, training algorithms and practical applications of neural nets. Prerequisites: Graduate Standing. (Co-listed with Elec Eng 5370).

SYS ENG 5323 Wireless Networks (LAB 1.0 and LEC 2.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 3420 or Comp Eng 3150 and graduate standing. (Co-listed with Comp Eng 5430 and Elec Eng 5430).

SYS ENG 6000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SYS ENG 6001 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SYS ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

SYS ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

SYS ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from campus must continue to enroll for at least one credit hour each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

SYS ENG 6099 Research (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

SYS ENG 6102 Information Based Design (LEC 3.0)
This course is an introduction to the use of common data analytical methods and analysis for the purpose of decision making during the design phase of engineering system development. Through the introduction to such analytical methodologies, the systems engineering tool belt is made more effective as it is the foundation to decision analysis. Prerequisites: Graduate Standing.

SYS ENG 6103 Systems Life Cycle Costing (LEC 3.0)
Methods of economic evaluation for engineering projects involving complex systems. Economic impacts on choosing system alternatives, life cycle costing, economic decisions involving risk and uncertainty, and engineering cost estimation for projects in government, defense, and commercial industries. Prerequisites: Graduate Standing.

SYS ENG 6104 Systems Architecting (LEC 3.0)
Tools and concepts of architecting complex engineering systems. Ambiguity in Systems Architecting and Fuzzy Systems; Search as an Architecting Process; Architecting Heuristics; Systems Scoping and Attribute Selection; Assessing Architectures; Systems Aggregation, Partitioning; Systems Behavior Generation; System Science and Thinking, Cyber Physical Systems. Prerequisites: Graduate Standing.

SYS ENG 6105 Complex Engineering Systems Project Management (LEC 3.0)
The course topics include issues specific to distributed project management, team development, resource management, constraint planning, development of Integrated Master Schedule and Integrated Master Plan, monitoring technical performance, schedule, cost, and risk. Prerequisites: Graduate Standing.

SYS ENG 6110 Risk Modeling and Optimization under Uncertainty (LEC 3.0)
Risk analysis of products and systems will be explored. Traditional probabilistic risk assessment techniques will be covered along with recent approaches (i.e., stochastic programming, robust optimization, and dynamic programming) that use historical data based risk models to realize optimal risk management. Prerequisite: Graduate standing. (Co-listed with ENG MGT 6415).

SYS ENG 6117 Software Intensive Systems Architecting (LEC 3.0)
Basic tools and concepts of architecting complex software intensive systems are introduced. The following topics are covered under four main sections; namely Architecting Process, Architecting Heuristics, Architecting Patterns and Frameworks, and Architecture Assessment. Prerequisite: Graduate Standing.

SYS ENG 6196 Systems Engineering Capstone (LEC 3.0)
The topics covered are Systems Engineering Management Plan (SEMP), Systems Engineering processes, process re-engineering, standards, and systems engineering case studies. Students will apply the skills and theory that they mastered in previous five core courses to the analysis of assigned cases. Prerequisites: Sys Eng 6105.
SYS ENG 6213 Deep Learning and Advanced Neural Networks (LEC 3.0)
Use of deep learning and advance neural networks in the design of cyber physical complex adaptive systems. Machine learning basics, deep feed forward networks, regularization for deep learning, optimization for training deep models, convolutional networks, recurrent and recursive nets, practical, and vision and natural language processing applications. Prerequisite: Graduate Standing.

SYS ENG 6214 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 6330, Elec Eng 6340, Comp Sci 6405 and Stat 6239).

SYS ENG 6215 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Elec Eng 6360, Mech Eng 6458 and Aero Eng 6458).

SYS ENG 6216 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Sci 6402 and Comp Eng 6302).

SYS ENG 6217 Smart Engineering System Design (LEC 3.0)
Covers the tools, techniques and methods used in developing Flexible Intelligent Learning Architectures for system of systems (SoS) and cyber physical systems (CPS) through evolutionary approach. Meta-architecture design, generation algorithms, SoS and CPS architecture evaluation methods, executable architectures, many meta-architecture objectives trade. Prerequisites: Graduate Standing.

SYS ENG 6218 Modeling Complex Systems (LEC 3.0)
Engineering Systems of today are non-linear, distributed, global, and adaptive to their environment in both space and time, thereby creating emergent behaviors. This course covers the current modeling tools and techniques used in modeling and architecting these complex systems. Prerequisites: Graduate Standing. (Co-listed with COMP ENG 6410).

SYS ENG 6219 Resilient Networks (LEC 3.0)
This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisites: Sys Eng 6410, Comp Eng 6410, or Comp Eng 5420. (Co-listed with COMP ENG 6510).

SYS ENG 6224 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Comp Eng 6420 and Elec Eng 6430).

SYS ENG 6520 Distributed Systems Modeling (LEC 3.0)
This course will discuss issues related to distributed systems architecting, modeling, analysis and representation, with specific focus on discrete-part manufacturing domain. Distributed modeling techniques and other model decomposition methods using simulation modeling and scalability issues will also be addressed.

SYS ENG 6541 Model Based Systems Engineering (LEC 3.0)
Provides the student with understanding of the use of models to represent systems and validate system architectures. The student will gain proficiency in using a systems modeling language and shifting systems engineering from a document centric to a model centric paradigm. Prerequisites: Graduate Standing. (Co-listed with COMP SCI 6102).

SYS ENG 6612 Investment (LEC 3.0)
An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6212).

SYS ENG 6613 Financial Engineering (LEC 3.0)
An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6213).

SYS ENG 6614 Financial Engineering II (LEC 3.0)
This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito's lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and value-at-risk. Prerequisite: Eng Mgt 6213/Sys Eng 6613. (Co-listed with Eng Mgt 6214).

SYS ENG 6615 Financial Risk Management (LEC 3.0)
Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting, Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6215).
Technical Communication

At the graduate level, three technical communication programs are offered in the department of English and technical communication: a master of science in technical communication, a graduate minor in technical communication, and a graduate certificate in technical communication.

The English and technical communication department offers a master’s degree in technical communication (either online or traditional) for any student with a bachelor’s degree in any discipline and a strong background in writing and technology. Because of the rapid changes in technology, particularly due to the effects of information systems, there is an immediate and growing need for highly trained professional communicators to design information. Employers are looking for communicators with sophisticated skills in the integration of visual communication tools with written and spoken communication.

Faculty involved in a variety of technical communication research programs teach and direct the program. Students will have opportunities to assist these faculty, both in research and teaching, as well as to work alongside faculty and graduate students in engineering and science. The technical communication faculty and students are active in the leading professional societies.

The program requires a minimum of 30 hours of graduate credit and includes both a thesis and non-thesis option.

M.S. Degree Requirements

The following 10 courses (totaling 30 credit hours) are required for the M.S.:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCH COM 5620</td>
<td>Research Methods in Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 4520</td>
<td>Help Authoring</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5510</td>
<td>Technical Editing</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5530</td>
<td>Usability Studies</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5610</td>
<td>History of Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 6600</td>
<td>Foundations of Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5560</td>
<td>Web-Based Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 6440</td>
<td>Advanced Theories of Visual Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 6450</td>
<td>Advanced International Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5550</td>
<td>Advanced Proposal Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 30

A student completing the master’s degree will also take a comprehensive exam during his/her final semester. If the student chooses to do a thesis instead of the exam, and the technical communication faculty give their approval to this plan, the student will have to take 6 hours of TCH COM 5999 Research in addition to the above 10-course sequence.

Technical Communication Graduate Minor

The technical communication program offers a graduate-level minor that is open to any graduate student. The minor is designed to strengthen the written, oral, and visual communication skills of students majoring in the sciences, engineering, management, information systems, or other fields. The minor will be particularly useful for those students who will pursue the “paper option” thesis or dissertation. The minor will also be beneficial for those students who will make oral or poster presentations at technical conferences, write journal articles, prepare research proposals, design technical web pages, or prepare technical marketing information.

The program requires a minimum of 12 hours of credit (excluding all courses taken for undergraduate credit). A minimum of 6 hours of 4000-level or above courses with the TCH COM designation is required. At least 6 additional hours of technical communication intensive courses are required. The additional courses may come from courses with the TCH COM designation, the list of approved technical communication intensive courses, and/or technical communication intensive courses from any academic discipline with the approval of the minor advisor and the English and technical communication department.

Students can elect to pursue this minor at any point during their graduate studies by submitting the Application for a Designated Graduate Minor form (available at http://registrar.mst.edu/media/administrative/registrar/documents/gradminorapp.pdf) to the English and technical communication department. Upon application, each student will be assigned a minor advisor who will work with the student to develop a proposed list of courses to fulfill the program requirements.

Approved Technical Communication Intensive Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 6313</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BUS 4111</td>
<td>Business Negotiations</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 2410</td>
<td>Theory Of Written Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 5571</td>
<td>Advanced Writing For Science & Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 5092</td>
<td>International Engineering and Design</td>
<td>3</td>
</tr>
<tr>
<td>IS&T 6887</td>
<td>Research Methods in Business and IS&T</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3109</td>
<td>Foundations Of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5603</td>
<td>Methods of Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5108</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5154</td>
<td>Mathematical Logic I</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 6120</td>
<td>Thermodynamics and Phase Equilibria</td>
<td>3</td>
</tr>
</tbody>
</table>

The technical Communication Graduate Minor Advisory Committee will evaluate other courses, upon the request of students or faculty, for inclusion on the approved list or on a case-by-case basis for individual programs.

The graduate certificate in technical communication serves current Missouri S&T graduate students in any discipline; individuals who already have undergraduate or graduate degrees and are seeking to add value to their degrees; and current industry employees who need to hone their communication skills to remain competitive in the market and better serve their employers.

The certificate may be pursued either online or on campus.

The following 4 courses* (totaling 12 credit hours) will be required for the certificate:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCH COM 5510</td>
<td>Technical Editing</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5530</td>
<td>Usability Studies</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5550</td>
<td>Advanced Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>TCH COM 5560</td>
<td>Web-Based Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

These four courses are also required for the M.S. in technical communication and could be counted toward that degree if the certificate student later decided to go on for the M.S.

* Course substitutions may be permitted by the department in some circumstances.
TCH COM 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

TCH COM 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

TCH COM 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

TCH COM 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

TCH COM 5100 Technical Editing (LEC 3.0)
The principles and practices of technical editing, including usability, audience analysis, contextual editing, the conventions of scientific and technical communication, and the role of the editor in document development and publication. Students will also learn standard practices of copy editing and the use of style guides. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5500 Advanced Proposal Writing (LEC 3.0)
Familiarizes graduate students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Credit will not be given for both TCH COM 4550 and TCH COM 5550. Prerequisites: Graduate standing.

TCH COM 5560 Web-Based Communication (LEC 3.0)
Covers such topics as advanced writing and editing for the web; the creation of rhetorically effective websites; the use of blogs, wikis, and other web genres to communicate technical information. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5570 History of Technical Communication (LEC 3.0)
Introduction to the roles of the technical communicator and the technologies of communication from ancient cultures to the present. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5580 Research Methods in Technical Communication (LEC 3.0)
Students learn essential research methods in technical communication, including audience analysis, interviewing techniques, working with subject matter experts, and experimental research design. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

TCH COM 6070 Teaching of Technical Communication (LEC 3.0)
Provides a theoretical and pedagogical foundation for teaching workshops and undergraduate courses in technical communication. Includes both traditional and electronic settings.

TCH COM 6410 Theoretical Approaches to Technical Communication (LEC 3.0)
Examines representative theories and research in written, oral, and visual modes of technical communication. Includes such issues as ethics, document design, rhetorical methods, and people-machine communication.

TCH COM 6420 Information Management in Technical Communication (LEC 3.0)
Study of and practice in directing projects related to such areas as multimedia, web sites, strategic planning, newsletters. Includes writing planning documents, selecting team members, synchronizing assignments, testing prototypes, and issuing a final report.

TCH COM 6440 Advanced Theories of Visual Technical Communication (LEC 3.0)
An in-depth investigation and analysis of historical and contemporary visual theories and their impact on technical communication, including visual rhetoric, semiotics, and design and critical theories.
TCH COM 6450 Advanced International Technical Communication (LEC 3.0)
Advanced study of international technical communication. Includes topics such as graphics, icons, symbols; user interface design; intercultural communication. Students may not earn credit for both TCH COM 4450 and TCH COM 6450.

TCH COM 6600 Foundations of Technical Communication (LEC 3.0)
Introduction to themes and issues, methods, and genres that define technical communication.
COURSE INFORMATION

Course Numbers

This section has been prepared to give you a listing and description of the approved courses at the Missouri University of Science and Technology. Courses listed are those approved at the time this publication went to press. Changes are made at regular intervals. Electronic catalog descriptions, which are updated during the academic year, are available on the Web at: http://catalog.mst.edu/ or on Joe’S3. This will enable you to keep abreast of new course additions. For current information on when courses are available, consult the campus schedule of classes available on the Registrar’s Office website at http://registrar.mst.edu.

1000-1999 Freshmen-level courses. May not be used as any part of a graduate degree program.

2000-2999 Sophomore-level courses. May not be used as any part of a graduate degree program.

3000-3999 Junior-level courses.

4000-4999 Senior-level courses.

5000-5999 Entry and mid-level graduate courses (undergraduate enrollment allowed).

6000-6999 Advanced graduate courses. Undergraduate and post-baccalaureate students are not normally eligible to enroll in 6000-level courses.

Course Information

The number in parentheses following the name of the course indicates the number of credit hours given for successfully completing the course. It also reflects the section type; for example, (LEC 3.0) designates a lecture course of three hours credit; (LAB 1.0) designates a laboratory course of one-hour credit, (RSD 2.0) designates a recitation, seminar, discussion of two hours credit, and (IND 0.0-15.0) designates independent study or research with variable hours. A lecture credit hour is usually the credit granted for satisfactorily passing a course of approximately 15 classroom hours. A laboratory course of one-hour credit would normally meet three classroom hours per week for 15 weeks.

Three credit hour courses normally meet 50 minutes three times per week, or 75 minutes twice a week, for 15 weeks. The time in class is the same in each case. If you have two classes in succession, there should be at least 10 minutes between classes. Classes meeting Monday-Wednesday-Friday will normally begin on the hour. Classes meeting Tuesday-Thursday will normally alternate between the hour and half hour, beginning at 8:00 a.m.

Students must have completed the stated prerequisite(s) for the course for admission to the course or obtain the ‘Consent of the Instructor’ of the course.
Aerospace Engineering (AERO ENG)

AERO ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

AERO ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mech Eng 5001).

AERO ENG 5131 Intermediate Thermofluid Mechanics (LEC 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 3131 or Aero Eng 3131. (Co-listed with Mech Eng 5131).

AERO ENG 5139 Computational Fluid Dynamics (LEC 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 1570 or 1970 or 1971; one course in fluid mechanics. (Co-listed with Mech Eng 5139).

AERO ENG 5169 Introduction to Hypersonic Flow (LEC 3.0)

AERO ENG 5171 V/STOL Aerodynamics (LEC 3.0)

AERO ENG 5212 Introduction to Finite Element Analysis (LEC 3.0)
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisites: Math 3304; senior or graduate standing. (Co-listed with Mech Eng 5212).

AERO ENG 5220 Advanced Mechanics of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 2210, Math 3304. (Co-listed with Mech Eng 5220).

AERO ENG 5222 Introduction to Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Finite elasticity. some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Eng Mech 5211. (Co-listed with Mech Eng 5222).

AERO ENG 5229 Smart Materials and Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Mech Eng 5229, Elec Eng 5270 and Civ Eng 5118).

AERO ENG 5234 Stability of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 2210, Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Mech Eng 5234).

AERO ENG 5236 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concept of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5236).

AERO ENG 5238 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints components and structures, design to prevent fatigue. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5238).

AERO ENG 5282 Introduction to Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 5282).
AERO ENG 5307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems. Natural frequencies, resonances, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Mech Eng 5307).

AERO ENG 5309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 3411 & 3313, or Aero Eng 3613 & Math 3304. (Co-listed with Mech Eng 5309).

AERO ENG 5313 Intermediate Dynamics of Mechanical and Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisites: Mech Eng 3313 or Aero Eng 3613. (Co-listed with Mech Eng 5313).

AERO ENG 5323 Aerelasticity (LEC 3.0)
Study of phenomena involving interactions among inertial, aerodynamic, and elastic forces and the influence of these interactions on aircraft and space vehicle design. Some aerelastic phenomena are: divergence, control effectiveness, control reversal, flutter, buffeting, dynamic response to rapidly applied loads, aerelastic effects on load distribution, and static and dynamic stability. Prerequisites: Aero Eng 3251 and 3171.

AERO ENG 5361 Flight Dynamics-Stability And Control (LEC 3.0)
Review of static stability, dynamic equations of motion, linearized solutions, classical control design and analysis techniques, introduction to modern control. Prerequisite: Aero Eng 3361.

AERO ENG 5449 Robotic Manipulators and Mechanisms (LAB 1.0 and LEC 2.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Mech Eng 3313; Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972 or Comp Sci 1570. (Co-listed with Mech Eng 5449).

AERO ENG 5478 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Elec Eng 5870 and Comp Eng 5820).

AERO ENG 5481 Mechanical and Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 4479 or Aero Eng 3361. (Co-listed with Mech Eng 5481).

AERO ENG 5519 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 2519. (Co-listed with Mech Eng 5519).

AERO ENG 5525 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 3525. (Co-listed with Mech Eng 5525).

AERO ENG 5527 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 3521. (Co-listed with Mech Eng 5527).

AERO ENG 5535 Aerospace Propulsion Systems (LEC 3.0)
Study of atmospheric and space propulsion systems with emphasis on topics of particular current interest. Mission analysis in space as it affects the propulsion system. Power generation in space including direct and indirect energy conversion schemes. Prerequisite: Aero Eng 4535.

AERO ENG 5570 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3131 or Physics 3211 or Nuc Eng 3221 or Elec Eng 3600. (Co-listed with Mech Eng 5570, Nuc Eng 4370, Physics 4543).

AERO ENG 5614 Spaceflight Mechanics (LEC 3.0)
Further topics in orbital mechanics. Time equations, Lambert’s problem, patched-conic method, orbital maneuvers, orbit determination, orbit design, re-entry problem. Prerequisite: Aero Eng 3613.

AERO ENG 5715 Concurrent Engineering (LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 3313 or Aero Eng 3313 and Civ Eng 2210 (Co-listed with Mech Eng 5715).
AERO ENG 5758 Integrated Product Development (LAB 1.0 and LEC 2.0)

Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, cost, and product support. Using a 3-D solid modeling program, students will design, analyze, and send the data base to the automated machine shop where the parts will be manufactured. The parts will then be assembled, tested and analyzed for their performance. Prerequisites: Aero Eng 3251 or Mech Eng 3708 for Design; Mech Eng 3313 for Assembly; Accompanied or preceded by Mech Eng 5653 for Manufacturing; Eng Mgt 5711 or 5714 for Cost/Product Support.

AERO ENG 5760 Probabilistic Engineering Design (LEC 3.0)

The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 3708 or Aero Eng 3361. (Co-listed with Mech Eng 5760).

AERO ENG 5830 Applied Computational Methods (LEC 3.0)

Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 1570 or 1970 or 1981; Math 3304. (Co-listed with Mech Eng 5830).

AERO ENG 6000 Special Problems (IND 0.0-6.0)

Problems or readings on specific subjects of projects in the department. Consent of instructor required.

AERO ENG 6001 Special Topics (LEC 0.0-6.0)

This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mech Eng 5001).

AERO ENG 6010 Seminar (LEC 0.0-1.0)

Discussion of current topics. (Co-listed with Mech Eng 6010).

AERO ENG 6040 Oral Examination (IND 0.0)

After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

AERO ENG 6050 Continuous Registration (IND 1.0)

Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

AERO ENG 6099 Research (IND 0.0-15)

Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

AERO ENG 6123 Viscous Fluid Flow (LEC 3.0)

Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Mech Eng 6123).

AERO ENG 6131 Gas Dynamics I (LEC 3.0)

A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Mech Eng 6131).

AERO ENG 6135 Turbulent Flows - Theory, Measurements and Modeling (LEC 3.0)

Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Mech Eng 6135).

AERO ENG 6137 Physical Gas Dynamics I (LEC 3.0)

Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and Nonequilibrium gas properties and gas flows are included. Prerequisite: Mech Eng 5131 or Aero Eng 5131. (Co-listed with Mech Eng 6137).

AERO ENG 6212 Advanced Finite Element Analysis (LEC 3.0)

AERO ENG 6222 Theory of Elasticity (LEC 3.0)

AERO ENG 6284 Analysis of Laminated Composite Structures (LEC 3.0)
An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Mech Eng 6284).

AERO ENG 6285 Mechanics Of Composite Materials (LEC 3.0)
Effective moduli of spherical, cylindrical, and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding, and matrix cracking. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Mech Eng 6285).

AERO ENG 6307 Advanced Vibrations (LEC 3.0)
Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems and random excitation. Prerequisite: Mech Eng or Aero Eng 5307. (Co-listed with Mech Eng 6307).

AERO ENG 6313 Advanced Aerospace Mechanics (LEC 3.0)
Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations, stability of systems, to include approximate techniques. Prerequisite: Mech Eng or Aero Eng 5313. (Co-listed with Mech Eng 6313).

AERO ENG 6447 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Eng Mgt 6410 and Comp Sci 6202).

AERO ENG 6458 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Elec Eng 6360, Mech Eng 6458 and Sys Eng 6215).

AERO ENG 6479 Analysis And Synthesis Of Mechanical And Aerospace Systems (LEC 3.0)
A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mech Eng 5481 or Aero Eng 5481. (Co-listed with Mech Eng 6479).

AERO ENG 6481 Advanced Topics in Decision and Control (LEC 3.0)
This course will deal with latest topics in the areas of decision and control. Course may be repeated if topics vary. Prerequisites: Aero Eng 5481 or Mech Eng 5481 or equivalent. (Co-listed with Mech Eng 6481).

AERO ENG 6525 Heat Transfer by Conduction (LEC 3.0)
A study of conduction of heat transfer in solids by analytical and other methods. Prerequisite: Mech Eng 5525 or Aero Eng 5525. (Co-listed with Mech Eng 6525).

AERO ENG 6527 Heat Transfer by Convection (LEC 3.0)
An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mech Eng 5525 or Aero Eng 5525. (Co-listed with Mech Eng 6527).

AERO ENG 6529 Heat Transfer by Radiation (LEC 3.0)
A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Mech Eng 6529).

AERO ENG 6614 Advanced Astrodynamics (LEC 3.0)
Analysis of spacecraft motion using different dynamic models and perturbations. Using the state transition matrix and differential corrections technique for trajectory computation. Introduction to the three-body problem. Use of computational and numerical methods to solve astrodynamics problems. Prerequisite: Aero Eng 5614.

Biological Sciences (BIO SCI)

BIO SCI 5000 Special Problems (IND 0.0-6.0)
Graduate problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

BIO SCI 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 5010 Graduate Seminar (RSD 0.0-6.0)
Presentation and discussion of current topics in Applied and Environmental Biology.

BIO SCI 5040 Oral Examination (IND 0.0)
(Variable) After completion of all other program requirements, oral examinations for on-campus M.S./PH.D students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BIO SCI 5099 Graduate Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.
BIO SCI 5210 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Chem Eng 5200, MS&E 5310).

BIO SCI 5240 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior undergraduate standing. (Co-listed with MS&E 5210).

BIO SCI 5313 Pathogenic Microbiology (LEC 3.0)
A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio Sci 2213 or Civ Eng 2601.

BIO SCI 5323 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with COMP SCI 5700).

BIO SCI 5333 Genomics (LEC 3.0)
This course offers a general overview of the field of genomics. Topics covered include genome sequencing and annotation, transcriptomics, proteomics, metabolomics, genomic variation, and an overview of human, and several animal, plant, and microbial genome projects. Prerequisite: BIO SCI 4323.

BIO SCI 5343 Biology of Aging (LEC 3.0)
We will discuss the proximate and ultimate mechanisms of aging, and review a few leading theories of aging with the emphases on oxidative stress and life history tradeoffs. We will take the comparative approach to study aging across species, and the interventions that extend animals’ lifespan, and explore why they may or may not work on humans. Prerequisites: Bio Sci 2213.

BIO SCI 5353 Developmental Biology (LEC 3.0)
Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisite: Bio Sci 2213.

BIO SCI 5423 Advanced Biodiversity (LEC 3.0)
This course focuses on the enhancement and reduction of biodiversity and modern techniques of measuring and monitoring it. Topics include biogeography, community structure, competition, predation, food webs, geology-biology relationships, environmental change, and human impact. Additional costs and a week-long field trip are required. Prerequisite: Bio Sci 2233 or Bio Sci 2263.

BIO SCI 5433 Neurobiology (LEC 3.0)
An intermediate course in cellular neurobiology. Emphasis will be placed on the unique properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of neurons, synaptic transmission, neurochemistry, signal transduction, neuropharmacology and neurodevelopment. Prerequisite: Bio Sci 2213.

BIO SCI 5463 Global Ecology (LEC 3.0)
This class covers ecological topics at large scales, emphasizing global scales. Topics include global energy balance, biogeochemical cycles of water, carbon, nitrogen, and other biologically important elements, and global biodiversity. Students will focus on primary literature related to global ecology. Prerequisite: Bio Sci 2263.

BIO SCI 5533 Pharmacology (LEC 3.0)
The basic principles of drug action, pharmacokinetics, pharmacodynamics and toxicity. We will emphasize the actions of drugs used to treat cardiovascular and nervous system disorders. Students will review the primary literature to prepare both written and oral reports on drug actions. Prerequisite: Bio Sci 2213.

BIO SCI 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

BIO SCI 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BIO SCI 6202 Problems In Applied And Environmental Biology (LEC 0.0-3.0)
Overview of major areas of research in applied biology and environmental science with a focus on interdisciplinary approaches used on S&T campus in ongoing research. Prerequisite: Acceptance to Graduate Program.

BIO SCI 6210 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with CHEM ENG 6300, MS&E 6310).
BIO SCI 6223 Research Proposal Writing (LEC 3.0)
Students will learn best practices of grant proposal writing. Students will conduct background research, prepare an annotated bibliography, brainstorm specific aims, and critique each other’s writing. The course will conclude with a presentation by the student of their finished proposal. Prerequisites: Graduate standing.

BIO SCI 6240 Tissue Engineering II (LEC 3.0)
The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with MS&E 6210).

BIO SCI 6273 Techniques In Applied And Environmental Biology (LEC 3.0)
Topics to be explored in this course will include but are not limited to microbial growth and metabolic kinetics, life in extreme conditions, biogeochemical cycling, bioremediation of contaminants, waterborne pathogens and environmental biotechnology. Prerequisite: Graduate standing.

BIO SCI 6313 Environmental Microbiology (LEC 3.0)
The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate student.

BIO SCI 6353 Advanced Cancer Cell Biology (LEC 3.0)
Graduate level biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. In addition to lecture, will include a weekly section to examine primary cancer literature. Prerequisite: Bio Sci 2213.

BIO SCI 6363 Advanced Freshwater Ecology (LEC 3.0)
Topics include: development and organogenesis, regeneration and repair, stem cell types and sources, pluripotency and reprogramming, stem cells and cancer, therapeutics, and ethics. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate student.

BIO SCI 6373 Advanced Stem Cell Biology (LEC 3.0)
This course will cover the fast-moving field of stem cell biology. Topics include: development and organogenesis, regeneration and repair, stem cell types and sources, pluripotency and reprogramming, stem cells and cancer, therapeutics, and ethics. Research proposal and additional readings required for graduate credit.

BIO SCI 6383 Advanced Toxicology (LEC 3.0)
We will discuss the toxicity and mechanisms of action of natural and man-made toxicants. The impact of toxicants on both human health and the environment will be considered. Students will be assigned to independent literature search and write a report. Prerequisites: Bio Sci 2213 and Bio Sci 2223.

BIO SCI 6413 Molecular Cell Biology (LEC 3.0)
Advanced study of the biology of eukaryotic cells, including biomembranes and membrane transport, subcellular organelles, cellular energetics, protein sorting, cytoskeletal elements, cell to cell signalling, regulation of the cell cycle, and tissue organization. Prerequisite: Bio Sci 2213 or equivalent.

BIO SCI 6423 Astrobiology (LEC 3.0)
The origins of life on early earth and the possibility of life on extraterrestrial bodies will be explored in this course through lectures and journal article discussions. In addition, the means to study extraterrestrial environments will be considered. Prerequisite: Graduate standing.

BIO SCI 6463 Bioremediation (LEC 3.0)
During this course, the use of microorganisms and other living organisms for the remediation of contaminated environments will be explored along with the techniques necessary for monitoring their activities. Prerequisite: Graduate standing.

BIO SCI 6513 Advanced Microbial Metabolism (LEC 3.0)
A survey of the diverse metabolic properties of microorganisms. Course material will emphasize major metabolic pathways and how they relate to microbial diversity and microbial ecology. Prerequisite: Bio Sci 3313 or an equivalent course.

BIO SCI 6523 Advanced Biomolecules (LEC 3.0)
Demonstration of the principles of modern biochemistry as they relate to the structure and function of the major macromolecules of the cell. An emphasis will be placed on reading and interpreting scientific literature and scientific writing. Prerequisite: Bio Sci 2213 or Chem 4610 or an equivalent course.

BIO SCI 6666 Advanced Nanotechnology in Biomedicine (LEC 3.0)
Applications of nanotechnology in life science is termed nanobiotechnology. This course describes recent development of nanotechnology in basic biological research as well as biomedical applications. In addition to attending regular lectures, graduate students will be assigned to an independent research project and present the information in the class. Prerequisites: Bio Sci 2213 and Bio Sci 2223 and graduate standing.

Business (BUS)
BUS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

BUS 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.
BUS 5040 Oral Examination (IND 0.0)
After completion of all other requirements, oral examinations for on-campus M.B.A./Ph.D. students may be processed during intersession. Off-campus M.B.A. students must be enrolled in oral examination and must have paid an oral examination fee at the time defense/oral examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

BUS 5080 Practicum (IND 0.0-6.0)
This course is similar to the Bus 5085 Internship course. The difference is that this course is intended for students who are already employed by an organization for whom they wish to continue working. Prerequisite: Bus Core.

BUS 5085 Internship (IND 0.0-6.0)
Students apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employer. Activities will vary depending on the student's background and the setting. Requires major report and formal presentation to sponsoring organization. Prerequisite: Graduate standing.

BUS 5099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

BUS 5105 Graduate Management and Business Law Essentials (LEC 1.5)
This course is an introduction to the essentials of management and business law for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

BUS 5115 Introduction to Individual and Group Dynamics in Business (LEC 3.0)
This course will cover contemporary theories of business leadership styles and group dynamics. Leadership theories, group dysfunction/function, positive group interactions, change impacts, the importance of business ethics as well as the role of gender and culture on the group will be examined.

BUS 5205 Graduate Accounting Essentials (LEC 1.5)
This course is an introduction to the essentials of financial and managerial accounting for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

BUS 5230 Financial Statement Analysis (LEC 3.0)
Analysis and interpretation of financial statements for profitability analysis, credit analysis, and other business analyses that rely on financial data. Introduces emerging roles of accounting analytics. Illustrates data analytics concepts and techniques to detect earning management, predict fraud, and to provide insights into other business strategies. Prerequisite: FINANCE 2150 or Graduate Standing.

BUS 5305 Graduate Operations Management Essentials (LEC 1.5)
This course is an introduction to the essentials of operations management for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

BUS 5360 Business Operations (LEC 3.0)
This course examines the concepts, processes, and institutions that are fundamental to an understanding of business operations within organizations. Emphasis is on the management and organization of manufacturing and service operations and the application of quantitative methods to the solution of strategic, tactical and operational problems. Prerequisites: BUS 1210 or ENG MGT 2211; at least Junior standing; and one of the following: STAT 1111, STAT 1115, STAT 1116, STAT 3111, STAT 3113, STAT 3115, or STAT 3117.

BUS 5470 Human Resource Management (LEC 3.0)
The course examines employee selection, performance appraisal, training and development, compensation, legal issues, and labor relations. Prerequisite: Bus 1110.

BUS 5505 Graduate Management Information Systems Essentials (LEC 1.5)
This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

BUS 5530 Machine Learning and Artificial Intelligence for Business (LEC 3.0)
Explores various approaches to machine learning and artificial intelligence, along with their numerous applications in business. Describes some of the many technological approaches to business problems that are considered part of machine learning and artificial intelligence, such as neural networks and deep learning. Prerequisites: IS&T 1750; or Graduate Standing, understanding of management information systems.

BUS 5580 Strategic Management (LEC 3.0)
Study of the formulation and implementation of corporate, business and functional strategies designed to achieve organizational objectives. Case studies and research reports may be used extensively. Prerequisites: MKT 3110 or Eng Mgt 3510, Finance 2150 or Eng Mgt 3200; Senior standing.

BUS 5705 Graduate Management Information Systems Essentials (LEC 1.5)
This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

BUS 5730 Machine Learning and Artificial Intelligence for Business (LEC 3.0)
Explores various approaches to machine learning and artificial intelligence, along with their numerous applications in business. Describes some of the many technological approaches to business problems that are considered part of machine learning and artificial intelligence, such as neural networks and deep learning. Prerequisites: IS&T 1750; or Graduate Standing, understanding of management information systems.

BUS 5805 Graduate Mathematics and Statistics Essentials (LEC 1.5)
This course is an introduction to the essentials of mathematics and statistics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.
BUS 5896 Project Research (IND 0.0-9.0)
The research project will involve students applying research techniques and discipline specific knowledge working on a project designed by the advisor, often working with a business organization. Requires major report and formal presentation to sponsoring organization. Prerequisite: Permission of the instructor.

BUS 5910 Privacy and Information Security Law (LEC 3.0)
Explores issues concerning the use, disclosure, and protection of information (personal, organizational, health, and financial) from a legal perspective. A focus on understanding, planning, protecting, and responding to data breaches and other information risk and threats. Case studies based on litigation are reviewed and analyzed. Assumes MIS familiarity.

BUS 5980 Business Models for Entrepreneurship and Innovation (LEC 3.0)
This course uses problem based learning to expand student insight into the nature, development, and application of business models. It increases the practical skills and knowledge required to generate original models of value creation for both entrepreneurial start-ups and corporate innovation. Prerequisite: Senior or graduate standing.

BUS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

BUS 6001 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

BUS 6099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

BUS 6111 Advanced Business Negotiations (LEC 3.0)
The purpose of this course is to understand the practices and processes of negotiation for negotiating successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. A negotiation project is also required. Prerequisite: Graduate status.

BUS 6121 Teambuilding and Leadership (LEC 3.0)
This class will teach students how to work well in teams and lead teams and organizations. Management, networking, presentation skills, and sustainable business practices will be covered. MBA core. Prerequisite: Graduate standing.

BUS 6150 Advanced Customer Focus and Satisfaction (LEC 3.0)
Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. Individual focused research is included. Prerequisites: MKT 3110 or MKT 3105 or ENG MGT 3510. (Co-listed MKT 6150).

BUS 6224 Managerial Accounting and Control (LEC 3.0)
This course covers managerial accounting and its critical role in decision making, monitoring, and controlling business processes. MBA core. Prerequisite: Graduate standing.

BUS 6245 Supply Chain and Project Management (LEC 3.0)
This course covers supply chain management and its critical role in developing and maintaining effective and efficient processes in the organization, including operations and project management processes and principles. MBA core. Prerequisite: Graduate standing.

BUS 6426 Integration of Business Areas (LEC 3.0)
Students will acquire knowledge to integrate the business functions to maximize performance efficiency and effectiveness. It will be covered through case studies and readings. MBA core. Prerequisite: Graduate standing.

BUS 6622 International Marketing (LEC 3.0)
This course focuses on the challenges faced by business managers as they deal with a competitive global market. The course will examine various topics related to international marketing such as cultural differences, economic differences, differences in product and technical standards, global advertising, and international pricing and segmentation. MBA core. Prerequisite: Graduate standing.

BUS 6675 Advanced International Business (LEC 3.0)
Business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Research project required. Prerequisites: MKT 3110 or MKT 5105 or Eng Mgt 3510.

BUS 6723 Artificial Intelligence, Robotics, and Information Systems Management (LEC 3.0)
The course, designed for business executives, covers management of information to revitalize business processes, improve business decision-making, embrace emerging and disruptive technologies, and gain competitive advantages. The course also covers implications of AI, automation, machine learning, and robotics on business and society. MBA core. Prerequisite: Graduate standing.

BUS 6827 Managerial Finance (LEC 3.0)
This course covers the use of financial tools to manage the organization. The main focus is the strategic decision-making process of modern managers responsible for major financial decisions. Topics include financial policy, capital investment analysis, dividend policy, capital structure, and other contemporary corporate finance issues. MBA core. Prerequisite: Graduate standing.

BUS 6887 Research Methods in Business and IS&T (LEC 3.0)
This course covers quantitative and qualitative research methods for exploring the interaction between people and information technologies. The course covers techniques and tools for carrying out literature reviews, forming research goals, designing research, conducting data analyses; and preparing manuscripts and live presentations. (Co-listed with IS&T 6887).
Ceramic Engineering (CER ENG)

CER ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CER ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CER ENG 5002 Cooperative Training (IND 1.0-3.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted at work supervisor’s evaluation.

CER ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CER ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CER ENG 5115 X-Ray Diffraction Analysis (LEC 2.0 and LAB 1.0)
Theory and practical aspects of x-ray diffraction analysis are covered including diffraction theory, qualitative and quantitative analysis techniques, electronic databases, and operation of modern powder diffractometers. Students cannot receive credit for both Cer Eng 3417 and Cer Eng 5115. Prerequisite: Preceded or accompanied by Cer Eng 3410.

CER ENG 5220 Advanced Mechanical Properties of Ceramics (LEC 3.0 and LAB 1.0)
An advanced course to treat the theory and testing practice related to design based on the mechanical properties of ceramics. The course also includes a laboratory consisting of experiments for the characterization of the mechanical properties of ceramics. Prerequisites: Graduate standing.

CER ENG 5230 Glass Science And Engineering (LEC 3.0)
The development, manufacturing methods, applications, and properties of flat, fiber, container, chemical, and special purpose glasses. Composition/property relationships for glasses and nucleation-crystallization processes for glass-ceramics are also covered. Prerequisite: "C" or better grade in Cer Eng 2120.

CER ENG 5250 Refractories (LEC 3.0)
The manufacture, properties, uses, performance, and testing of basic, neutral and acid refractories. Prerequisite: Cer Eng 3230.

CER ENG 5260 Dielectric And Electrical Properties Of Oxides (LEC 3.0)
The processes occurring in inorganic materials under the influence of an electric field are considered from basic principles. Emphasis is placed on application to real systems. Prerequisite: "C" or better grade in Cer Eng 4210.

CER ENG 5310 Advanced Ceramic Processing (LEC 3.0)
Materials, processing and design of microelectronic ceramics are covered. Introduction to devices, triaxial ceramics, high aluminas, tape fabrication, metallizations, thick film processing and glass-to-metal seals. Prerequisites: Cer Eng 3210 & 3325.

CER ENG 5380 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Met Eng 5810).

CER ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CER ENG 6001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CER ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CER ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

CER ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CER ENG 6220 Optical Properties Of Materials (LEC 3.0)
The objective of this course is to give the student a fundamental understanding of the structure-optical property relationships exhibited by isotropic and anisotropic materials. Topics will include the wave/particle nature of light, how light interacts with materials, color, and applications such as lasers, fiber optic communication systems, electro-optics, and integrated optics. Prerequisites: Physics 2135 or 2111 and Math 2222.
CHEM ENG 6230 Composite Materials (LEC 3.0)
The objective of this course is to give the students an understanding of the processing, design, and mechanical behavior of composite materials. The course will treat both fiber reinforced and laminate-based composites with an emphasis on the macromechanical behavior of these composites with respect to their architecture. Prerequisite: Graduate Standing.

CHEM ENG 6240 Advanced Topics On The Vitreous State (LEC 3.0)
Modern aspects of the structure and dynamics of inorganic vitreous materials will be reviewed and applied towards understanding the macroscopic properties of glasses. Prerequisite: Graduate standing.

CHEM ENG 6260 Advanced Electrical Properties of Ceramics (LEC 3.0 and LAB 1.0)
The application of ceramic chemistry and physics to the development and evaluation of electronic, dielectric, magnetic, and optical properties. Emphasis is placed on the relationships between properties and crystal structure, defects, grain boundary nature, and microstructure. Prerequisite: Grade of "C" or better in Physics 2305.

CHEM ENG 6310 Sintering And Microstructure Development (LEC 3.0)
Theory and practice of densification, microstructure evolution, effect of processing and material factors, grain boundary migration, grain growth. Prerequisite: Graduate standing.

CHEM ENG 6410 Advanced Integrated Computational Materials Engineering (LEC 2.0 and LAB 1.0)
Students will learn of different computational tools for studying materials at different length scales. The bridging between different modeling scales will be discussed. This course has a computational laboratory to build models and run simulations. Students will complete a final project by integrating two length-scale models. Prerequisite: A grade of "B" or better grade in Math 3304.

Chemical Engineering (CHEM ENG)

CHEM ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

CHEM ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM ENG 5100 Intermediate Transport Phenomena (LEC 3.0)
The similarities of flow of momentum, heat and mass transfer and the applications of these underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5110 Intermediate Chemical Reactor Design (LEC 3.0)
A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Chem Eng 3150 or graduate standing.

CHEM ENG 5120 Interfacial Phenomena In Chemical Engineering (LEC 3.0)
The course deals with the effects of surfaces on transport phenomena and on the role of surface active agents. Topics include fundamentals of thermodynamics, momentum, heat and mass transfer at interfaces and of surfactants. Some applications are included. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5130 Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Eng Mgt 4312).

CHEM ENG 5140 Intermediate Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Methods to design safety systems or alter the chemical process to reduce or eliminate the risks are covered. Prerequisite: Graduate Standing.

CHEM ENG 5150 Intermediate Chemical Process Flowsheeting (LAB 1.0 and LEC 2.0)
The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Projects on special topics and presentations related to the course materials will be included. Prerequisite: graduate standing.

CHEM ENG 5160 Intermediate Molecular Engineering (LEC 3.0)
Molecular aspects of chemical thermodynamics, transport processes, reaction dynamics, and statistical and quantum mechanics. Prerequisites: Chem Eng 3120 or graduate standing.

CHEM ENG 5170 Physical Property Estimation (LEC 3.0)
Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Chem Eng 3130 or graduate standing.
CHAPTER 590 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 4110 or Elec Eng 3320 or Elec Eng 3340 or graduate standing. (Co-listed with Elec Eng 5350).

CHEM ENG 5200 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 5210, MS&E 5310).

CHEM ENG 5210 Intermediate Biochemical Reactors (LEC 3.0)
Application of chemical engineering principles to biochemical reactors. Emphasis on cells as chemical reactors, enzyme catalysis and production of monoclonal antibodies. Projects on special topics and presentations related to the course materials will be included. Prerequisite: Preceded or accompanied by Chem Eng 3150 or graduate standing.

CHEM ENG 5220 Intermediate Engineering Thermodynamics (LEC 3.0)
Review thermodynamic principles for pure fluids and mixtures. Emphasis on applications for the chemical industry and use of fundamental relations and equations of state. Prerequisite: Senior or graduate standing.

CHEM ENG 5241 Intermediate Process Safety in the Chemical and Biochemical Industries (LEC 3.0)
This course covers risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Chem Eng 3150 or graduate standing.

CHEM ENG 5250 Isolation and Purification of Biologicals (LEC 3.0)
Isolation and purification of biologicals with emphasis on biopharmaceuticals. Principles and applications of chromatography, lyophilization, and product formulation. Use of ultrafiltration and diafiltration in the processing of protein products. Disposable technology. Prerequisites: Chem Eng 3131 and Chem Eng 3141.

CHEM ENG 5300 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Physics 4523, Met Eng 5810, Cer Eng 5810).

CHEM ENG 5305 Hazardous Materials Management (LAB 1.0 and LEC 2.0)
Major themes: hazard indentification and characterization; safety, health and environmental management; and the protection of safety, health and environment. Students will have an understanding of work place and environmental hazards in order to be able to facilitate their management and control. The course will include an intensive 30 hour hands-on workshop. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5310 Structure And Properties Of Polymers (LEC 3.0)
A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5320 Introduction to Nanomaterials (LEC 3.0)
Introduction to the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Prerequisite: Chem Eng 2300, or Met Eng 1210 or Chem 1320.

CHEM ENG 5330 Alternative Fuels (LEC 3.0)
Global energy outlook and available resources are discussed. Alternative energy options and their technologies are covered. Associated environmental concerns and technology are assessed. Special emphases are placed on renewable energies, transportation fuels, energy efficiencies, and clean technologies. Prerequisite: Chem Eng 3130 or senior or graduate standing.

CHEM ENG 5340 Principles Of Environmental Monitoring (LEC 3.0)
This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 3100 and Physics 2135, or graduate standing.

CHEM ENG 5350 Environmental Chemodynamics (LEC 3.0)
Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 6010 Graduate Seminar (RSD 1.0-3.0)
Discussion of current topics. One of these topics will be expanded to write an in depth report. Prerequisites: Graduate standing.
CHEM ENG 6015 Lecture Series (LEC 1.0)
Attendance of lecture series and submission of in-depth report on one of the covered topics is required for a grade. The course can be taken multiple times for a grade, with the same requirement each time, and up to three times to be counted for 6000 level course requirement. Prerequisites: Graduate standing.

CHEM ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus Ph.D. students may be processed during intersession. Off-campus Ph.D. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CHEM ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

CHEM ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CHEM ENG 6100 Advanced Chemical Engineering Thermodynamics (LEC 3.0)
Extension of thermodynamic principles as applied to nonideal systems. Use of existing thermodynamic data and correlations with emphasis on applications of chemical engineering problems in energy, mass and momentum transfer.

CHEM ENG 6110 Advanced Transport Phenomena (LEC 3.0)
Course is concerned with all aspects of transport phenomena. Complete expressions for heat, mass and momentum transfer in all three coordinate systems are applied under both laminar and turbulent conditions. Prerequisite: Chem Eng 5100.

CHEM ENG 6120 Applied Mathematics In Chemical Engineering (LEC 2.0 and LAB 1.0)
An introduction to numerical methods for ordinary and partial differential equations arising in chemical engineering, bioengineering, and environmental engineering applications. Topics include finite difference and finite element methods; other numerical and analytical methods if time permits.

CHEM ENG 6140 Applied Optimization In Chemical Engineering (LEC 3.0)
An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

CHEM ENG 6150 Molecular Modeling and Simulation (LEC 3.0)
Study of molecular-based modeling and simulation methodologies and their connections with each other and to multiscale modeling and other engineering approaches. Molecular Dynamics, Monte Carlo, Brownian Dynamics, statistical mechanics, and application cases in engineering and science are included. Prerequisite: Chem Eng 6100.

CHEM ENG 6180 Advanced Applications of Computational Fluid Dynamics (LEC 3.0)
Advanced applications of CFD analyses is presented to investigate mass, momentum and heat transport in complex geometries with general initial and boundary conditions. Students will gain practical experience using commercial CFD codes and learn and apply a general algorithm for solving challenging industrial problems using tutorials. Prerequisites: Chem Eng 4150 and Chem Eng 5100.

CHEM ENG 6190 Advanced Transport Phenomena (LEC 3.0)
An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

CHEM ENG 6200 Advanced Transport Phenomena (LEC 3.0)
An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

CHEM ENG 6300 Biomaterials I (LEC 3.0)
Introductions to biocompatibility and biomaterials, tissue interactions with biomaterials, and tissue augmentation, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with BIO SCI 6210, MS&E 6310).

CHEM ENG 6310 Nanomaterials (LEC 3.0)
Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include synthesis, properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with MS&E 6230).

CHEM ENG 6320 Advanced Transport Phenomena (LEC 3.0)
Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include synthesis, properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with MS&E 6230).

CHEM ENG 6330 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env Eng 6611 and Civ Eng 6611).

Chemistry (CHEM)

CHEM 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 1100 or an equivalent training program approved by S&T. Consent of instructor required.

CHEM 5001 Special Topics (LEC 1.0 and LAB 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
CHEM 5099 Master Research (IND 0.0-6.0)
Master level research with the intent to lead to the preparation of a master degree thesis. Not more than six (6) credit hours allowed for graduate credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report culminating in a thesis is required of the student. Prerequisite: Must meet departmental training requirements for laboratory safety. Consent of instructor required.

CHEM 5100 Laboratory Safety & Hazardous Materials (LEC 1.0)
A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies. Prerequisites: Graduate standing.

CHEM 5210 Fundamentals of Organic Reactions (LEC 3.0)
An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Graduate students are required to demonstrate a higher level of learning on assessments. Prerequisite: Chem 2220.

CHEM 5220 Synthetic Organic Chemistry (LEC 3.0)
A systematic study of organic reactions, their mechanisms and synthetic applications. Graduate students are expected to demonstrate a higher level of proficiency during assessments. Prerequisite: Chem 2220.

CHEM 5250 Industrial Chemical Processes (LEC 3.0)
Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 3130 or Chem 2210, or graduate standing. (Co-listed with Chem Eng 5096).

CHEM 5310 Introduction to Inorganic Chemistry (LEC 3.0)
A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates. Graduate students are required to demonstrate a higher level of proficiency during assessments.

CHEM 5410 Advanced Chemical Thermodynamics (LEC 3.0)
A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Credit will not given for both Chem 5410 and Chem 4410. Prerequisites: Chem 3420.

CHEM 5420 Elemental Quantum Chemistry (LEC 3.0)
A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 2222; Physics 2135 or Physics 2111.

CHEM 5430 Advanced Chemical Kinetics (LEC 3.0)
Introductory graduate treatment of special topics of physical chemistry including statistical mechanics and kinetics. Prerequisites: Chem 3430.

CHEM 5510 Introduction to Chemical Analysis (LEC 3.0 and LAB 1.0)
Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Graduate students are expected to achieve a higher level of proficiency on application and assessments compared to Chem 4510 students. Prerequisites: Chem 1100, Chem 2510, Chem 2220, Chem 3430.

CHEM 5520 Biochemical Metabolism (LEC 3.0)
A continuation of Chem 5610. Catabolism and anabolism of carbohydrates, lipids, proteins, and nucleic acids. Photosynthesis, oxidative phosphorylation and membranes. Credit may not be given for both Chem 5620 and Chem 4620. Prerequisite: Chem 4610 or 5610.

CHEM 5530 Biochemical Nanotechnology (LEC 3.0)
This course will educate on the interdisciplinary areas of bio-nanotechnology. Student will investigate the potential of nanoscience in advanced applications including DNA/protein nanotechnology, drug delivery, environmental biosensor and emerging biotechnology industries. Credit may not be given for both Chem 5630 and Chem 4630. Prerequisite: At least junior standing.

CHEM 5540 Molecular Spectroscopy (LEC 3.0)
Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Graduate students are expected to achieve a higher level of proficiency on application and assessments compared to Chem 4510 students. Prerequisites: Chem 1100, Chem 2510, Chem 2220, Chem 3430.

CHEM 5610 Biochemistry (LEC 3.0)
A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Credit may not be given for both Chem 5610 and Chem 4610. Prerequisite: Chem 2220.

CHEM 5619 Biochemistry Laboratory (LAB 2.0)
Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Credit may not be given for both Chem 5619 and Chem 4619. Prerequisites: Preceded or accompanied by Chem 5610 and Chem 1100 or an equivalent training program approved by S&T.

CHEM 5620 Biochemical Nanotechnology (LEC 3.0)
A systematic study of organic reactions, their mechanisms and synthetic applications. Graduate students are expected to demonstrate a higher level of proficiency during assessments. Prerequisite: Chem 2220.

CHEM 5630 Biochemical Metabolism (LEC 3.0)
A continuation of Chem 5610. Catabolism and anabolism of carbohydrates, lipids, proteins, and nucleic acids. Photosynthesis, oxidative phosphorylation and membranes. Credit may not be given for both Chem 5620 and Chem 4620. Prerequisite: Chem 4610 or 5610.

CHEM 5640 Molecular Biology (LEC 3.0)
A systematic study of organic reactions, their mechanisms and synthetic applications. Graduate students are expected to demonstrate a higher level of proficiency during assessments. Prerequisite: Chem 2220.
CHEM 5819 Polymer Synthesis and Characterization Lab (LAB 1.0)
Laboratory experiments dealing with polymerization syntheses and solution, bulk and solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Credit may not be given for both Chem 5819 and Chem 4819. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810 or Chem Eng 5310, preceded or accompanied by Chem 1100 or Chem 5100 or an equivalent training program approved by S&T. (Co-listed with MS&E 5819).

CHEM 5850 Introduction to Coating Chemistry (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Credit may not be given for both Chem 5850 and Chem 4850. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with MS&E 5850).

CHEM 6000 Special Problems (IND 0.0-6.0)
Problems or reading on specific subjects or projects in the department. Consent of instructor required.

CHEM 6001 Special Topics (LEC 0.0 and IND 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM 6010 Seminar (RSD 1.0)
Discussion of current topics.

CHEM 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CHEM 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

CHEM 6101 Introduction to Chemistry Research (LEC 1.0)
An introduction to chemical research topics of interest to the department presented by different faculty members. Special emphasis will also be placed on a discussion of ethics, plagiarism, codes of conduct, research notebooks, publishing, and presentations. Prerequisite: Graduate Student Status.

CHEM 6200 Advanced Synthetic Organic Chemistry (LEC 3.0)
A discussion of a large number of synthetically useful reactions involving enolates and enamines; nucleophilic additions to carbonyl compounds; functional group interconversions, thermal pericyclic reactions; organometallic compounds; carbocations, carbenes and free radicals as reactive intermediates; aromatic substitutions; and multistep synthesis. Prerequisite: Chem 4210 or Chem 4220.

CHEM 6240 Physical Organic Chemistry (LEC 3.0)
An advanced course in theoretical organic chemistry treating molecular orbital theory, free energy relationships, transition state theory, and other fundamental topics. Prerequisite: Chem 4210.

CHEM 6250 Spectrometric Identification of Organic Compounds (LEC 3.0)
Overview of MS and IR techniques in the characterization of organic compounds; CD/ORD; 1H, 13C, and heteronuclear NMR spectroscopy in the structural analysis; applications of APT, DEPT, 1H-1H COSY, HETCOR, HMOC, HMBC, INADEQUATE, TOCSY, NOE AND NOESY, and dynamic NMR. Prerequisite: Chem 2220.

CHEM 6320 Solid State Chemistry (LEC 3.0)
The aim of this course is to build a comprehensive understanding of the chemistry of solids and its application to the materials world. Emphasis will be given on the synthesis, crystal structure and various properties of solids including electrical, optical and magnetic. Students will gain knowledge about how to correlate a property with structure. Prerequisites: Chem 2310, Chem 2320, and Chem 3410.

CHEM 6330 Nanomaterials Synthesis, Properties and Applications (LEC 3.0)
Chemistry of nanomaterials. Understanding the fundamentals of nanoscience and technology. Studying the different synthesis strategies for nanomaterials and their characterization. Understanding the properties of nanomaterials and their possible applications. Introducing the concept for device fabrication. Prerequisite: Chem 4310.

CHEM 6350 X-ray Crystallography (LAB 2.0 and LEC 2.0)
Molecular and crystal structure determination by single crystal x-ray diffraction methods. Brief coverage of relation to neutron and electron diffraction.

CHEM 6360 Bioorganic Chemistry (LEC 3.0)
Metallobiomolecules, including metalloenzymes and other metalloproteins; oxygen carriers; iron transport and other iron proteins; copper proteins; cancer agents and cures; nitrogen-fixation, etc. Prerequisite: Chem 4310.

CHEM 6380 Inorganic Materials Chemistry (LEC 3.0)
Chemical processing of solid materials. Introduction to point groups, space groups, and x-ray diffraction. Bonding in solids - from molecular orbital theory to band theory. Nonstoichiometric materials and Kroger-Vink notation. Optical and electrical properties of semiconductors. Epitaxial growth. Quantum effects in nanophase materials. Prerequisite: Chem 4310 or permission of instructor.
CHEM 6420 Quantum Chemistry I (LEC 3.0)
A rigorous introduction to the fundamental concepts and principles of quantum chemistry. Application to translational, vibrational, and rotational motion; one-electron systems. Prerequisite: Chem 3420 or equivalent.

CHEM 6430 Chemical Kinetics (LEC 3.0)
An introduction to the deduction of mechanisms of homogeneous chemical reactions from rate-data. Selected topics, such as photochemistry, free-radical mechanisms, catalysis, and explosion reactions. Prerequisite: Chem 3430.

CHEM 6450 Spectroscopy (LEC 3.0)
Introduction to the interaction of electromagnetic radiation with matter. Emphasis on the ultraviolet, visible, and radio portions of the spectrum. Prerequisite: Chem 3450 or equivalent.

CHEM 6480 Physical Chemistry Of Surfaces (LEC 3.0)
Adsorption at liquid interfaces and properties of surface films. Physical and chemical adsorption on solid surfaces. Catalysis.

CHEM 6510 Separations (LEC 3.0)
An in-depth study of all types of analytical and preparativescale separations. A special emphasis will be placed on chromatography and chromatographic theory. Prerequisite: Chem 4510 or equivalent.

CHEM 6550 Chemical Spectroscopy (LEC 3.0)
A study of the electronic, vibrational, rotational and nuclear magnetic resonance spectra of atoms and molecules. A basic understanding of the underlying theoretical principles and the interpretations of results is stressed. Prerequisite: Chem 4510, Chem 3420 or equivalent courses.

CHEM 6555 Principles And Applications Of Mass Spectrometry (LEC 3.0)
The course covers fundamental physical principles of mass spectrometry, instrumentation, interpretation of spectra, and applications in environmental, polymer, biomedical, and forensic fields. Prerequisite: Chem 4510 or equivalent.

CHEM 6570 Electrochemistry (LEC 3.0)
Introduction to the fundamentals, methods and applications of electrochemistry. Fundamentals cover the thermodynamics/kinetics of electrode reactions, and the modes of mass transport in the electrolyte. Methods cover potentiometric, amperometric, and a.c. techniques. Applications focus on analysis and study of materials. Prerequisite: Chem 3430.

CHEM 6580 Mass Spectrometry of Macromolecules (LEC 3.0)
This course will provide an overview of mass spectrometric applications in biomacromolecules and synthetic polymers; particular areas of emphasis are proteomics, genomics, pharmaceutical screening, characterization of biochemical complexes and synthetic polymers. Prerequisite: Chem 4510 or equivalent.

CHEM 6620 Intermediary Metabolism And Biosynthesis (LEC 3.0)
The course covers the biosynthesis and metabolism of nucleic acids, carbohydrates, lipids and proteins. Prerequisite: Chem 4620.

CHEM 6650 Free Radicals In Biochemistry (LEC 3.0)
The study of the basic principles of free radical chemistry and biochemistry. Prerequisites: Chem 2210, Chem 2220 and Bio Sci 2113.

CHEM 6680 Polymer Synthesis (LEC 3.0)
The methods of organic monomer and polymer syntheses will be explored. Mechanistic and structural components, modern and current industrial methods for polymer syntheses will be discussed. Topics include linear, branched, graft, and dendritic polymers, nano-technology and macromers. Prerequisites: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with MS&E 6820).

CHEM 6840 Polymer Physical Chemistry and Analysis (LEC 3.0)
A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; thermodynamics. (Co-listed with MS&E 6840).

Civil Engineering (CIV ENG)

CIV ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 5010 Seminar (LEC 1.0)
Discussion of current topics. Prerequisite: Senior standing.

CIV ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Comp Eng 5070, Elec Eng 5070).

CIV ENG 5112 Bituminous Materials (LEC 2.0 and LAB 1.0)
Properties, types, and grades of bituminous materials are presented. Emphasis is placed on usage, distress, surface treatment design, and asphalt concrete mix properties, behavior, design manufacture, and construction. Prerequisite: Preceded or accompanied by Civ Eng 3116.

CIV ENG 5113 Composition And Properties Of Concrete (LEC 3.0)
Properties of plastic and hardened concrete and the influence of cements, aggregates, water and admixtures upon these properties. The microstructure of cement gel and other factors are related to the behavior of hardened concrete under various types of loading and environments, drying shrinkage, creep and relaxation, fatigue, fracture, and durability. Introduction to statistical quality control of concrete production. Prerequisite: Civ Eng 3116 with a grade of "C" or better.
CIV ENG 5117 Asphalt Pavement Design (LEC 3.0)
Structural design of flexible pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 3116 with a grade of "C" or better.

CIV ENG 5118 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior Standing and Math 3304. (Co-listed with Aero Eng 5229, Mech Eng 5229 and Elec Eng 5270).

CIV ENG 5156 Concrete Pavement Design (LEC 3.0)
Design of rigid pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 3116 with a grade of "C" or better.

CIV ENG 5203 Applied Mechanics In Structural Engineering (LEC 3.0)
A study of the basic relationships involved in the mechanics of structures. Topics include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge, building floors, and shell roofs. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5203).

CIV ENG 5205 Structural Analysis II (LEC 3.0)
Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 3201 or Arch Eng 3201. (Co-listed with Arch Eng 5205).

CIV ENG 5206 Low-Rise Building Analysis and Design (LEC 3.0)
Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ -Arch Eng 3210 or Civ-Arch Eng 3220. (Co-listed with Arch Eng 5206).

CIV ENG 5207 Computer Methods of Structural Analysis (LEC 3.0)
Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5207).

CIV ENG 5208 Structural Dynamics (LEC 3.0)
This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: Mech Eng 2350 or equivalent; Civ/Arch Eng 3201 or equivalent. (Co-listed with Arch Eng 5208).

CIV ENG 5210 Advanced Steel Structures Design (LEC 3.0)
The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 3210 with a grade of "C" or better. (Co-listed with Arch Eng 5210).

CIV ENG 5220 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Civ Eng 3220 with a grade of "C" or better. (Co-listed with Arch Eng 5220).

CIV ENG 5222 Prestressed Concrete Design (LEC 3.0)
Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Civ Eng 3220 with a grade of "C" or better. (Co-listed with Arch Eng 5222).

CIV ENG 5231 Infrastructure Strengthening with Composites (LEC 3.0)
The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Civ Eng / Arch Eng 3201, Civ Eng / Arch Eng 3220. (Co-listed with Arch Eng 5231).

CIV ENG 5250 Air Transportation (LAB 1.0 and LEC 2.0)
Runway configuration, airfield capacity, geometrics and terminal layout and design. Aircraft performance; navigation and air traffic control; airport planning and design; airline operations; aviation systems planning. Prerequisite: Civ Eng 3500 with a grade of "C" or better.

CIV ENG 5260 Analysis And Design Of Wood Structures (LEC 3.0)
A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Civ Eng 3201 with grade of "C" or better. (Co-listed with Arch Eng 5260).
CIV ENG 5270 Structural Masonry Design (LEC 3.0)
Review of the theory and practice of analyzing low-rise masonry structures, materials and assembly types, constructability considerations, structural masonry components, repair and strengthening, and model code requirements to ensure adequate load resisting buildings. Prerequisites: Arch Eng 3201 or Civ Eng 3201. (Co-listed with Arch Eng 5270).

CIV ENG 5330 Unsteady Flow Hydraulics (LEC 3.0)
The study of unsteady flow and its effect on closed water systems and in open channels. Prerequisites: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5331 Hydraulics Of Open Channels (LEC 3.0)
The phenomena accompanying the flow of water in open channels, such as uniform and varied flow, critical conditions, backwater curves, hydraulic jump, hydraulic drop and applications are studied in detail. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5332 Transport Processes in Environmental Flows (LEC 3.0)
Dynamics, mixing and contaminant transport in surface water bodies, including rivers and lakes. Buoyancy modifications to the mixing and dynamics of pollutant discharges and surface water bodies. Transport of sediments. Exchange processes at the air/water and sediment/water interfaces. Prerequisite: At least a "C" in Civ Eng 3330.

CIV ENG 5333 Intermediate Hydraulic Engineering (LEC 3.0)
Application of fluid mechanics principles to the design. Kinematics of fluid motion, conservation of mass, linear and angular momentum, and energy. Requirements for similarity of fluid flow. Introduction to dynamics of fluid flows and viscous incompressible flows. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5335 Water Infrastructure Engineering (LAB 1.0 and LEC 2.0)
Fundamental principles underlying comprehensive water infrastructure development; sanitary sewers, sanitary treatment facilities, stormwater sewers, stormwater detention, water power development, and hydraulic structures. The student is responsible for the planning and design of a water infrastructure development project. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5337 River Mechanics And Sediment Transport (LEC 3.0)
Formation of rivers and the laws governing river regulation and improvements, including navigation and flood protection. Principles governing sediment transport. Prerequisite: Civ Eng 3330 with a grade of "C" or better.

CIV ENG 5338 Hydrologic Engineering (LEC 3.0)
A study of current up-to-date hydrologic techniques involving design of hydrologic input for bridges, culverts, reservoirs. Techniques involve extreme value statistics, model hydrographs, routing, etc. Prerequisite: Civ Eng 3334 with a grade of "C" or better.

CIV ENG 5360 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal/systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 3333, 3335, 3615. (Co-listed with Env Eng 5360).

CIV ENG 5404 Legal Aspects Of Boundary Surveying (LEC 3.0)
The U.S. Public Land Survey System (USPLSS): original GLO survey instructions and procedures. Resurveys on the USPLSS law, standards, procedures with emphasis on Missouri. Rights in real property; statute, case and administrative law applied to boundaries. Simultaneous and sequence conveyances. Unwritten rights in real property. Riparian boundaries. Writing and interpreting boundary descriptions. Land surveyor duties and responsibilities. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5406 Surveying Systems (LEC 3.0)
Celestial observations for azimuths. Introduction to State Plane Coordinate systems. Theory and calculations. Route surveying and geometrics, horizontal, spiral and vertical curves. Surveying aspects of residential and commercial subdivision design: lot layout, rights of way, easements, setbacks, platting, planning and zoning constraints, application of surveying software. Instrumentation: total stations, electronic levels, instrument calibrations. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5441 Professional Aspects Of Engineering Practice (LEC 3.0)
A study of engineering registration laws, regulations, rules of professional responsibility and standards of practice. Review of causative factors of selected failures and their relationship to professional responsibility. Prerequisite: Senior standing.

CIV ENG 5442 Construction Planning and Scheduling Strategies (LEC 3.0)
The goal of this course is to assist participants in gaining an understanding of schedule control techniques and the application of tools such as Primavera Software. Content areas to be addressed include: development of baseline schedules, progress monitoring and updating, recovery schedules, resource application and leveling. Prerequisite: Civ Eng or Arch Eng 4448. (Co-listed with Arch Eng 5442).

CIV ENG 5445 Construction Methods (LEC 3.0)
Introduction to construction planning, selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Civ Eng 4448 with a grade of "C" or better. (Co-listed with Arch Eng 5445).

CIV ENG 5446 Management Of Construction Costs (LEC 3.0)
Management of construction projects from inception to completion: estimates, role of network preplanning, project monitoring and control. Prerequisites: Civ Eng 4448 with a grade of "C" or better. (Co-listed with Arch Eng 5446).
CIV ENG 5448 Green Engineering: Analysis of Constructed Facilities (LEC 3.0)
Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 4448 or Arch Eng 4448; and Junior Standing. (Co-listed with Arch Eng 5448).

CIV ENG 5449 Engineering and Construction Contract Specifications (LEC 3.0)
Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Civ Eng 4448 with a grade of “C” or better. (Co-listed with Arch Eng 5449).

CIV ENG 5510 Geometric Design Of Highways (LEC 2.0 and LAB 1.0)
Development and applications of concepts of geometric design for rural and urban highways. Design controls and criteria; elements of design, including sight distance, horizontal and vertical alignment; cross-section elements; highway types; intersection design elements; types of interchanges and interchange design elements; grade separations and clearance; development of visual elements. Prerequisite: Civ Eng 3500 with grade of “C” or better.

CIV ENG 5513 Traffic Engineering (LEC 3.0)
Driver, vehicle, and roadway characteristics; traffic control devices; traffic studies; intersection capacity, intersection design, traffic safety, and evaluation of traffic improvements. Traffic laws and ordinances, traffic engineering, traffic circulation, parking design, and forecasting traffic impacts. Prerequisite: Civ Eng 3500 with a grade of “C” or better.

CIV ENG 5515 Advanced Traffic Operations and Capacity Analysis (LEC 3.0)
This course will introduce students to advanced traffic operation and capacity analysis as applied to an urban highway network. It will focus on the operations and management of freeway and arterials where a signalized intersection is one of the key elements affecting traffic flow operation and determining highway capacity. Prerequisite: Civ Eng 5513.

CIV ENG 5605 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 2601, Env Eng/Civ Eng 2602 and Env Eng/ Civ Eng 3603; or Graduate standing. (Co-listed with Env Eng 5605).

CIV ENG 5619 Environmental Engineering Design (LEC 2.0 and LAB 1.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 3615 or Env Eng 3615. (Co-listed with Env Eng 5619).

CIV ENG 5630 Remediation of Contaminated Groundwater and Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 3615, Geo Eng 5237 or Graduate Standing. (Co-listed with Env Eng 5630).

CIV ENG 5635 Phytoremediation and Natural Treatment Systems: Science and Design (LEC 3.0)
Students learn the scientific basics of chemical transport in soil and groundwater and learn fundamental plant physiology and processes. Students then learn how these processes are utilized in design of phytoremediation and natural treatment systems, including the most up to date literature and design guidance available. Prerequisites: Civ Eng 3615 or Env Eng 3615.(Co-listed with Env Eng 5635).

CIV ENG 5640 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting), Safe Drinking Water Act, OSGA, TSCA, RCRA, AND CERCLA. Case studies will be emphasized. (Co-listed with Env Eng 5640).

CIV ENG 5642 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 5642 and Arch Eng 5642).

CIV ENG 5650 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 2601 with a grade of “C” or better. (Co-listed with Env Eng 5650).

CIV ENG 5660 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 3330; or graduate standing. (Co-listed with Env Eng 5660).

CIV ENG 5662 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 3330; or graduate standing. (Co-listed with Env Eng 5662).

CIV ENG 5665 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 2601 or Mech Eng 5571 or Graduate Status. (Co-listed with Env Eng 5665 and Arch Eng 5665).
CIV ENG 5670 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 2601 with grade of "C" or better; or graduate standing. (Co-listed with Env Eng 5670).

CIV ENG 5702 Geomatics (LEC 3.0)
Horizontal and vertical geodetic datums and networks. Theory, calculations and applications of State Plane Coordinate Systems. Introduction to Geographic and Land Information Systems: hardware and software issues; data quality and accuracy; resource, environmental, cadastral and governmental applications; databases; GIS/LIS trends. Introduction to Global Positioning Systems (GPS): Project planning, data collection, data processing and network adjustment applications, Kinematic and RealTime GPS applications, hardware and software options and costs. Prerequisite: Civ Eng 2401 with grade of "C" or better.

CIV ENG 5715 Intermediate Soil Mechanics (LEC 3.0)
General principles of soil mechanics and their applications, including mineralogy, soil structure, flow through porous media, shear strength, slope stability and consolidation. Prerequisites: Civ Eng 3715 with grade of "C" or better.

CIV ENG 5716 Geotechnical Earthquake Engineering (LEC 3.0)
Geotechnical earthquake hazards and mitigations, damage to structures, plate tectonics, seismicity, wave propagation, characterization of ground motions, theory of vibrations (1-DOF), effect of local soil conditions on ground response, development of design ground motions, liquefaction, dynamic lateral earth pressures and slope stability/deformation. Prerequisites: Civ Eng 3715 with a grade of "C" or better.

CIV ENG 5729 Foundation Engineering II (LEC 3.0)
Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Civ Eng 4729 with a grade of "C" or better. (Co-listed with Arch Eng 5729).

CIV ENG 5744 Geosynthetics in Engineering (LEC 3.0)
Geotechnical principles are applied to design of geosynthetic systems for foundation support, earth retention, drainage, and disposal of hazardous conventional wastes. Geosynthetic testing and identification. Emphasis is on design of geosynthetic earth reinforcement, roadway stabilization, filters, and waste containment systems. Prerequisite: Civ Eng 3715 with grade of "C" or better.

CIV ENG 5750 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5761 and Geophys 5761).

CIV ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CIV ENG 6001 Special Topics (LAB 1.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CIV ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

CIV ENG 6040 Continuous Registration (IND 0.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

CIV ENG 6050 Continuous Registration (IND 1.0)
Formal investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CIV ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

CIV ENG 6201 Analysis And Design Of Plates And Shells I (LEC 3.0)
Fundamental theories of bending and buckling of plates for practical applications in analysis and design of bridge and building floors, highway and airport pavements, and structural plate components. Shell theory with application to tanks, pressure vessels, shell roofs, and folded plate construction. Prerequisite: Preceded or accompanied by Civ Eng 5207.

CIV ENG 6205 Structural Dynamics and Earthquake Engineering (LEC 3.0)
Behavior of structural materials, elements, and systems under earthquake loads; computer methods for response analysis of lumped and distributed mass models, eigensolution techniques, response spectral analysis, design of 2-D and 3-D seismic resistant structures with current design codes. Prerequisite: Civ/Arch Eng 5208 or equivalent.

CIV ENG 6206 Stochastic Theory of Structural Dynamics (LEC 3.0)

CIV ENG 6207 Finite Element Application in Structural Design (LEC 3.0)
CIV ENG 6208 Analysis Of Nonlinear Structures (LEC 3.0)
Inelastic behavior of structural members and connections; formulation of
various models for steel and reinforced concrete including elasto-plastic,
biaxial, trilinear, Ramberg-Osgood, Cheng-Mertz, and Cheng-Lou; matrix
analysis of 2-D and 3-D building structures for geometric and material
nonlinearity; dynamic and stability analysis. Prerequisite: Preceded or
accompanied by Civ Eng 5207.

CIV ENG 6211 Plastic Analysis And Design Of Metal Structures (LEC 3.0)
Behavior of engineering materials in the inelastic stress range. Analysis
and design of elementary structural members and frames.

CIV ENG 6213 Advanced Design in Steel and Lightweight Structures (LEC 3.0)
A critical evaluation of the theories of design and actual behavior of
metal components and their connections. The basis of the development
of the pertaining codes will be considered. Prerequisite: Preceded or
accompanied by Civ Eng 5207.

CIV ENG 6221 Advanced Behavior Of Reinforced And Prestressed Concrete
(LEC 3.0)
Behavior of reinforced and prestressed concrete sections, members
and wall/shell-type elements subjected to bending, axial load, shear and
torsion. Confinement of concrete. Various truss model theories applicable
to main members and strut-tie model applicable to disturbed regions,
joints, and connections. Prerequisite: Civ Eng 3220 with grade of "C" or
better.

CIV ENG 6331 Advanced Hydraulics And Hydraulic Engineering (LEC 3.0)
Studies in the field of hydraulic engineering to fit the needs of a particular
student or class. Each student makes a complete design of a hydraulic
development in one of the following fields: water power, sanitation, river
and harbor projects. Prerequisite: Civ Eng 3330.

CIV ENG 6335 Hydraulic Structures (LEC 3.0)
Gravity, arch, multiple arch, and buttress dams including appurtenances
such as spillways, penstocks and gates. Latter part of course is designed
to needs of the individual student with applications to river and harbor
structures, canal and irrigation structures, and sewage structures.
Prerequisites: Civ Eng 3220 and 3330.

CIV ENG 6338 Advanced Hydrology (LEC 3.0)
A study of methods used in modern hydrologic analysis and design.
Items of study include hydrograph analysis, maximum possible storm,
infiltration, design flood determination and project feasibility.
Prerequisite: Civ Eng 3333.

CIV ENG 6340 Urban Hydrology (LEC 3.0)
Studies of the influence of urban areas on their hydrology. Special
emphasis on the principles of spatially varied unsteady flow. Model
hydrographs leading toward determination of design storm flow are
utilized to obtain information necessary for design of storm sewers,
channels, and hydraulic structures common to urban areas. Prerequisite:
Civ Eng 3333.
CIV ENG 6600 Chemical Principles In Environmental Engineering (LEC 3.0)
The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Env Eng 6600).

CIV ENG 6601 Biological Principles In Environmental Engineering Systems (LEC 2.0 and LAB 1.0)
Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Env En 6601).

CIV ENG 6602 Environmental Chemistry (LAB 1.0 and LEC 2.0)
This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Env Eng 6602).

CIV ENG 6608 Environmental Engineering Analysis Laboratory (LAB 2.0 and LEC 1.0)
Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 2601 or equivalent, with a grade of "C" or better. (Co-listed with Env Eng 6608).

CIV ENG 6611 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env Eng 6611 and Chem Eng 6330).

CIV ENG 6612 Biological Operations In Environmental Engineering Systems (LEC 3.0)
Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion processes. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Env Eng 6612).

CIV ENG 6617 Industrial And Hazardous Waste Treatment (LAB 1.0 and LEC 2.0)
Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Env En 6671).

CIV ENG 6618 Computer Modeling in Geotechnical Engineering (LEC 3.0)
Survey of computer methods of analyzing and modeling complex geotechnical engineering problems. Computer applications, data analysis, and result interpretations. Topics include constitutive modeling, foundation engineering, seepage, unsaturated flow problem, slope stability analysis, consolidation, excavation, tunneling, and dynamic soil-structure interaction. Prerequisite: Civ Eng 3715 and graduate standing.

CIV ENG 6619 Dynamics of Earth Materials (LEC 3.0)
Theory of vibration, spectral response, site-specific response spectra, detailed design of retaining structures, pile and machine foundations, soil structure interaction. Dynamic soil properties, including degradation of soil properties and liquefaction, seismic slope stability analysis problem solving. Select research topics and use of computer codes. Prerequisite: Preceded or accompanied by Civ Eng 5715.

CIV ENG 6620 Measurement Of Soil Properties (LEC 2.0 and LAB 1.0)
Laboratory determination of soil properties with emphasis on practical. Applications of test data. Tests include classification, atterberg limits, consolidation, compaction, triaxial shear tests with pore pressure measurement, and direct shear tests. Preparation of technical reports. Prerequisites: CIV ENG 3715.

CIV ENG 6621 Advanced Soil Mechanics (LEC 3.0)
Advanced topics and recent advances in theoretical soil mechanics. Topics may include stress distribution, failure theories, shear failure in ideal soils, consolidation and settlement, physico-chemical properties, and clay mineralogy. Prerequisite: Civ Eng 5715.

CIV ENG 6622 Soil Stabilization (LEC 3.0)
The application of mineralogical and physicochemical principles to soil stabilization problems and stabilization techniques for highway and foundation applications. Prerequisite: Civ Eng 5715.

CIV ENG 6623 Earth Dams And Related Problems (LEC 3.0)
The exploration for and selection of site and materials, seepage analysis, slope stability and design, embankment design, compaction, instrumentation and construction operations as they pertain to earth and rockfill dams. Prerequisite: Civ Eng 5715.

CIV ENG 6624 Foundation Engineering III (LEC 3.0)
A critical study of modern concepts of foundation engineering including current procedure for the application of soil mechanics principles to the design of foundations, embankments and retaining structures. Case histories will be emphasized with the student making successive design decisions.

CIV ENG 6625 Inca Civilization Geotechnical Engineering Practices (LEC 3.0)
An in-depth study of geotechnical engineering practices in the mountains of Peru, including the Cuzco-Machu Picchu corridor, with emphasis on the inter-relationships between tectonics, geology, geomorphology, climate, hydrology, agriculture, quarrying, construction practices, irrigation, culture and history. A week-long field trip to Peru during Spring Break is required at student's expense. Prerequisite: Geo Eng 1150 or Civ Eng 3715 or Geo Eng 5471 or equivalent; Graduate standing. (Co-listed with Geo Eng 6407).
CIV ENG 6801 Advanced Concrete Science and Technology (LEC 3.0)
The course covers advanced notions of concrete science and technology. It
discusses various aspects related to cement manufacturing, cement
hydration and microstructure, use of supplementary cementitious
materials and chemical admixtures, rheology and workability, mechanical
properties, dimensional stability, durability, and sustainability of concrete.
Prerequisites: Civ Eng 5113 or equivalent; or consent of the instructor
with Graduate Standing. (Co-listed with Arch Eng 6801).

CIV ENG 6940 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy
and management of scientific research, particularly issues related
to ethics, plagiarism, ownership of intellectual properties, research
techniques, technical presentations and time management. The course
will address these issues by integrating with case studies. (Co-listed with
Chem Eng 6340, IDE 425, Env Eng 6940, Elec Eng 6810, Comp Eng 6810).

Computer Engineering (COMP ENG)

COMP ENG 5000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

COMP ENG 5001 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a
new course. Variable title.

COMP ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for
on-campus M.S./Ph.D. students may be processed during intersession.
Off-campus M.S. students must be enrolled in oral examination and
must have paid an oral examination fee at the time of the defense/
comprehensive examination (oral/ written). All other students must enroll
for credit commensurate with uses made of facilities and/or faculties. In
no case shall this be for less than three (3) semester hours for resident
students.

COMP ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using
course objectives to design a course; communication using traditional
and cutting-edge media; textbook selection; assessment of student
learning; grading; student learning styles; cooperative/active learning;
and student discipline. Prerequisite: Graduate standing. (Co-listed with
Eng Mgt 5070, Env Eng 5070, Elec Eng 5070, Civ Eng 5070).

COMP ENG 5099 Special Research And Thesis (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a
thesis or dissertation. Prerequisite: Consent of the instructor required.

COMP ENG 5110 Principles of Computer Architecture (LEC 3.0)
Principles of performance measurement and instruction set design;
advanced issues in pipelining; instruction level parallelism (dynamic
scheduling, branch prediction, multi-issue processors); memory
hierarchies for superscalar processors; multiprocessors; multi-threading;
storage systems; and interconnection networks. Prerequisite: Comp Eng
3110.

COMP ENG 5120 Digital Computer Design (LEC 3.0)
Organization of modern digital computers; design of processors, memory
systems and I/O units, hardware-software tradeoffs in different levels of
computer system design. Prerequisites: COMP ENG 3150 and COMP ENG
3151.

COMP ENG 5130 Advanced Microcomputer System Design (LEC 3.0)
The design of digital systems based on advanced microprocessors.
Introduction to microcomputer logic development systems. I/O
interfaces. Assembly and high level language tradeoffs. Hardware and
software laboratory projects required. Prerequisites: COMP ENG 5110.

COMP ENG 5151 Digital Systems Design Laboratory (LAB 1.0 and LEC 2.0)
Experimental studies of problems with high speed digital signals in
circuits. Student designs, wires, tests, and programs a microprocessor
based single board computer project. A FPGA design is programmed and
tested. Prerequisites: COMP ENG 3150 or 5110.

COMP ENG 5160 Embedded Processor System Design (LEC 3.0)
Development of hardware and software for embedded systems, including
real-time operating systems, advanced programming, communication
schemes, hardware peripherals and sensors, control methodologies,
printed-circuit board design, interrupts, microcontrollers, and hardware-
software co-design. One or more team design projects. Prerequisites:
COMP ENG 3150 or equivalent or 80x51 processor experience.

COMP ENG 5170 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as
R-T operating systems, with an emphasis on scheduling algorithms.
The course also includes specification, analysis, design and validation
techniques for R-T systems. Course includes a team project to design an
appropriate R-T operating system. Prerequisites: COMP ENG 3150 or
COMP SCI 3800. (Co-listed with Comp Sci 5205).

COMP ENG 5210 Introduction To VLSI Design (LEC 3.0)
An introduction to the design and analysis of digital integrated circuits
(ICS). Topics include basic manufacturing techniques, transistor-level
design and analysis of logic and memory circuits, logic timing, and
parasitics. Computer aided design tools are used to develop circuits in
the lab. Prerequisites: Elec Eng 2200 and Comp Eng 2210.

COMP ENG 5220 Digital System Modeling (LEC 3.0)
Digital system modeling for simulation, synthesis, and rapid system
prototyping. Structural and behavioral models, concurrent and sequential
language elements, resolved signals, generics, configuration, test
benches, processes and case studies. Prerequisite: Comp Eng 2210 with
a grade of "C" or better.

COMP ENG 5230 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical
computing. Topics include characteristics of optical devices; optical
implementations of memory, logic elements, and processors; and
computational structures. Prerequisite: Comp Eng 2210 or equivalent.
(Co-listed with Elec Eng 5250).
COMP ENG 5310 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Elec Eng 5310 and Sys Eng 5211).

COMP ENG 5410 Introduction to Computer Communication Networks (LEC 3.0)
Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internetworking. A modeling tool is used for network design and simulation. Prerequisites: Comp Eng 3150 or computer hardware competency and Stat 3117 or Stat 3115 or Stat 5643 or equivalent.

COMP ENG 5420 Introduction to Network Security (LEC 3.0)
This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Comp Eng 5410 or Comp Sci 5600.

COMP ENG 5430 Wireless Networks (LEC 2.0 and LAB 1.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 3420 or Comp Eng 3150 and graduate standing. (Co-listed with Elec Eng 5430 and Sys Eng 5323.)

COMP ENG 5450 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5450).

COMP ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5460).

COMP ENG 5510 Fault-Tolerant Digital Systems (LEC 3.0)
Design and analysis of fault-tolerant digital systems. Fault models, hardware redundancy, information redundancy, evaluation techniques, system design procedures. Prerequisites: Comp Eng 2210 and Comp Eng 2211.

COMP ENG 5610 Real-Time Digital Signal Processing (LAB 1.0 and LEC 2.0)
Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisite: Elec Eng 3400 or Elec Eng 3410.

COMP ENG 5620 Signal Integrity in High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 3600 or Comp Eng 3150, and Senior standing. (Co-listed with Elec Eng 5620).

COMP ENG 5803 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Sci 5203, Philos 4354 and Math 5154).

COMP ENG 5820 Mechatronics (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Aero Eng 5478 and Elec Eng 5870).

COMP ENG 5880 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Sci 5403 and Elec Eng 5880).

COMP ENG 6000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

COMP ENG 6001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Consent of the instructor.

COMP ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMP ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except for the dissertation, and are away from the campus, must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
COMP ENG 6099 Special Research and Thesis (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of the instructor required.

COMP ENG 6110 Advanced Computer Architecture I (LEC 3.0)
Advanced topics in computer structures, parallel processors, and computer networks. Emphasis on their design, applications, and performance. Prerequisite: Comp Eng 5110 or Comp Eng 5120.

COMP ENG 6110 Advanced Computer Architecture I (LEC 3.0)
Continuation of Computer Engineering 6110. Prerequisites: COMP ENG 6110.

COMP ENG 6210 Digital Logic (LEC 3.0)
Digital logic analysis, synthesis and simulation. Design automation of digital systems. Prerequisites: Comp Eng 2210 and Comp Eng 2211.

COMP ENG 6220 Design Automation of VLSI Systems (LEC 3.0)
A state-of-the-art survey of advanced VLSI design techniques, including ultra-low-voltage designs, asynchronous computing, microfluidic chips, three-dimensional integration and other More-than-Moore technologies. Prerequisites: COMP ENG 5210.

COMP ENG 6230 Advanced VLSI Design (LEC 3.0)
Advanced topics in chip-level VLSI design, including issues related to high-performance, low-power, analog and mixed-signal circuits, reliability, noise and coupling mechanisms, computer aided design tools, and recent advances and trends in the field. Prerequisite: Comp Eng 5210 is required.

COMP ENG 6302 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 301 Introduction to Data Mining. (Co-listed with Comp Sci 6402 and Sys Eng 6216).

COMP ENG 6310 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Mech Eng 6447, Aero Eng 6447, Eng Mgt 6410 and Comp Sci 6202).

COMP ENG 6320 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Elec Eng 6360, Mech Eng 6458, Aero Eng 6458 and Sys Eng 6215).

COMP ENG 6330 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Elec Eng 6340, Sys Eng 6214, Comp Sci 6405, Stat 6239).

COMP ENG 6410 Modeling Complex Systems (LEC 3.0)
Engineering Systems of today are non-linear, distributed, global, and adaptive to their environment in both space and time, thereby creating emergent behaviors. This course covers the current modeling tools and techniques used in modeling and architecting these complex systems. Prerequisites: Graduate Standing. (Co-listed with SYS ENG 6321).

COMP ENG 6420 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Elec Eng 6430 and Sys Eng 6324).

COMP ENG 6430 High Speed Networks (LAB 1.0 and LEC 2.0)
A state-of-the-art survey of high-speed networks, modeling and simulation, quality of service (QoS) for multimedia applications and management schemes, TCP congestion control, ATM and Internet traffic management, Internet Service Architecture (ISA), and Internet routing protocols. Prerequisites: Comp Eng 5410 and hardware competency for ECE students, Comp Sci 4600 for computer science students, or consent of the instructor.

COMP ENG 6440 Network Performance Analysis (LEC 3.0)
Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Sci 6602).

COMP ENG 6510 Resilient Networks (LEC 3.0)
This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisites: Sys Eng 6410, Comp Eng 6410, or Comp Eng 5420. (Co-listed with SYS ENG 6322).

COMP ENG 6810 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Civ Eng 6940, Env Eng 6940, Elec Eng 6810).
Computer Science (COMP SCI)

COMP SCI 5000 Special Problems *(IND 0.0-6.0)*
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP SCI 5001 Special Topics *(LEC 0.0-6.0)*
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP SCI 5099 Research *(IND 0.0-16)*
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

COMP SCI 5100 Agile Software Development *(LEC 3.0)*
Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs and measure project progress and productivity. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMP SCI 5101 Software Testing And Quality Assurance *(LEC 3.0)*
It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5102 Object-Oriented Analysis And Design *(LEC 3.0)*
This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5200 Analysis Of Algorithms *(LEC 3.0)*
The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking, and graph algorithms. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5201 Object-Oriented Numerical Modeling I *(LEC 3.0)*
A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: A grade of "C" or better in both Comp Sci 3200 and Comp Sci 1575; a grade of "C" or better in one of Math 3108, 3103, 3329.

COMP SCI 5202 Object-Oriented Numerical Modeling II *(LEC 3.0)*
A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: A "C" or better grade in Comp Sci 5201.

COMP SCI 5203 Mathematical Logic I *(LEC 3.0)*
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Math 5154, Philos 4354 and Comp Eng 5803.)

COMP SCI 5204 Regression Analysis *(LEC 3.0)*
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, 3117, or 5643. (Co-listed with Stat 5346.)

COMP SCI 5205 Real-Time Systems *(LEC 3.0)*
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisites: COMP ENG 3150 or COMP SCI 3800. Co-listed with Comp Eng 5170.

COMP SCI 5300 Database Systems *(LEC 3.0)*
This course introduces the advanced database concepts of normalization and functional dependencies, transaction models, concurrency and locking, timestamping, serializability, recovery techniques, and query planning and optimization. Students will participate in programming projects. Prerequisite: A "C" or better grade in both Comp Sci 1200 and Comp Sci 2300.

COMP SCI 5400 Introduction To Artificial Intelligence *(LEC 3.0)*
A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: A "C" or better grade in Comp Sci 2500.

COMP SCI 5401 Evolutionary Computing *(LEC 3.0)*
Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisite: A "C" or better grade in both Comp Sci 2500 and in a Statistics course.

COMP SCI 5402 Introduction To Data Mining *(LEC 3.0)*
The key objectives of this course are two-fold: (1) to teach the fundamental concepts of data mining and (2) to provide extensive hands-on experience in applying the concepts to real-world applications. The core topics to be covered in this course include classification, clustering, association analysis, data preprocessing, and outlier/novelty detection. Prerequisites: A grade of "C" or better in all of Comp Sci 2300, Comp Sci 5200, and one of Stat 3113, Stat 3115, Stat 3117 or Stat 5643.
COMP SCI 5403 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Eng 5880 and Elec Eng 5880).

COMP SCI 5404 Introduction to Computer Vision (LEC 3.0)
This course introduces foundational theories and analysis methods in computer vision. Topics will include camera model and geometry, description of visual features, shape analysis, stereo reconstruction, motion and video processing, and visual object recognition. Prerequisite: A "C" or better grade in both Math 3108 and Comp Sci 2500.

COMP SCI 5405 Java GUI & Visualization (LEC 3.0)

COMP SCI 5406 Interactive Computer Graphics (LEC 3.0)
Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisite: A "C" or better grade in both Comp Sci 3200 and Comp Sci 2500.

COMP SCI 5500 The Structure of a Compiler (LEC 3.0)
Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisite: A "C" or better grade in both Comp Sci 3500 and Comp Sci 2500.

COMP SCI 5600 Computer Networks (LEC 3.0)
This course focuses on the Internet and the general principles of computer networking. It covers the TCP/IP model from the application layer to the link layer in a top-down approach. It also exposes students to multimedia networking, network security, wireless and mobile networks. It is a networking class targeted for entry-level graduate students. This course has additional requirements beyond CS4600 on network performance modeling and analysis, development and implementation of complex communication protocols. Credit will not be given if previously have taken CS4600 or CpE 4410/5410. Prerequisite: A "C" or better grade in Comp Sci 3800.

COMP SCI 5601 Security Operations & Program Management (LEC 3.0)
An overview of information security operations, access control, risk management, systems and application life cycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: A "C" or better grade in all of: operating systems, computer networking, and a writing emphasized course.

COMP SCI 5602 Introduction to Cryptography (LEC 3.0)
Introduces fundamentals of modern cryptography. Topics include basic number theory, public & private key encryption schemes, cryptographic hash functions, message authentication codes, elliptic curve cryptography, Diffie-Hellman key agreements, digital signatures, PUFs, quantum cryptography, and generation of prime numbers and pseudo-random sequences. Prerequisites: A grade of "C" or better in COMP SCI 5200 or a grade of "B" or better in COMP SCI 2500.

COMP SCI 5700 Bioinformatics (LEC 3.0)
The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: A grade of "C" or better in both one of Bio Sci 1113 or Bio Sci 1213 and one of Comp Sci 1570 and Comp Sci 1580 or Comp Sci 1971 and Comp Sci 1981. (Co-listed with Bio Sci 5323).

COMP SCI 5800 Distributed Computing (LEC 3.0)
This is an introduction to the fundamentals of distributed computing. Topics include a review of communication between distributed processes, causality, distributed state maintenance, failure detection, reconfiguration and recovery, distributed mutual exclusion, clock synchronization, and leader election. Students will implement select course concepts. Prerequisites: A grade of "C" or better in both Comp Sci 3800 and Comp Sci 2500.

COMP SCI 5801 The Structure Of Operating Systems (LEC 3.0)
The hardware and software requirements for operating systems for uniprogramming, multiprogramming, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: A "C" or better grade in Comp Sci 3800.

COMP SCI 5802 Introduction to Parallel Programming and Algorithms (LEC 3.0)
Parallel and pipelined algorithms, architectures, network topologies, message passing, process scheduling and synchronization. Parallel programming on clusters. Cost, speedup and efficiency analysis. Prerequisite: A "C" or better grade in both Comp Sci 3800 and Comp Sci 2500.
COMPSCI 5803 Introduction to High Performance Computer Architecture (LEC 3.0)
Overviews high performance architecture of computing systems and covers various architectural/hardware and software/algorithmic means that enhance performance. Uniprocessor and concurrent systems are investigated. Various computational models are studied and linked to commercial systems. Prerequisite: A "C" or better grade in both Comp Eng 3150 and Comp Sci 2500.

COMPSCI 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMPSCI 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMPSCI 6010 Seminar (RSD 1.0)
Discussion of current topics.

COMPSCI 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit, commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

COMPSCI 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

COMPSCI 6099 Research Special Topics (IND 0.0-16)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

COMPSCI 6100 Software Engineering II (LEC 3.0)
A quantitative approach to measuring costs/productivity in software projects. The material covered will be software metrics used in the life cycle and the student will present topical material. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMPSCI 6101 Software Requirements Engineering (LEC 3.0)
This course will cover advanced methods, processes, and technique for discovering, analyzing, specifying and managing software requirements of a software system from multiple perspectives. It will discuss both functional and non-functional requirements analysis. Prerequisite: A "C" or better grade in Comp Sci 3100.

COMPSCI 6102 Model Based Systems Engineering (LEC 3.0)
Provides the student with understanding of the use of models to represent systems and validate system architectures. The student will gain proficiency in using a systems modeling language and shifting systems engineering from a document centric to a model centric paradigm. Prerequisites: Graduate Standing. (Co-listed with SYS ENG 6542).

COMPSCI 6200 Algorithms II (LEC 3.0)
Covers selected classical and recent developments in the design and analysis of algorithms, such as sophisticated data structures, amortized complexity, advanced graph theory, and network flow techniques. Prerequisite: A "C" or better grade in Comp Sci 5200.

COMPSCI 6201 Theory of Computation (LEC 3.0)
Turing machines and other machines. Godel numbering and unsolvability results. Machines with restricted memory access and limited computing time. Recursive functions, computable functionals and the classification of unsolvable problems. Prerequisite: A "C" or better grade in Comp Sci 2200.

COMPSCI 6202 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Aero Eng 6447 and Eng Mgt 6410).

COMPSCI 6203 Network Information Analysis (LEC 3.0)
Modeling techniques and analytical methods to study the interaction of information and networks focusing on models and properties of network structures, and diffusion of information over networks. Expected outcomes are systematic inference of information encoded in network structures, and effective methods to disseminate or gather information from networks. Prerequisites: A "C" or better grade in Comp Sci 5200.

COMPSCI 6204 Applied Graph Theory for Computer Science (LEC 3.0)
This course covers advanced concepts in graph theory and their applications. Graphs offer an excellent modeling tool for solving a wide variety of real-life problems. Emphasis will be on understanding concepts, theory, and proof techniques, and how to develop "cool" and "elegant" solutions for applications. Students will conduct projects. Prerequisite: A grade of "C" or better in Comp Sci 5200.

COMPSCI 6300 Object-Oriented Database Systems (LEC 3.0)
This course will include a study of the origins of object-oriented database manipulation languages, their evolution, currently available systems, application to the management of data, problem solving using the technology, and future directions. Prerequisite: A "C" or better grade in Comp Sci 5102.

COMPSCI 6301 Web Data Management and XML (LEC 3.0)
Management of semi-structured data models and XML, query languages such as Xquery, XML indexing, and mapping of XML data to other data models and vice-versa, XML views and schema management, advanced topics include change-detection, web mining and security of XML data. Prerequisite: A "C" or better grade in Comp Sci 5300.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 6302</td>
<td>Heterogeneous and Mobile Databases</td>
<td>LEC 3.0</td>
<td>This course extensively discusses multidatabase systems (MDBS) and mobile data access systems (MDAS). Moreover, it will study traditional distributed database issues within the framework of MDBSs and MDASs. Prerequisite: A "C" or better grade in Comp Sci 5300.</td>
</tr>
<tr>
<td>COMP SCI 6303</td>
<td>Pervasive Computing</td>
<td>LEC 3.0</td>
<td>Pervasive computing aims to seamlessly integrate computing with our everyday activities, so that people do not need to be aware of computing artifacts. This course will introduce various techniques needed to realize pervasive computing, such as position tracking and ad-hoc networking. Prerequisite: A grade of "C" or better in one of Comp Sci 4600, Comp Sci 5600, or Comp Eng 5410.</td>
</tr>
<tr>
<td>COMP SCI 6304</td>
<td>Cloud Computing and Big Data Management</td>
<td>LEC 3.0</td>
<td>Covers facets of cloud computing and big data management, including the study of the architecture of the cloud computing model with respect to virtualization, multi-tenancy, privacy, security, cloud data management and indexing, scheduling and cost analysis; it also includes programming models such as Hadoop and MapReduce, crowdsourcing, and data provenance. Prerequisites: A grade of 'C' or better in both COMP SCI 5800 and either COMP SCI 5300 or COMP SCI 5402.</td>
</tr>
<tr>
<td>COMP SCI 6400</td>
<td>Advanced Topics in Artificial Intelligence</td>
<td>LEC 3.0</td>
<td>Advanced topics of current interest in the field of artificial intelligence. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in one of Comp Sci 5400, Comp Sci 5401 or Comp Eng 5310.</td>
</tr>
<tr>
<td>COMP SCI 6401</td>
<td>Advanced Evolutionary Computing</td>
<td>LEC 3.0</td>
<td>Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: A "C" or better grade in Comp Sci 5401.</td>
</tr>
<tr>
<td>COMP SCI 6402</td>
<td>Advanced Topics in Data Mining</td>
<td>LEC 3.0</td>
<td>Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Eng 6302 and Sys Eng 6216).</td>
</tr>
<tr>
<td>COMP SCI 6403</td>
<td>Advanced Topics in Robotics</td>
<td>LEC 3.0</td>
<td>This course covers advanced topics in robotics, including perception, robotic path planning, robotic system integration, and computational intelligence topics for robotics. A term project including both written and oral components will be required. Prerequisite: A "C" or better in either Comp Sci 5403 or Mech Eng 5449 or Aero Eng 5449. (Co-listed with Comp Eng 6880 and Elec Eng 6880).</td>
</tr>
<tr>
<td>COMP SCI 6404</td>
<td>Computer Graphics And Realistic Modeling</td>
<td>LEC 3.0</td>
<td>Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: A "C" or better grade in Comp Sci 5406.</td>
</tr>
<tr>
<td>COMP SCI 6405</td>
<td>Clustering Algorithms</td>
<td>LEC 3.0</td>
<td>An introduction to clustering and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 6330, Elec Eng 6440, Sys Eng 6214 and Stat 6239).</td>
</tr>
<tr>
<td>COMP SCI 6406</td>
<td>Machine Learning in Computer Vision</td>
<td>LEC 3.0</td>
<td>Introduces machine learning fundamentals in current computer vision research. Topics include modeling complex data densities, regression and classification models, graphical models such as chains, trees, and grids, temporal models such as particle filtering and models for visual recognition such as deep learning. Students will implement select course topics. Prerequisite: A grade of "C" or better in either Comp Sci 5402 or Comp Sci 5404.</td>
</tr>
<tr>
<td>COMP SCI 6500</td>
<td>Theory Of Compiling</td>
<td>LEC 3.0</td>
<td>Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: A "C" or better grade in Comp Sci 5500.</td>
</tr>
<tr>
<td>COMP SCI 6600</td>
<td>Formal Methods in Computer Security</td>
<td>LEC 3.0</td>
<td>The course presents various vulnerabilities and threats to information in cyberspace and the principles and techniques for preventing and detecting threats, and recovering from attacks. The course deals with various formal models of advanced information flow security. A major project will relate theory to practice. Prerequisites: A grade of "C" or better in both Comp Sci 3600 and Comp Sci 5200.</td>
</tr>
<tr>
<td>COMP SCI 6601</td>
<td>Privacy Preserving Data Integration and Analysis</td>
<td>LEC 3.0</td>
<td>This course covers basic tools, in statistics and cryptography, commonly used to design privacy-preserving and secure protocols in a distributed environment as well as recent advances in the field of privacy-preserving data analysis, data sanitization and information retrieval. Prerequisite: A "C" or better grade in both Comp Sci 5300 and Comp Sci 3600.</td>
</tr>
<tr>
<td>COMP SCI 6602</td>
<td>Network Performance Analysis</td>
<td>LEC 3.0</td>
<td>Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 5410 or Comp Sci 4600; Stat 3117 or 5643. (Co-listed with Comp Eng 6440).</td>
</tr>
</tbody>
</table>
COMP SCI 6603 Advanced Topics in Wireless Networks (LEC 3.0)
Introduces the fundamentals and recent advances in wireless networking. Coverage includes cellular networks, wireless and mobile ad hoc networks, wireless mesh networks, sensor networks and wireless LANs with a focus on network operation. Special topics selected from the literature on wireless network security will also be addressed. Prerequisite: A "C" or better grade in Comp Sci 4600 or equivalent.

COMP SCI 6604 Mobile And Sensor Data Management (LEC 3.0)
Architectures of mobile computing systems; Mobile-IP support in mobile computing systems; location data management, Broadcasting and indexing, replication control; caching, fault tolerance and reliability of mobile systems; adhoc and sensor routing schemes, key management. Prerequisite: Comp Sci 4601.

COMP SCI 6605 Advanced Network Security (LEC 3.0)
Topics covered include network security issues such as authentication, anonymity, traceback, denial of service, confidentiality, forensics, etc. in wired and wireless networks. Students will have a clear, in-depth understanding of state of the art network security attacks and defenses. Prerequisite: A "C" or better grade in either Comp Eng 5420 or Comp Sci 4600.

COMP SCI 6800 Distributed Systems Theory And Analysis (LEC 3.0)
Analysis of the problems of state maintenance and correctness in concurrent computing systems using formal methods such as Hoare Logic, Temporal Logic, and Symbolic Model Checking. Prerequisite: A "C" or better grade in Comp Sci 5800.

COMP SCI 6801 Topics in Parallel and Distributed Computing (LEC 3.0)
Introduction of parallel and distributed computing fundamentals and advanced research topics. Students present research papers selected from the current literature on P&D computing paradigms. A term paper and oral presentation are required. Prerequisite: A "C" or better grade in Comp Sci 5802 or equivalent background.

Electrical Engineering (ELEC ENG)

ELEC ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 5001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ELEC ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ELEC ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Comp Eng 5070, Civ Eng 5070).

ELEC ENG 5099 Special Research And Thesis (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ELEC ENG 5100 Advanced Electronic Circuits (LEC 3.0)
Application of feedback theory, oscillators and frequency standards, precision analog techniques, low-power circuit design, interfacing sensors, designing for high reliability, electronics for harsh environments. Prerequisite: Elec Eng 3120.

ELEC ENG 5120 Communication Circuits (LEC 3.0)
Analysis and design of circuits used in communication systems. Topics include RF semiconductor devices, low-noise amplifiers, mixers, modulators, crystal oscillators, AGC circuits, highpower RF amplifiers, phase-locked loops, impedance matching, and frequency-selective networks and transformers. Prerequisites: Elec Eng 3120, 3600.

ELEC ENG 5140 High-Frequency Amplifiers (LEC 3.0)
Analysis and design of high frequency amplifiers. Topics include parameter conversions, activity and passivity, stability criteria, device operating conditions, Smith chart usage, matching networks, microstrip, scattering parameters, and practical applications. Prerequisites: Elec Eng 3120, 3600.

ELEC ENG 5150 Photovoltaic Systems Engineering (LEC 3.0)
Physics and characteristics of photovoltaic (solar) cell technologies, electronic control of alternative energy sources, site selection, array design, energy storage methods, electrical code compliance, standalone systems, grid-intertie systems, legal and economic considerations. Prerequisite: Senior or graduate standing in Science or Engineering.

ELEC ENG 5160 Computer-Aided Network Design (LEC 3.0)
Analysis and design of active and passive electric networks. Theory and computer application, including methods for automatic formulation of network state equations, network tolerance, network optimization, and device modeling. Prerequisites: Elec Eng 3100.

ELEC ENG 5170 Introduction To Circuit Synthesis (LEC 3.0)

ELEC ENG 5200 Classical Optics (LEC 3.0)
Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 2222 and Physics 2135 or 2111. (Co-listed with Physics 4503).
ELEC ENG 5210 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear systems theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Both Elec Eng 3430 and Elec Eng 3600 or both Physics 2401 and Physics 4211. (Co-listed with PHYSICS 5503).

ELEC ENG 5220 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 3600 or Physics 4211. (Co-listed with Physics 5513).

ELEC ENG 5250 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 2210 or equivalent. (Co-listed with Comp Eng 5230).

ELEC ENG 5270 Smart Materials And Sensors (LEC 2.0 and LAB 1.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Aero Eng 5529, Mech Eng 5229 and Civ Eng 5118).

ELEC ENG 5300 Digital Control (LEC 3.0)
Analysis and design of digital control systems. Review of ztransforms; root locus and frequency response methods; state space analysis and design techniques; controllability, observability and estimation. Examination of digital control algorithms. Prerequisite: Elec Eng 3320.

ELEC ENG 5310 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Comp Eng 5310 and Sys Eng 5211).

ELEC ENG 5320 Neural Networks Control and Applications (LEC 3.0)
Introduction to artificial neural networks and various supervised and unsupervised learning techniques. Detailed analysis of some of the neural networks that are used in control and identification of dynamical systems. Applications of neural networks in the area of Control. Case studies and a term project. Prerequisites: Elec Eng 3320.

ELEC ENG 5325 Applied Nonlinear Control (LEC 3.0)
Review of State Variable Models, Nonlinear Model and Phenomena, Lyapunov Stability, Phase Plane Analysis, Feedback Linearization, Sliding Mode and Backstepping Control, and Control Applications Prerequisite: Elec Eng 3320 or graduate standing.

ELEC ENG 5330 Fuzzy Logic Control (LEC 3.0)
A mathematical introduction to the analysis, synthesis, and design of control systems using fuzzy sets and fuzzy logic. A study of the fundamentals of fuzzy sets, operations on these sets, and their geometrical interpretations. Methodologies to design fuzzy models and feedback controllers for dynamical systems. Various applications and case studies. Prerequisite: Elec Eng 3320.

ELEC ENG 5340 Advanced PLC (LAB 1.0 and LEC 2.0)
Advanced programmable logic controller (PLC) programming, function block, structured text, function chart, sequencer. Factory communications, system simulation, human-machine interface (HMI) programming. Advanced PID control. Network security and reliability. Class-wide project. Prerequisite: Elec Eng 3340.

ELEC ENG 5345 PLC Motion Control (LEC 2.0 and LAB 1.0)
Factory automation motion control integrated with programmable logic controllers, servo control, variable-speed drive control, PackML state model, sizing motors and drives, machine safety, and experience with commercial hardware/software. Laboratory exercises on small-scale standard applications such as coordinated motion of multiple axes and camming. Prerequisite: Elec Eng 3340.

ELEC ENG 5350 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 4110 or Elec Eng 3320 or Elec Eng 3340 or graduate standing. (Co-listed with Chem Eng 5190).

ELEC ENG 5360 System Simulation And Identification (LEC 3.0)

ELEC ENG 5370 Introduction to Neural Networks and Applications (LEC 3.0)
The course provides an introduction to basic neural network architectures and their applications. Students learn to construct neural networks and train them to solve engineering problems, specifically pattern recognition and function approximation. Mathematical analysis of network architectures, training algorithms and practical applications of neural nets. Prerequisites: Graduate Standing. (Co-listed with Sys Eng 5212).
ELEC ENG 5380 Autonomous Mobile Robots (LEC 3.0)
This course will provide an introduction to mobile robots and current approaches to robot autonomy. Topics include mobile robot systems, modeling and control, sensors and estimation, localization and mapping, and motion planning. Prerequisites: Elec Eng 3320 or equivalent and Stat 3117 or equivalent.

ELEC ENG 5400 Digital Signal Processing II (LEC 3.0)
Spectral representations, sampling, quantization, z-transforms, digital filters and discrete transforms including the Fast Fourier transform. Prerequisites: Elec Eng 3410.

ELEC ENG 5420 Communications Systems II (LEC 3.0)
Random signals and their characterization; noise performance of amplitude, angle and pulse modulation systems; digital data transmission; use of coding for error control. Prerequisite: Elec Eng 3430.

ELEC ENG 5430 Wireless Networks (LEC 2.0 and LAB 1.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Elec Eng 3430 or Comp Eng 3150. (Co-listed with Comp Eng 5430 and Sys Eng 5323).

ELEC ENG 5440 Stochastic Signal Analysis I (LEC 3.0)
Introduction to the application of probabilistic models to typical electrical engineering problems. Topics include: methods for describing random voltages, random digital signals, correlation, linear mean-square estimation, linear transformation of random digital signals, and bit-error rate calculation for communication systems. Prerequisites: Math 3304 and Elec Eng 2120.

ELEC ENG 5450 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisites: At least one of the following: Elec Eng 3400, Elec Eng 3410, Elec Eng 3420, or prior exposure to Fourier Transforms and consent of the instructor. (Co-listed with Comp Eng 5450).

ELEC ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: At least one of the following: Elec Eng 3400, Elec Eng 3410, Elec Eng 3420, or prior exposure to Fourier Transforms and consent of the instructor. (Co-listed with Comp Eng 5460).

ELEC ENG 5500 Electric Drive Systems (LEC 3.0)
Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Prerequisites: Elec Eng 3500 and Elec Eng 3320.

ELEC ENG 5510 Electric-Drive Vehicles (LEC 3.0)
Course covers introductory topics related to understanding/analysis of electric, hybrid/plug-in hybrid power trains. Classification of hybrid drivetrains, driving cycles, energy storage systems, mechanical coupling devices, automotive applications of fuel cells and introduction to power converters. Prerequisite: Senior standing and Physics 2135.

ELEC ENG 5520 Power Electronics (LEC 3.0)
Analysis, design, modeling, and control of switching mode power converter circuits for ac-dc, dc-dc, dc-ac, and ac-ac conversion. Power semiconductor devices, passive components, and non-ideal sources and loads. Applications to industry, consumer goods, electric vehicles, and alternative energy. Prerequisite: Elec Eng 3100.

ELEC ENG 5521 Power Electronics Laboratory (LAB 2.0)
An introduction to power electronic circuits is presented. Students will construct several dc/dc, dc/ac and ac/dc converters. Various switching algorithms, including pulse width modulation, delta modulation, and hysteretic control will be developed to regulate and control the respective circuits. Prerequisite: Co-requisite Elec Eng 5520.

ELEC ENG 5540 Power Systems Engineering (LEC 3.0)
Network analysis applied to power systems; the load flow concept; economic operation of power systems; synchronous machine reactances and transient stability; symmetrical components and asymmetrical faults; protective relaying. Prerequisite: Elec Eng 3540.

ELEC ENG 5550 Electric Power Quality (LEC 3.0)
Definitions of power quality, types of power quality problems; sources of sags, transient overvoltages and harmonics; distribution overcurrent protection methods and their effect on power quality and reliability; harmonic analysis, principles of controlling harmonics, devices for filtering harmonics; power quality improvement methods. Prerequisite: Elec Eng 3500 or Elec Eng 3540.

ELEC ENG 5570 Extra High Voltage Engineering (LEC 2.0 and LAB 1.0)
The physical phenomena associated with high voltage dielectric breakdown are presented. Methods of generating and measuring high voltages and currents are explained. Demonstration of design and performance. Field trips to companies for laboratory testing of high voltage according to industry standards will serve as the lab part of the course. Prerequisite: Senior standing.

ELEC ENG 5600 Interference Control in Electronic Systems (LEC 3.0)
Principles of high frequency effects in PCBs and components, generation of unwanted radio-frequency (RF) signals by ICs, RF radiation mechanisms, shielding, and immunity against electrostatic discharge and RF signals. Prerequisites: Elec Eng 3400 and 3600.

ELEC ENG 5620 Signal Integrity in High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 3600 or Comp Eng 3150, and Senior standing. (Co-listed with Comp Eng 5620).
ELEC ENG 5630 Wave Propagation and Transmission Lines (LEC 3.0)
The materials in this course are intended to provide a) follow up electromagnetics related courses, b) electromagnetics related career including RF design and c) a graduate degree in electromagnetic related fields an in-depth understanding of the basics of wave propagation and transmission lines. Prerequisite: Elec Eng 3600.

ELEC ENG 5640 Antennas and Propagation (LEC 3.0)
Propagated fields of elemental dipole, directivity and gain, radiation resistance, the half-wave dipole, wire antennas, arrays, broadband antennas, aperture antennas, horn antennas, and antenna temperature. Prerequisite: Elec Eng 3600.

ELEC ENG 5650 Microwave and Millimeter Wave Engineering and Design (LEC 3.0)
Introduce senior and graduate students to the concept of microwave and millimeter wave engineering and passive component design such as waveguide, cavities, couplers, detectors, mixers, etc., including network theory and scattering matrix. Finally, their specific application in the design of various microwave circuits will be discussed. Prerequisites: Elec Eng 3600.

ELEC ENG 5660 Microwave Principles For Mixed-Signal Design (LEC 3.0)
Transmission lines; coupled transmission lines; microwave network analysis; impedance matching and tuning; design of microwave amplifiers and oscillators. Prerequisite: Elec Eng 3600.

ELEC ENG 5670 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 2135 or 2111. (Co-listed with Met Eng 5510).

ELEC ENG 5680 Introduction to Radar Systems (LEC 3.0)
The objective of this course is to introduce senior and graduate students to various radar system principles, designs and applications (e.g., pulse, frequency-modulated, chirp, Doppler radars). Topics related to signals, systems, noise, resolution, multiple sampling, different imaging modalities, and remote sensing will also be discussed. Prerequisites: Elec Eng 3400 and Elec Eng 3600.

ELEC ENG 5687 Microwave and Millimeter Wave Engineering and Design Laboratory (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Aero Eng 5478 and Comp Eng 5820).

ELEC ENG 5880 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Sci 5403 and Comp Eng 5880).

ELEC ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ELEC ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ELEC ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ELEC ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

ELEC ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

ELEC ENG 6099 Special Research And Thesis (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ELEC ENG 6140 Advanced RF & Time Domain Measurements (LAB 1.0 and LEC 2.0)
Advanced measurement techniques and instrumentation: Oscilloscopes (Real time and sampling, A/D conversion errors, Probing, Jitter, Noise), Spectrum analyzer (concepts, applications), Network Analyzer (concepts, calibration), Impedance measurements. Lab experiments are a main part of this class. Prerequisite: Graduate standing.

ELEC ENG 6150 Signal Integrity, High Speed Digital and RF Design Laboratory (LAB 3.0)
This is an RF and digital electronics design class. Student groups will design, manufacture and test RF and/or digital circuits during the class. Besides this project work the lecture part will emphasize circuit design, layout, parasitic effects and design for testability. Prerequisite: Elec Eng 3600.

ELEC ENG 6200 Electromagnetic Optics (LEC 3.0)
Propagation, control, and modulation of laser radiation. Topics include optical polarization, interference, layered and anisotropic media, electro-optic devices, acousto-optic devices, and nonlinear optics. Prerequisite: Elec Eng 3600 or Physics 4211.
ELEC ENG 6240 Semiconductor Devices (LEC 3.0)
Properties of semiconductors, junctions and transistors; high frequency and high-current effects; recombination processes; field-effect devices, semiconductor devices and microcircuits. Prerequisite: Graduate status in Elec Eng.

ELEC ENG 6260 Integrated Microsystems Engineering (LEC 1.5 and LAB 1.5)
Theory and practice of multidisciplinary integrated microsystem technologies. The topics include (1) micromachining technology, (2) review of mechanical, optical, microfluidic and (bio) chemical microsensors and microactuators, (3) hands-on lab session for design, fabrication, and characterization of Microsystems. Prerequisite: Graduate standing.

ELEC ENG 6290 Advanced Topics in Optics and Devices (LEC 3.0)
Advanced topics of current interest in optics and devices. Selected topics include semiconductor materials, electronic devices, wave-based sensing, fiber optic systems, optoelectronics, and photonics engineering. Prerequisite: Graduate standing.

ELEC ENG 6300 Linear Control Systems (LEC 3.0)
Review of linear algebra, state variable formulations, solutions of state equations; controllability and observability; multivariable systems, matrix-fraction decompositions; design of state and output feedback controllers and observers; introduction to calculus of variations; linear quadratic regulators. Prerequisite: Elec Eng 3320.

ELEC ENG 6310 Optimal Control And Estimation (LEC 3.0)
Review of linear quadratic regulators (LQR), LQR extensions; constrained optimization (Pontragin's minimum principle); review of probability theory and random processes; optimal prediction and filters; frequency domain properties of LQR and Kalman filters; linear quadratic Gaussian (LQG) control; model uncertainties, frequency shaping, LQG/LTR design methodology. Prerequisite: Elec Eng 6300.

ELEC ENG 6320 Nonlinear Control Systems (LEC 3.0)
Numerical solution methods, describing function analysis, direct and indirect methods of Liapunov stability, applications to the Lure problem - Popov circle criterion. Applications to system design and feedback linearization. Prerequisite: Elec Eng 6300.

ELEC ENG 6330 Robust Control Systems (LEC 3.0)
Performance and robustness of multivariable systems, linear fractional transformations, LQG/LTR advanced loop shaping, Youla parameterization, H∞ (subscript infinity) optimal control, mixed H2 (subscript 2) and H∞ (subscript infinity) control, controller synthesis for multiple objective optimal control, linear matrix inequalities theory and case studies. Prerequisite: Elec Eng 6300.

ELEC ENG 6335 Discrete-Time Neural Network Control (LEC 3.0)
Neural network topologies, universal function approximation property, background on Lyapunov stability & dynamic systems, control of a class of nonlinear systems using single and multilayer neural networks, feedback linearization, strict & nonstrict feedback systems, MIMO system, system identification, output feedback control, and hardware implementation. Prerequisites: Elec Eng 6300.

ELEC ENG 6340 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 6330, Sys Eng 6214, Comp Sci 6405 and Stat 6239).

ELEC ENG 6350 Neural Network Control of Nonlinear Continuous-time Systems (LEC 3.0)
Neural network topologies, universal function approximation property, background on Lyapunov stability and dynamic systems, control of a class of nonlinear systems and robot manipulators, feedback linearization, backstepping control, force control, neural observers, decentralized neural network control, neural network-based optimal control and applications. Prerequisite: Elec Eng 6300.

ELEC ENG 6360 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Mech Eng 6458, Aero Eng 6458 and Sys Eng 6215).

ELEC ENG 6390 Current Topics In Control Theory (LEC 3.0)
Topics of current interest in control theory literature. Offered as interest and demand warrant. Prerequisite: Consent of instructor.

ELEC ENG 6400 Advanced Digital Signal Processing (LEC 3.0)
Continuation of Elec Eng 5400. Effects of discrete noise sources in digital signal processing; discrete spectral analysis of random signals; discrete time signal detection, estimation, and filtering algorithms. Prerequisites: Elec Eng 5400 or Elec Eng 5420, Elec Eng 5440 or Stat 5643.

ELEC ENG 6410 Information Theory And Coding (LEC 3.0)
Principles of information generation, transmission and processing; quantitative measure of information, entropy source encoding; channels; mutual information; channel capacity; Shannon's second theorem for discrete channels; introduction to coding for error controls; continuous information sources. Prerequisites: Elec Eng 5420 or Elec Eng 5440 or Stat 5643.

ELEC ENG 6420 Wireless Communications (LEC 3.0)
Introduction to the principle of wireless communication systems. Topics include: wireless channel characteristics, cellular concepts, channel capacity analysis, transceiver architectures, diversity techniques, multiple access schemes, and practical wireless systems. Prerequisite: Elec Eng 5420 or Elec Eng 5440 or equivalent.
ELEC ENG 6430 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Comp Eng 6420 and Sys Eng 6324).

ELEC ENG 6440 Stochastic Signal Analysis II (LEC 3.0)
Continuous-time stochastic signals, multi-dimensional signals, Wiener and matched filters, LMS equalization, non-linear systems with random inputs, spectral estimation and Markov chains. Prerequisites: Stat 5643 or Elec Eng 5440.

ELEC ENG 6450 Statistical Decision Theory (LEC 3.0)
Classical detection and estimation theory with applications; hypothesis testing, detection of known signals, matched filter receiver implementation, detection of signals with unknown parameters, sequential and nonparametric detection, detection of stochastic signals: Parameter estimation theory with application to modulation. Prerequisite: Elec Eng 5440.

ELEC ENG 6460 Advanced Topics In Communications (LEC 3.0)
Advanced topics of current interest in communications and signal processing such as spread spectrum, digital processing of communications, speech, and radar signals, applications of pattern recognition, communications networks, specialized coding topics. Repeatable for additional credit toward degree each time a different subtitle offered. Prerequisite: Elec Eng 5420 or 5440.

ELEC ENG 6500 Advanced Theory Of Electric Machines (LEC 3.0)
Energy conversion, reference frame theory, transient and dynamic modeling of ac machines, simulation of ac machines, parameter identification, model-order reduction, advanced topics depending on semester taught. Prerequisite: Elec Eng 3500.

ELEC ENG 6510 Advanced Electric Drive Vehicles (LEC 3.0)
This course covers an entire range of advanced topics related to the analysis, design, control, simulation, and optimization of electric, hybrid, and plug-in hybrid power-trains including the automotive applications of adjustable speed motor drives, energy storage systems, and advanced power converters. Prerequisite: Elec Eng 5500 or Elec Eng 5520.

ELEC ENG 6520 Advanced Power Electronics (LEC 3.0)
The purpose of this course is to cover selected areas of power electronics in greater depth. The topics covered include small signal analysis of power converters, voltage- and current- mode control, soft switching techniques, power factor correctors, multi-level converters, and PWM techniques. Prerequisite: Elec Eng 5520.

ELEC ENG 6525 Power Converter Modeling and Design (LEC 3.0)
Students will integrate electrical, magnetic, and thermal modeling techniques into a design process for switching power converters. A variety of applications will be considered, including dc-dc, ac-dc, and dc-ac converters over a wide power range. Prerequisite: Elec Eng 5520.

ELEC ENG 6530 Power System Reliability (LEC 3.0)

ELEC ENG 6540 Computer Methods In Power System Analysis (LEC 3.0)
Algorithms for large scale system solution, non-linear systems, ordinary differential equations, eigenvalue problems, modal information, and optimization. Applications to power systems analysis. Prerequisite: Elec Eng 3540 or similar course.

ELEC ENG 6550 Power System Stability (LEC 3.0)
Synchronous machine theory and modelling; AC transmission; power system loads; excitation systems; control of active and reactive power; small signal stability; transient stability; voltage stability; mid-term and long-term stability; subsynchronous oscillations; stability improvement. Prerequisite: Elec Eng 3540 or similar course.

ELEC ENG 6560 Power System Protection (LEC 3.0)
Protective relaying incorporating electromechanical, solid state and computer relaying methods for high voltage transmission systems; instrument transformers; generator, transformer, line and bus protection; effect of system grounding; pilot protection and out of step relaying principles. Prerequisite: Elec Eng 5560 and 5540.

ELEC ENG 6570 Power System Operations (LEC 3.0)
Optimal dispatch operations, economic loading of power plants, mathematical optimization, locational marginal pricing, optimal power flow; effect of hydro and wind power plants on system economics; contingency analysis and system security, state estimation. Prerequisite: Elec Eng 5540.

ELEC ENG 6580 Surge Phenomena In Power Systems (LEC 3.0)
Study of transmission system insulation, distributed constant lines, terminations, multiple reflections, lighting performance, characteristics of sustained and switching overvoltages, surge voltages due to system faults, energizing and reclosing of circuit breakers. Methods of reducing overvoltages to acceptable levels. Prerequisite: Elec Eng 5540.

ELEC ENG 6600 Advanced Electromagnetics I (LEC 3.0)
ELEC ENG 6610 Electromagnetic Waves II (LEC 3.0)
Circular waveguides, circular cavities, scattering by cylinders, apertures in cylinders, spherical cavities, orthogonality relationships, source of spherical waves, scattering by spheres, perturbational and variational techniques, microwave networks, probes in cavities, and aperture coupling to cavities. Prerequisite: Elec Eng 6600.

ELEC ENG 6630 Computational Electromagnetics (LEC 3.0)
Differential-equation based numerical methods-finite element, finite-difference, and finite-difference time-domain-for solving static and dynamic equations of electromagnetics. Applications considered are multi-conductor transmission lines, Maxwell’s equations for radiation and scattering, and electric machinery. Prerequisite: Elec Eng 3600.

ELEC ENG 6640 Advanced Topics in Antenna Analysis and Design (LEC 3.0)
Introduction and discussion of advanced antenna design issues including: polarization, antenna synthesis and source modeling, broadband antennas, aperture and microstrip antenna simulation and design, and antenna pattern measurement techniques including near-field to far-field transformation. Prerequisite: Elec Eng 5640 or equivalent.

ELEC ENG 6810 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 6340, IDE 425, Civ Eng 6940, Env Eng 6940, Comp Eng 6810).

Engineering Management (ENG MGT)

ENG MGT 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENG MGT 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env Eng 5070, Comp Eng 5070, Elec Eng 5070, Civ Eng 5070).

ENG MGT 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

ENG MGT 5110 Managerial Decision Making (LEC 3.0)
Individual and group decision making processes and principles for engineers and technical managers with emphasis on the limitations of human rationality and the roles of social influence and organizational contexts; principles and skills of negotiation. Prerequisite: Senior or graduate standing.

ENG MGT 5111 Management for Engineers and Scientists (LEC 3.0)
The transition of the engineer or scientist to manager; study of management roles and theory, organizational systems and behavior, managing and motivating technical personnel, leadership, communication, processes, and customer focus. Prerequisite: Graduate standing.

ENG MGT 5210 Economic Decision Analysis (LEC 3.0)
Comprehensive treatment of engineering economy including effects of taxation and inflation; sensitivity analysis; decisions with risk and uncertainty; decision trees and expected value, normally includes solutions on personal computer and student problem report. Prerequisite: Graduate students without previous course in engineering economy because of partial overlap.

ENG MGT 5212 Intelligent Investing (LEC 3.0)
An overview of the essential elements of intelligent investing. Coverage includes stocks, bonds, exchange traded funds, mutual funds, stock screening, fundamental and technical analysis, valuation, market and industry analysis, macroeconomic indicators, investing strategies, and portfolio construction. Prerequisites: Senior or Graduate Standing.

ENG MGT 5312 Advanced Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing.

ENG MGT 5313 Packaging Management (LEC 3.0)
Provides a comprehensive background in the field of packaging and its place in productive systems. Emphasizes the design or economics of packaging, and structured manufacturing laboratory work. (Co-listed with Mech Eng 5644, Chem Eng 4310).

ENG MGT 5315 Interdisciplinary Problems In Manufacturing Automation (LEC 1.0 and LAB 2.0)
Introduction to basic techniques and skills for concurrent engineering, manufacturing strategies, product design, process planning, manufacturing data management and communication are the topics covered. Students experiment the design process through team projects and structured manufacturing laboratory work. (Co-listed with Mech Eng 5644, Chem Eng 4310).

ENG MGT 5316 Safety Engineering Management (LEC 3.0)
This course is an introduction to the principles of safety engineering applied to industrial situations. Job safety analysis, reduction of accident rates, protective equipment, safety rules and regulations, environmental hazards, health hazards, and ergonomic hazards are covered. Prerequisite: Senior or graduate standing.

ENG MGT 5320 Project Management (LEC 3.0)
Organization structure and staffing, motivation, authority and influence, conflict management; project planning; network systems; pricing, estimating, and cost control; proposal preparation; project information systems; international project management. Prerequisite: Graduate Standing.
ENG MGT 5330 Advanced Human Factors (LEC 3.0)
An in-depth review of the foundations of human factors, focusing on the interaction of people with various forms of technology in a variety of environments. Topics include research and evaluation methods, displays (e.g., visual, auditory), attention and information processing, decision making, motor skills, anthropometry, and biomechanics. (Co-listed with PSYCH 5710).

ENG MGT 5410 Industrial System Simulation (LEC 3.0)
Simulation modeling of manufacturing and service operations through the use of computer software for operational analysis and decision making. Prerequisite: Stat 3115 or Stat 3117.

ENG MGT 5411 Engineering Design Optimization (LEC 3.0)
This course is an introduction to the theory and practice of optimal design as an element of the engineering design process. The use of optimization as a tool in the various stages of product realization and management of engineering and manufacturing activities is stressed. The course stresses the application of nonlinear programming methods. Prerequisite: Math 3304 or 3329.

ENG MGT 5412 Operations Management Science (LEC 3.0)
Application of management science with an emphasis on supporting managerial decision-making. Design and operations of systems are modeled and analyzed using quantitative and qualitative techniques implemented using modern technology. Specific approaches include mathematical modeling and optimization, probabilistic/statistical analysis, and simulation. Prerequisites: Graduate standing.

ENG MGT 5414 Introduction To Operations Research (LEC 3.0)
Mathematical methods for modeling and analyzing industrial systems, topics including linear programming, transportation models, and network models. Prerequisite: Stat 3115 or Stat 3117.

ENG MGT 5510 Industrial Marketing Systems Analysis (LEC 3.0)
An analysis of the factors of engineered products, customers, communication, promotion, personal selling, persuasion and management within a dynamic industrial sales environment. Prerequisites: Senior or graduate standing.

ENG MGT 5511 Technical Entrepreneurship (LEC 3.0)
Student teams develop a complete business plan for a company to develop, manufacture and distribute real technical/product service. Lectures & business fundamentals, patents, market/technical forecasting, legal and tax aspects, venture capital, etc., by instructor and successful technical entrepreneurs. Prerequisite: Senior or graduate standing.

ENG MGT 5512 Legal Environment (LEC 3.0)
Study of the effect of the legal environment on the decisions which the engineering manager must make. The course investigates the social forces that produced this environment and the responsibilities incumbent upon the engineer. Prerequisites: Senior or graduate standing.

ENG MGT 5513 Energy and Sustainability Management Engineering (LEC 3.0)
This course explores strategic processes and partnership required for the management of sustainable energy infrastructures and innovation in energy systems. Topics relate to renewable energy, energy efficiencies, energy conversion, energy technology, and economic efficiency of energy sources. Prerequisite: Senior or Graduate Standing.

ENG MGT 5514 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Chem Eng 4300).

ENG MGT 5515 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, and end of product life options. Prerequisites: Junior or above standing. (Co-listed with MECH ENG 5757).

ENG MGT 5516 Integrated Product Development (LEC 1.0 and LAB 2.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 5515 or Mech Eng 5757 or Mech Eng 3653 or Mech Eng 5708. (Co-listed with Mech Eng 5758).

ENG MGT 5610 Advanced Facilities Planning & Design (LAB 1.0 and LEC 2.0)
An integrated approach to the planning and design of facilities; examination of advanced techniques and tools for facility location, space allocation, facility layout materials handling system design, work place design; e.g. mathematical programming and simulation modeling. Prerequisites: Graduate standing.

ENG MGT 5613 Value Analysis (LEC 3.0)
An organized effort at analyzing the function of goods or services for the purpose of achieving the basic functions at the lowest overall cost, consistent with achieving the essential characteristics. Covers the basic philosophy, function analysis, FAST diagramming, creativity techniques, evaluation of alternatives, criteria analysis, and value stream mapping. Prerequisite: Senior or graduate standing.

ENG MGT 5614 Supply Chain Management Systems (LEC 3.0)
This course focuses on the development of logistics management skills related to global supply chains. Particular attention will be given to supply chain systems management as part of the firm's strategic positioning, cultural interactions and transportation sourcing decisions. Prerequisite: Stat 3115 or Stat 3117.
ENG MGT 5615 Production Planning And Scheduling (LEC 3.0)
Introduction to basic techniques of scheduling, manufacturing planning and control, just-in-time systems, capacity management, master production scheduling, single machine processing, constructive Algorithms for flow-shops, scheduling heuristics, intelligent scheduling systems are the topics covered. Prerequisite: Eng Mgt 3310.

ENG MGT 5710 Six Sigma (LEC 3.0)
This course is an introduction to the principles of implementing the Six Sigma philosophy and methodology. Topics include tools and methods including process flow diagrams, cause and effect diagrams, failure mode and effects analysis, gage R&R, capability studies, design of experiments and strategy for organizing six sigma techniques in industry. Prerequisite: Graduate standing.

ENG MGT 5711 Total Quality Management (LEC 3.0)
Examination of various quality assurance concepts and their integration into a comprehensive quality management system: statistical techniques, FMEA's, design reviews, reliability, vendor qualification, quality audits, customer relations, information systems, organizational relationships, motivation. Prerequisite: Senior or graduate standing.

ENG MGT 5712 Introduction To Quality Engineering (LEC 3.0)
This course is an introduction to the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in-depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Other contributions in the field are also considered. Prerequisite: Eng Mgt 5711.

ENG MGT 5713 Management And Methods In Reliability (LEC 3.0)
Study of basic concepts in reliability as they apply to the efficient operation of industrial systems. Prerequisite: Stat 3115, 3117, or 5643.

ENG MGT 5714 Statistical Process Control (LEC 3.0)
The theoretical basis of statistical process control procedures is studied. Quantitative aspects of SPC implementation are introduced in context along with a review of Deming's principles of quality improvement and a brief introduction to sampling inspection. Prerequisite: Stat 3115, or Stat 3117.

ENG MGT 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENG MGT 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENG MGT 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.
ENG MGT 6212 Investment (LEC 3.0)
An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6612).

ENG MGT 6213 Financial Engineering (LEC 3.0)
An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6613).

ENG MGT 6214 Financial Engineering II (LEC 3.0)
This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito's lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and value-at-risk. Prerequisite: Eng Mgt 6213/Sys Eng 6613. (Co-listed with Sys Eng 6614).

ENG MGT 6215 Financial Risk Management (LEC 3.0)
Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting, Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Sys Eng 6615).

ENG MGT 6310 Human Systems Integration (LEC 3.0)
This course considers Human Systems Integration (HSI) in a variety of applications including systems acquisition and training, HSI tools, techniques, and procedures. Prerequisite: Eng Mgt 4330 or Psych 4710.

ENG MGT 6322 Case Studies in Project Management (LEC 3.0)
Includes the main components of the Project Management Institute (PMI) Body of Knowledge; case studies in project management including project implementation, organizational structures, project estimating, project scheduling, project risk management, and conflict management. Prerequisite: Eng Mgt 5320 or equivalent.

ENG MGT 6323 Global Project Management (LEC 3.0)
In depth and advanced topics in project management including project management methodologies, strategic planning for excellence, project portfolio management, integrated processes, culture, and behavioral excellence; normally includes a hands-on group project. Prerequisite: Eng Mgt 5320 or equivalent.

ENG MGT 6410 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Aero Eng 6447 and Comp Sci 6202).

ENG MGT 6411 Advanced Topics in Simulation Modeling (LEC 3.0)
Design and analysis of distributed systems using discrete-event simulations and synchronization of distributed models. Design and implementation of finite state automata and simulation models as control execution systems. Functioning of real-time, agent-based, and multipass simulations. Prerequisite: Eng Mgt 5410 or Graduate standing.

ENG MGT 6412 Mathematical Programming (LEC 3.0)
An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 3113 or equivalent and (Eng Mgt 5414 or Math 3103 or Math 3108) (Co-listed with Math 6665).

ENG MGT 6413 Advanced Engineering Management Science (LEC 3.0)
Solving of managerial problems utilizing management science techniques. Problems are analyzed, modeled and solved using such techniques as linear, goal, dynamic, programming, simulation, statistical analysis or other non-linear methods. Solutions will involve the use of personal or mainframe computers. A study of the current literature in management science will also be conducted. Prerequisite: Eng Mgt 5414 or graduate standing.

ENG MGT 6415 Risk Modeling and Optimization under Uncertainty (LEC 3.0)
Risk analysis of products and systems will be explored. Traditional probabilistic risk assessment techniques will be covered along with recent approaches (i.e., stochastic programming, robust optimization, and dynamic programming) that use historical data based risk models to realize optimal risk management. Prerequisites: Graduate standing. (Co-listed with Sys Eng 6110).

ENG MGT 6510 Technological Innovation Management (LEC 3.0)
Technological innovation is new technology creating new products and services. This course studies the issues of managing technological innovation under four topics: 1) Innovation; 2) New Ventures; 3) Corporate Research & 4) R&D Infrastructure. Prerequisite: Eng Mgt 5111.

ENG MGT 6511 Advanced Marketing Management (LEC 3.0)
Study of marketing decision areas in the technically based firm, including product selection and development, marketing research, market development, distribution, advertising, and promotion. Pricing policies including legal aspects and problems in selecting, training and controlling field sales force. Examination of interaction within consumer and industrial marketing environments. Prerequisites: Eng Mgt 5111, Econ 1200.
ENG MGT 6610 Advanced Production Management (LEC 3.0)
Examination of responsibilities of production manager in the technological enterprise for providing finished goods to meet the quality, price, quantity and specification needs of the market place. Study of functions of production manager. Quantitative approach to decision making in production management. Prerequisites: Senior or graduate standing and advanced mathematical modelling competence.

ENG MGT 6611 Lean Systems (LEC 3.0)
Lean Systems embodies a total enterprise philosophy built on removing waste. Concepts such as flow, just-in-time, lead times, inventory turns, standardized work, pull system, value streams, quick changeover, workplace organization, and visual controls are discussed to improve system performance. Prerequisite: Graduate standing.

ENG MGT 6710 Design for Six Sigma (LEC 3.0)
Principles of Design for Six Sigma for product development. Topics include tools and methods including quality function deployment, concept generation, concept selection, product modeling, process development, DFX strategies, failure mode and effects analysis, design of experiments, TRIZ, and robust design. Prerequisite: Eng Mgt 5710.

ENG MGT 6711 Quality Engineering (LEC 3.0)
This course is an examination of the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Prerequisites: Eng Mgt 5711 and Math 3329 or equivalent.

ENG MGT 6713 Tolerance Design (LEC 3.0)
This course is an examination of the theory and practice of allowance allocation for high quality and low cost manufacture of mass-produced consumer products, including technology intensive products, such as automobiles, trucks, military and commercial airplanes, computers and consumer electronics. Prerequisite: Eng Mgt 5711 or equivalent.

Environmental Engineering (ENV ENG)

ENV ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.

ENV ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Comp Eng 5070, Elec Eng 5070, Civ Eng 5070).

ENV ENG 5360 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Civ Eng 3333, 3335, 3615. (Co-listed with Civ Eng 5360).

ENV ENG 5605 Environmental Systems Modeling (LEC 3.0)
Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env Eng/Civ Eng 2601, Env Eng/Civ Eng 2602 and Env Eng/ Civ Eng 3603; or Graduate standing. (Co-listed with Civ Eng 5605).

ENV ENG 5619 Environmental Engineering Design (LAB 1.0 and LEC 2.0)
Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 3615 or Env Eng 3615. (Co-listed with Civ Eng 5619).

ENV ENG 5630 Remediation of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0)
Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Civ Eng 3615, Geo Eng 5237 or Graduate Standing. (Co-listed with Civ Eng 5630).

ENV ENG 5635 Phytoremediation and Natural Treatment Systems: Science and Design (LEC 3.0)
Students learn the scientific basics of chemical transport in soil and groundwater and learn fundamental plant physiology and processes. Students then learn how these processes are utilized in design of phytoremediation and natural treatment systems, including the most up to date literature and design guidance available. Prerequisite: Env Eng 3615 or Civ Eng 3615 or graduate standing. (Co-listed with Civ Eng 5635).

ENV ENG 5640 Environmental Law And Regulations (LEC 3.0)
This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting), Safe Drinking Water Act, OSGA, TSCA, RCRA, and CERCLA. Case studies will be emphasized. (Co-listed with Civ Eng 5640).

ENV ENG 5642 Sustainability, Population, Energy, Water, and Materials (LEC 3.0)
This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 5642 and Arch Eng 5642).
ENV ENG 5650 Public Health Engineering (LEC 3.0)
A comprehensive course dealing with the environmental aspects of public health. Prerequisite: Civ Eng 2601 with grade of "C" or better. (Co-listed with Civ Eng 5650).

ENV ENG 5660 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 3330 or equivalent; or graduate standing. (Co-listed with Civ Eng 5660).

ENV ENG 5662 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 3330 or equivalent; or graduate standing. (Co-listed with Civ Eng 5662).

ENV ENG 5665 Indoor Air Pollution (LEC 3.0)
By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 2601 or Mech Eng 5571 or Graduate Status. (Co-listed with Civ Eng 5665 and Arch Eng 5665).

ENV ENG 5670 Solid Waste Management (LEC 3.0)
A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisite: Civ Eng 2601 with grade of "C" or better; or graduate standing. (Co-listed with Civ Eng 5670).

ENV ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

ENV ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENV ENG 6010 Seminar (IND 0.0)
Discussion of current topics.

ENV ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

ENV ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of instructor.

ENV ENG 6600 Chemical Principles In Environmental Engineering (LEC 3.0)
The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Civ Eng 6600).

ENV ENG 6601 Biological Principles In Environmental Engineering Systems (LAB 1.0 and LEC 2.0)
Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Civ Eng 6601).

ENV ENG 6602 Environmental Chemistry (LEC 2.0 and LAB 1.0)
This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Civ Eng 6602).

ENV ENG 6608 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0)
Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 2601 or equivalent, with a grade of "C" or better. (Co-listed with Civ Eng 6608).

ENV ENG 6611 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Civ Eng 6611 and Chem Eng 6330).

ENV ENG 6612 Biological Operations In Environmental Engineering Systems (LEC 3.0)
Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion process. Prerequisite: Civ Eng 3330 or equivalent. (Co-listed with Civ Eng 6612).

ENV ENG 6671 Industrial And Hazardous Waste Treatment (LAB 1.0 and LEC 2.0)
Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Civ Eng 6671).
EXP ENG 5000 Special Problems *(IND 1.0-3.0)*
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EXP ENG 5001 Special Topics *(LEC 1.0 and LAB 2.0)*
This course is designed to give the department an opportunity to test a new course. Variable title.

EXP ENG 5112 Explosives Handling and Safety *(LEC 3.0)*
Basic handling & safety for explosives, explosive devices and ordnance related to laboratory handling, testing, manufacturing & storage, for both civil and defense applications. Classroom instruction only. Prerequisite: Junior Standing or above.

EXP ENG 5513 Stage Pyrotechnics and Special Effects *(LAB 2.0 and LEC 1.0)*
Use of energetic materials in close proximity to audiences. Provide participants with training preparing for Missouri Pyrotechnics Display Operators License. Covers: close proximity indoor and outdoor pyrotechnics and special effects. Working with stage crews and talent, safety and permitting. Prerequisites: Both Chem 1310 and Chem 1319 or their equivalent; US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.

EXP ENG 5514 Display Fireworks Manufacturing *(LEC 1.0 and LAB 2.0)*
Theory and practice of manufacturing display fireworks. Focusing on safety, chemical interaction, color development, basic theory, state and federal law. The lab will include hands on building of ball and canister shells and other pyrotechnic effects. Prerequisites: Chem 1310, Chem 1319, Chem 1100; one of Econ 1100, Econ 1200, Eng Mgt 1210; Successful background check.

EXP ENG 5555 Computer Fired Pyrotechnic Show Design and Firing System Operation *(LAB 2.0 and LEC 1.0)*
Students will learn to use music editing, electronic firing system operation and Fire One pyrotechnic choreography and simulation software to design their own pyromusical show programs. Creation of a musical sound track, selecting the fireworks and choreographing to the musical score. Create, setup, diagnose and fire a pyrotechnic show. Prerequisites: Exp Eng 5512 or Exp Eng 5513 and successful background check.

EXP ENG 5612 Principles of Explosives Engineering *(LEC 2.0 and LAB 1.0)*
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Min Eng 5612).

EXP ENG 5622 Blasting Design And Technology *(LAB 1.0 and LEC 2.0)*
Overview of how explosives are applied in various industrial settings. Focus is placed on the general application, identification, and necessity of explosives in industry. Topics include explosive use in surface and underground mining, road development, construction, utility placement, demolition, oil, gas, and underwater.

EXP ENG 5711 Explosives in Industry *(LEC 3.0)*
Provide participants with basics and solid grounding in the equipment, techniques and processes required for the demolition and remediation of mine plant and processing equipment sites and non-mining structures such as buildings, factories, bridges, etc. Field trip required. Prerequisites: Preceded or accompanied by Civ Eng 2200 or Mech Eng 2340; US citizen or permanent resident; Successful background check.

EXP ENG 5713 Demolition of Buildings and Structures *(LAB 1.0 and LEC 2.0)*
Overview of special, less common uses of energetic materials and how they can be applied as a functional tool. Topics include the use of energetics in aerospace, explosive ordnance, oil field development, welding, pyrotechnics, theatrics, and cinematic special effects.

EXP ENG 5914 Explosives Manufacturing *(LEC 3.0)*
History of industrial explosives from discovery to what is used today. Manufacturing processes for packaged and bulk explosives are explored along with specialty explosives such as detonating cord, cast boosters, detonators, shaped charges, and commercial fireworks. Field manufacturing of explosives by mixing or gassing is also covered.
EXP ENG 5922 Tunneling & Underground Construction Techniques (LAB 1.0 and LEC 2.0)
Mechanical and conventional excavation techniques in underground tunneling and construction. Topics include tunneling layouts design, equipment and performance modeling, ground control systems including support, drainage, and structural integrity. Construction specifications, advance rate and contractual and cost estimation. Prerequisite: Consent of instructor. (Co-listed with Min Eng 5922).

EXP ENG 6000 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

EXP ENG 6001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

EXP ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

EXP ENG 6070 Graduate Cooperative Experience (LAB 3.0)
Students on an approved internship will complete a project designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge in the work setting. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

EXP ENG 6080 Industry Project (LAB 3.0)
Students who are currently employed may complete a project in their work setting designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

EXP ENG 6099 Research (IND 0.0-6.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisites: Consent of instructor required.

EXP ENG 6112 Explosives Regulations (LEC 3.0)
Comprehensive coverage of the federal regulations governing the explosives industry, including those governing storage of explosives (ATF), transportation of explosives (DOT and TSA), the environment (EPA) and use of explosives (OSM, MSHA and OSHA). Prerequisite: Graduate standing.

EXP ENG 6212 Theory Of High Explosives (LEC 3.0)
Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Graduate Standing. (Co-listed with Min Eng 6632).

EXP ENG 6292 Research Methods (LEC 3.0)
Foundations, dimensions, and methods for designing and investigating research problems. Focus on fundamentals and applied research, research methods, literature review, experimental design and experimentation, dissertation composition, concepts of originality and intellectual property. Prerequisites: PhD students only. (Co-listed with Min Eng 6992).

EXP ENG 6312 Scientific Instrumentation For Explosives Testing & Blasting (LEC 1.0 and LAB 2.0)
Application of scientific principles, equipment description and operation for instrumentation of explosive events including blasting. Topics: Blast chamber design, set up, high-speed photography, motion detection and measurement, explosives sensitivity testing, explosives properties testing, vibration measurement & analysis, destruction & demilitarization. Prerequisite: Exp Eng 5612 and Successful background check.

EXP ENG 6412 Environmental Controls For Blasting (LAB 1.0 and LEC 2.0)
Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 5612, Successful background check. (Co-listed with Min Eng 6622).

EXP ENG 6464 Advanced Blast Vibration Analysis and Prediction (LEC 3.0)
Advanced Blast Vibration prediction methodologies. Includes typical methods including scaled distance, linear regression, signature hole analysis, and modern improved signature hole analysis. Structural response and damage criteria for blast vibrations including considerations for frequency spectra and amplitude. Prerequisite: Exp Eng 5612.

Geological Engineering (GEO ENG)

GEO ENG 5090 Geological Engineering Design (LEC 2.0 and LAB 1.0)
Geological engineering design is an open-ended project course requiring the collection of data, analysis and synthesis of that data and design of a socially acceptable, economical solution to the selected problem. Oral and written reports are required. Prerequisite: To be taken in the semester before graduation.
GEO ENG 5092 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisites: Senior standing, instructor approval, Geo Eng 5211, Geo Eng 5247. (Co-listed with Met Eng 4510 and Cer Eng 4510).

GEO ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEO ENG 5144 Remote Sensing Technology (LAB 3.0)
Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Geology 1110. (Co-listed with Geology 4310).

GEO ENG 5146 Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0)
Applications of Geographic Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 3175 or consent of instructor. (Co-listed with Geology 4821).

GEO ENG 5153 Regional Geological Engineering Problems In North America (LEC 3.0)
A physiographic approach to engineering materials and problems. Course emphasizes the distribution and engineering characteristics of soil and rock to construction and site problems and includes aggregates, foundations, excavations, surface and ground water, slope stability and arctic conditions.

GEO ENG 5152 Soil Science In Engineering Practice (LEC 3.0)
A study of the ways in which soils and geologic conditions influence engineered projects. Soil formation, soil chemistry and properties to include composition, organic component, ion exchange and water relationships as well as erosion control and revegetation will be covered. Prerequisite: Geo Eng 3175.

GEO ENG 5173 Geologic Field Methods (LAB 3.0)
Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.

GEO ENG 5174 Geological Engineering Field Methods (LAB 3.0)
Instruction in methods of field investigation required for geological engineering studies. Course will include procedures for qualitative and quantitative data collection for characterizing surficial geologic conditions, groundwater and surface water investigations, and other engineering activities. Written reports and field trip required.

GEO ENG 5211 Introduction to International Engineering and Design Lab (LAB 1.0)
The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by GEO ENG 5247.

GEO ENG 5233 Risk Assessment In Environmental Studies (LEC 3.0)
This course will present the concepts required to assess the human health and environmental risks resulting from contaminants in soil and groundwater. Course topics include evaluation of data sets, exposure calculation, chemical fate and transport, and development of conceptual site models.

GEO ENG 5235 Environmental Geological Engineering (LEC 3.0)
Introduction to engineering geologic mapping for site selection for solid waste disposal facilities; landfill site selection, design, permitting, construction, operation, and closeout/reclamation. Prerequisites: Geo Eng 3175, accompanied or preceded by Civ Eng 3715.

GEO ENG 5237 Geological Aspects Of Hazardous Waste Management (LEC 3.0)
Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geological characterization of facility sites; design of impoundments, storage and containment facilities; ground water monitoring and protection; site permitting and licensing planning. Prerequisite: Geo Eng 3175.

GEO ENG 5239 Groundwater Remediation (LEC 3.0)
A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physico-chemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Various computer programs developed to assist in preliminary selection and design of remediation technologies will be used. Prerequisite: Geo Eng 5331.

GEO ENG 5247 Introduction to International Engineering and Design (LEC 2.0)
A multi-disciplinary design course focused on sustainable design and technology transfer to developing countries. Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 5211.

GEO ENG 5247 Introduction to International Engineering and Design (LAB 1.0)
The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by GEO ENG 5247.

GEO ENG 5276 Advanced Environmental Aspects Of Mining (LEC 3.0)
Applied and fundamental research issues pertaining to: permitting -- the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Course project. (Co-listed with Min Eng 5742).
GEO ENG 5315 Advanced Statistical Methods in Geology and Engineering (LEC 3.0)
Application of statistical methods to study of geologic materials and practices, with emphasis on reliable interpretation of laboratory and field data for water, hydrocarbon, and mineral exploration, research, and engineering as well as other aspects of geological engineering. Prerequisites: Geo Eng 4115 or Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117.

GEO ENG 5320 Groundwater Modeling (LEC 3.0)
This course is an introduction to advanced modeling techniques for understanding flow and transport in porous media under different hydrologic conditions. Emphasis is placed on both theoretical and practical modeling considerations. Computer demonstrations are incorporated. Practical applications are emphasized. Prerequisite: Civ Eng 3330 or Geo Eng 5331.

GEO ENG 5331 Subsurface Hydrology (LEC 3.0)
Introduction to the theory and engineering concepts of the movement of subsurface fluids. Properties of water and other subsurface fluids. Hydraulic characteristics of earth materials. Engineering problems related to subsurface fluids. Prerequisites: Geo Eng 1150, Math 3304.

GEO ENG 5332 Fundamentals of Groundwater Hydrology (LEC 3.0)
Focus on fundamental analysis and survey of groundwater hydrology with emphasis on practical geo-environmental and subsurface hydrology issues of interest to working professionals. Topics will include general hydrology, surface and subsurface interconnection, basic groundwater flow and well test analysis, and a brief intro to contaminant transport.

GEO ENG 5381 Intermediate Subsurface Hydrology And Contaminant Transport Mech (LEC 3.0)
A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is put on waterrock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Civ Eng 3330 & Geo Eng 5331.

GEO ENG 5415 Soil Mechanics for Geoprofessionals (LEC 3.0)
The basic principles of soil mechanics necessary for professionals to practice in the field of geosconstruction. Topics related to the practical aspects of engineering include: soil classification, index properties, water flow through soils, compaction, compressibility, and shear strength. These basic principles will be applied to real world problems.

GEO ENG 5441 Engineering Geology And Geotechnics (LEC 3.0)
Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Geo Eng 3175.

GEO ENG 5443 Subsurface Exploration (LAB 1.0 and LEC 2.0)
Lectures and field and laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Geo Eng 1150.

GEO ENG 5471 Rock Engineering (LEC 3.0)
Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Geo Eng 3175.

GEO ENG 5542 Military Geology (LEC 3.0)
This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geology, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Geo Eng 3175 or graduate standing.

GEO ENG 5556 Renewable Energy Systems (LEC 3.0)
Introduction to the theory and performance prediction of typical renewable energy systems such as, but not limited to, those based on energy from the sun, wind and water, and geothermal. The use of environmental data, including stochastic modeling, for renewable energy system (including wind turbine, photovoltaic, and geothermal) design is addressed. Prerequisites: Math 3304, Physics 2135, and preceded or accompanied by Geo Eng 4115 or any Probability and Statistics class. Junior or senior standing is required.

GEO ENG 5575 Aggregates And Quarrying (LEC 3.0)

GEO ENG 5642 Military Geology (LEC 3.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5736).

GEO ENG 5736 Geophysical Field Methods (LEC 2.0 and LAB 1.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 5761 and Civ Eng 5750).

GEO ENG 5761 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 2222. (Co-listed with Geophys 5782).

GEO ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
GEO ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEO ENG 6010 Seminar (RSD 1.0)
Discussion of current topics. Prerequisite: Graduate student.

GEO ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEO ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEO ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

GEO ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEO ENG 6146 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)
Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 5146. (Co-listed with Geology 6341).

GEO ENG 6235 Advanced Concepts Of Environmental Geological Engineering (LEC 3.0)
Application of the principles of geology to the solution of engineering problems in environmental protection and remediation. Topics will include the study of geologic processes and the evaluation of geologic materials as they affect the potential for groundwater contamination, susceptibility of soils to erosion, characterization of the geologic environment for site suitability and the analysis of the criteria necessary for the selection of technologies for minimizing environmental impact. Prerequisite: Graduate level course in environmental geologic studies.

GEO ENG 6237 Advanced Geological & Geotechnical Design For Hazardous Waste Mgt (LEC 3.0)
Geological and geotechnical design factors for hazardous waste management facilities and remedial actions (cleanup) of uncontrolled hazardous waste sites. Prerequisite: Geo Eng 5237 or consent of instructor.

GEO ENG 6331 Advanced Subsurface Hydrology (LEC 3.0)
Advanced treatment of selected topics in subsurface hydrology, including groundwater contamination, contaminant transport, land disposal of wastes, aquifer test analysis, injection well technology, etc. Applied hydrogeologic site analysis and flow and transport modeling through solution of selected case examples. Prerequisite: Geo Eng 5331 or equivalent.

GEO ENG 6332 Numerical Methods In Subsurface Flow (LEC 3.0)
Development of governing balance equations, constitutive laws and mathematical models of groundwater flow and contaminant transport in porous media. Solution of mathematical models by finite difference and finite element methods for various boundary and initial conditions. Prerequisites: Geo Eng 5331, Comp Sci 1970.

GEO ENG 6400 Practice Oriented Project (IND 3.0)
This class will consist of a single term project. Students will, in consultation with the instructor, pick a topic relevant to their studies, and produce a comprehensive, in depth, professionally written report, including a literature review on the state of the practice on that topic. Prerequisites: Limited to students enrolled in the Masters of Engineering (M.E.) in Geotechnics Program.

GEO ENG 6407 Inca Civilization Geotechnical Engineering Practices (LEC 3.0)
An in-depth study of geotechnical engineering practices in the mountains of Peru, including the Cuzco-Machu Picchu corridor, with emphasis on the inter-relationships between tectonics, geology, geomorphology, climate, hydrology, agriculture, quarrying, construction practices, irrigation, culture and history. A week-long field trip to Peru during Spring Break is required at student’s expense. Prerequisite: Geo Eng 1150 or Civ Eng 3715 or Geo Eng 5471 or equivalent; Graduate standing. (Co-listed with Civ Eng 6760).

GEO ENG 6440 Geotechnical Construction Practice (LEC 3.0)
Advanced level lecture topics on procedures used for site characterization, standards for earthquake grading and construction, including embankments, building pads, retention structures, roads, levees, and earthen dams. Specific emphasis on preparation of documents involved in such work and engineer's responsibilities. Prerequisite: Geo Eng 5441.

GEO ENG 6447 Discontinuous Rock (LEC 3.0)
Nature and properties of discontinuous rock masses, genesis and properties of joints, role of joints in rock shear strength, slope of stability of jointed rock, fracture flow hydrogeology. Modeling of the mechanical behavior of fractured rock. Prerequisite: Min Eng 4823 or Geo Eng 5471.

GEO ENG 6625 Applications in Geological Engineering (LEC 3.0)
Content is focused on practical aspects of geological engineering. Geotechnical, environmental and geohydrologic case studies are presented to illustrate concepts and relate theory to applications.
GEO ENG 6736 Advanced Geophysical Methods (LEC 1.0 and LAB 2.0)
Geophysical field data will be acquired at selected study sites with the objective of imagining the shallow subsurface and/or built structures. Registrants will process and interpret the acquired non-invasive imaging data using ground truth as a constraint. Prerequisite: Graduate Standing.

GEO ENG 6782 Surface Waves (MASW) and Ground Penetrating Radar (GPR) (LAB 1.0 and LEC 2.0)
Geological engineering applications of surface wave and ground penetrating radar methods are emphasized. Field data will be acquired, processed and interpreted. Prerequisites: Geo Eng 1150 or Civ Eng 3715 or equivalent, and graduate standing.

GEO ENG 6784 Advanced Engineering And Environmental Geophysics (LEC 3.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential induced polarization, seismic, electromagnetic and GPR methods as applied to the solution of engineering and environmental problems. Prerequisite: Admittance into USAES-S&T Cooperative Degree Program. (Co-listed with Geophys 5251).

Geology (GEOLOGY)

GEOLOGY 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOLOGY 5001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOLOGY 5010 Seminar (LEC 0.50)
Discussion of current topics.

GEOLOGY 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOLOGY 5085 Internship (IND 3.0)
Students will select, with their committee's advice, problems for investigation and preparation of a graduate research proposal. Problems must provide higher level experiential learning consistent with a graduate degree in geology. Assessment is based upon the quality of written and oral presentations and supervisor's evaluation. Repeatable for credit. Prerequisite: Graduate Standing.

GEOLOGY 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEOLOGY 5111 Advanced Physical Geology (LEC 3.0)
Examination of topics concerned with the physical properties of earth materials, processes affecting change of the surface and interior of the earth, and the driving forces causing these changes. Weekly critical assessment of literature, and an oral presentation and term paper required. Prerequisite: Consent of instructor.

GEOLOGY 5121 Advanced Historical Geology (LEC 2.0 and LAB 1.0)
Study of the physical and biological history of the Earth beginning with the origin of the solar system up to the present. Emphasis will be placed on processes that shaped the Earth and its ecosystems. Prerequisite: Entrance requirements for the MST program in Earth Science.

GEOLOGY 5311 Depositional Systems (LEC 3.0)
Development of three dimensional depositional models using Walther's Law, Walther's Warning and seismic stratigraphy. Emphasis on overall geometries and internal porosity and permeability characteristics of aquifers and hydrocarbon reservoirs. Includes 3-D models for clastic, carbonate and evaporate sequences. Prerequisites: Geology 1110 or Geo Eng 1150; accompanied or preceded by both Geology 3310 and Geology 3620.

GEOLOGY 5411 Advanced Geochemistry (LEC 3.0)
A study of the absolute and relative abundance of elements and isotopes in the Earth, principles of element transport, formation of the Earth's crust, mineral deposits, and soils. Field trip fee required. Prerequisite: Geology 3410.

GEOLOGY 5511 Applied Petroleum Geology (LEC 1.0 and LAB 2.0)
The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Geological and economical techniques for evaluating hydrocarbon bearing reservoirs are presented, with methods for decisionmaking under conditions of extreme uncertainty. Prerequisite: Geology 5411.

GEOLOGY 5513 Petroleum Geology (LAB 1.0 and LEC 2.0)
Principles of origin, migration, and accumulation of oil and gas. The laboratory introduces the procedures used for exploration, and development of hydrocarbon resources. Prerequisites: Geology 1110 or Geo Eng 1150; accompanied or preceded by both Geology 3310 and Geology 3620.

GEOLOGY 5521 Coal Petrology (LEC 3.0)
Formation, composition, and properties of coals. Discussion of the geology of selected coal deposits, the analysis of coal, and the optical identification of coal minerals. Prerequisite: Permission of instructor.

GEOLOGY 5611 Granites And Rhyolites (LAB 1.0 and LEC 3.0)
Processes governing the generation and crystallization of felsic magma will be covered, with specific reference to: 1) crust vs mantle sources, 2) melt migration and emplacement, 3) magma chamber dynamics, 4) the volcanic-plutonic connection, and 5) the relationship to tectonic setting. A field trip at the student's expense is required. Prerequisite: Geology 2620.
GEOL 5741 Advanced Igneous Petrology (LEC 2.0 and LAB 1.0)
The genesis of eruptive rocks as evidenced by the physico-chemical conditions of formation of their constituent minerals. A critical examination of various magmatic processes. Use of advanced petrographic techniques. Prerequisites: GEOL 4631.

GEOL 5671 Clay Mineralogy (LAB 1.0 and LEC 2.0)
Mineral structure, geochemical properties, occurrence, environment, and uses of clays. Determination of physical properties, optics, x-ray diffraction, and thermal features of clays. Field trip fee required. Prerequisites: GEOL 2610 and 3410, or Chem 2310, or Civ Eng 5715, or Geo Eng 5172.

GEOL 5679 Field and Laboratory Studies in Earth Science (LAB 3.0)
Hands-on laboratory and field experiences in the Earth Sciences. This course is designed to be taught in an intensive three week session during the summer on the S&T campus. Prerequisites: GEOL 2096 or 5121 or equivalents.

GEOL 5681 Lidar Principles and Application (LEC 3.0)
Provides a comprehensive understanding of light detection and ranging (lidar) technology as it has been developed for commercial use; various methods of deploying technology for collection of data for mapping, engineering and science, and application of the data using specialized software for editing and processing point cloud data. Assumes GIS experience. Prerequisite: Senior or graduate standing.

GEOL 5741 Micropaleontology (LAB 1.0 and LEC 2.0)
This course studies the fossil and soft-body characteristics of bacteria, protists, microinvertebrates and organic-walled microfossils (palynomorphs). Focused discussions on systematics, evolutionary histories, paleoecology, and geologic applications of the microfossil groups. Extraction of foraminifera and palynomorphs from rocks in lab. Prerequisite: Geology 3631.

GEOL 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOLOGY 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOL 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.

GEOL 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOL 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEOL 6085 Internship (IND 3.0)
Students will select, with their committee’s advice, problems for investigation and preparation of a graduate research proposal. Problems must provide higher level experiential learning consistent with a graduate degree in geology. Assessment is based upon the quality of written and oral presentations and supervisor’s evaluation. Repeatable for credit. Prerequisite: Graduate standing.

GEOL 6097 Advanced Geologic Field Methods (LEC 3.0)
Advanced instruction in planning and implementation of geologic field campaigns, development of an appropriate scientific plan, including logistics, safety, and supervision of field personnel in a manner consistent with professional practices. Emphasis placed upon reflection on projects outcomes supervised with faculty oversight. Field Trip fee required.

GEOL 6098 Advanced Geologic Field Methods (LEC 3.0)
Advanced instruction in theory and practice of qualitative/quantitative description of spatial relationships of rock types in areas exhibiting complex deformation. Emphasis on expl. learning where students plan, implement, and reflect on outcomes for sev. scientific field campaigns in a manner consistent with prof. scientific practices. Field trip fee required.

GEOL 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

GEOL 6211 Geodynamics (LEC 3.0)
The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisites: Math 2222 and Geology 3310. (Co-listed with Pet Eng 6711).
GEOLOGY 6311 Advanced Structural Geology (LAB 1.0 and LEC 2.0)
The course provides theoretical background, analytical techniques, and hands-on experience for analyzing geologic structures at a variety of scales hand sample to global. Prerequisites: Geology 3310, Geophys 4096.

GEOLOGY 6321 Analytical Structural Geology (LAB 1.0 and LEC 2.0)
The course provides theoretical background, analytical techniques, and hands-on experience, for quantifying processes that lead to the formation and evolution of rocks and structures produced as a result of deformation at a variety of scales - hand sample to global. Poster - and oral - presentations, and a research paper required. Prerequisites: Geology 3310, Geophys 4096.

GEOLOGY 6331 Geotectonics (LEC 3.0)
A critical study of the origin, and differentiation of the earth, evolution of the crust, and plate tectonics. Geology of the continents and ocean basins. Regional tectonic analysis of precambrian shields, platforms, orogenic belts, and a review of internal energy sources. Emphasis is on North America. Prerequisite: Geology 3310.

GEOLOGY 6341 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)
Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 5146. (Co-listed with Geo Eng 6146).

GEOLOGY 6411 Advanced Isotope Geochemistry (LEC 2.0 and LAB 1.0)
The use of radiogenic and stable isotopes in geology in the study of the evolution of Earth, crust, mantle, and the Solar System as well as applications to geothermometry, ore petrogenesis, paleontology, and the global climate system. Prerequisites: Geology 2620, 3620, 3410.

GEOLOGY 6421 Environmental Geology (LEC 3.0)
Overview of environmental problems facing humans. Emphasis will be placed on surface and groundwater pollution, geological hazards, and pressures on Earth's ecosystems and natural resources by urbanization and population growth. Prerequisites: GEOLOGY 1110 or 1120 or equivalents.

GEOLOGY 6511 Advanced Petroleum Geology (LAB 2.0 and LEC 1.0)
The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Various types of oil and gas accumulations are reviewed in detail. Study of criteria useful in evaluating the petroleum potential of undrilled areas. Special investigation assignment is required. Prerequisite: Geology 3310, Geology 5513, Geology 5661, or Geology 6811.

GEOLOGY 6521 Advanced Ore Microscopy (LEC 1.0 and LAB 2.0)
A study of ore suites utilizing various advanced, quantitative ore microscopy techniques including hardness, spectral reflectance, indentation, color, rotation property measurements, fluid inclusion geothermometry, and salinity measurements. Laboratory study includes demonstration and operation of the luminoscope and other microbeam techniques. Prerequisite: Geology 4521.

GEOLOGY 6531 Applied Ore Microscopy (LEC 1.0 and LAB 2.0)
Application of ore microscopic and petrographic techniques to problems in ore beneficiation, pelletizing, sintering, smelting, refining, refractories, cement, mining, and exploration. Discussions and laboratories are based upon industrial case histories. Prerequisite: Geology 4521.

GEOLOGY 6541 Geology of Natural Resources (LEC 3.0)
The origin and distribution of economically important natural resources including soils, water resources, metals, non-metals, building materials, petroleum, and other energy resources. Prerequisites: GEOLOGY 1110 or 1120 or equivalents.

GEOLOGY 6551 Ore Deposition (LAB 1.0 and LEC 2.0)
An advanced study of mineral deposits, time and space in deposition, theories of deposition and their effect on exploration. Discussions based on maps, logs, and samples from the world's typical mineral deposits. Two all day field trips at student expense required. Prerequisite: Geology 3511.

GEOLOGY 6611 Advanced Palynology (LEC 1.0 and LEC 2.0)
Study of organic-walled microfossils, and the processes of sporopollenin preservation, sedimentation and palynofacies. Chronicle of Phanerozoic palynology in lectures. Major emphasis on independent palynostratigraphic research and applications, such as biostratigraphy, paleoclimatology and paleoenvironments. Prerequisite: Geology 3631 or Geology 5741.

GEOLOGY 6621 Clastic Sedimentary Petrology (LAB 1.0 and LEC 2.0)
Petrology and petrography of clastic sedimentary rocks. Emphasis on origin, diagenesis and description of clastic, sedimentary rocks. Prerequisite: Geology 3620.

GEOLOGY 6651 Granite and Rhyolite Petrogenesis (LAB 1.0 and LEC 3.0)
The origin of granites and rhyolites with respect to extreme fractionation, crustal anatexis, magma mixing, and tectonic setting will be explored through critical reading of the literature and examination of hand samples and thin sections from classic geologic terranes. A research paper is required as well as a field trip at the student's expense. Prerequisite: Geology 2620.

GEOLOGY 6711 Advanced Paleoclimatology and Paleoenecology (LEC 3.0)
Advanced study of paleoclimatic and paleoecologic processes since the Archean, and the interpretation of Holocene climate changes, including human impacts. Extensive presentations and discussions of current ideas and techniques in paleoclimatic studies. Prerequisite: Geology 3620.

GEOLOGY 6811 Sedimentary Basin Analysis (LEC 3.0)
An advanced study of stratigraphic, diageneric and tectonic processes in sedimentary basins. Prerequisites: Geology 3310, 3620, 3410 or 4441 or 4451.

Geophysics (GEOPHYS)

GEOPHYS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
GEOPHYS 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOPHYS 5010 Seminar (LEC 0.50)
Discussion of current topics.

GEOPHYS 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOPHYS 5096 Global Tectonics (LEC 3.0)
An integrated view of the Earth's structure and dynamics with an emphasis on information gained through geophysical methods. Topics include seismology, heat flow, gravity, rheological and compositional structure, plate motions and intermotions, and mantle driving mechanisms for plate tectonics. Prerequisite: Geology 3310.

GEOPHYS 5099 Research (IND 0.0-0.15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEOPHYS 5202 Exploration and Development Seismology (LEC 2.0 and LAB 1.0)
Principles of reflection seismology as applied to the delineation of geologic structures and the determination of stratigraphy and lithology. Emphasis on both the capabilities and limitations of the seismic method. The laboratory utilizes both modeled and actual seismic data. Prerequisites: Math 1208 or Math 1214; Geology 1110 or Geo Eng 1150.

GEOPHYS 5211 Seismic Stratigraphy (LEC 2.0 and LAB 1.0)
A study of the seismic expression of depositional models. Reflection patterns and reflection amplitudes are interpreted to determine bed thicknesses, fluid content, depositional environment, and lithology. Special data acquisition and processing techniques are examined. Prerequisites: Geophys 4521, Geology 3310, 3620.

GEOPHYS 5221 Wave Propagation (LEC 3.0)
A study of Hamilton's principle and energy theorems, fundamentals of plane wave theory, waves in stratified fluids, elastic waves in solids, electromagnetic and hydromagnetic radiation, and Allen's functions and point sources. Prerequisites: Geophys 281, 3221.

GEOPHYS 5231 Seismic Data Processing (LEC 2.0 and LAB 1.0)
Introduction to seismic data processing. Topics to be covered include statics corrections, filtering, velocity analysis, deconvolution, stacking and migration. The course has a field component to record seismic data. If this is offered in the summer, an off-campus trip may be needed. Extra fee may be charged to cover the field expenses. Prerequisites: Geophys 3210 or Geophys 5202.

GEOPHYS 5241 Advanced Electrical And Electromagnetic Methods In Geophysical Exp (LAB 1.0 and LEC 2.0)
Theory of the electrical geophysical methods as applied to subsurface investigations addressing geologic, engineering, groundwater and contaminant transport problems. Course content includes both passive and active methods and recent advances in the application of these methods. Course will include a field component illustrating application of techniques to local problems. Prerequisites: Geophys 3251, Math 2222.

GEOPHYS 5261 Computational Geophysics (LAB 2.0 and LEC 1.0)
Scientific programming in a UNIX/Linux environment, with emphasis on solving geophysical problems such as linear and nonlinear inversion, spectral analysis, seismicity, seismic wave attenuation, shear-wave splitting, and seismic tomography. Prerequisite: Geophys 3210.

GEOPHYS 5736 Geophysical Field Methods (LEC 2.0 and LAB 1.0)
Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5736).

GEOPHYS 5761 Transportation Applications of Geophysics (LAB 1.0 and LEC 2.0)
Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 5761 and Civ Eng 5750).

GEOPHYS 5782 Environmental and Engineering Geophysics (LAB 1.0 and LEC 2.0)
An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 2222. (Co-listed with Geo Eng 5782).

GEOPHYS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

GEOPHYS 6001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

GEOPHYS 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.
GEOPHYS 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

GEOPHYS 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

GEOPHYS 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

GEOPHYS 6211 Advanced Seismic Interpretation (LAB 1.0 and LEC 2.0)
The integration of geologic information, well log data and seismic information for interpreting the earth’s subsurface using advanced 3-D seismic interpretation software packages. Reservoir identification and evaluation as well as horizon and formation attributes are included. Prerequisites: Geophys 4210 or Geophys 5202.

GEOPHYS 6231 Advanced Seismic Data Processing (LAB 1.0 and LEC 2.0)
Theory and application of seismic data processing. Topics to be covered include convolution, correlation, deconvolution, 2-D filtering, migration and inversion. Prerequisites: Geophys 4251, 5231, Stat 3115.

GEOPHYS 6241 The Theory of Elastic Waves (LAB 1.0 and LEC 2.0)
A mathematical study of elastic waves in the layered earth. Prerequisites: Geophys 3210.

GEOPHYS 6251 Geophysical Inverse Theory (LEC 2.0 and LAB 1.0)
A study of inverse theory applied to geophysical data, focusing on the relationship between data and model spaces and ways to estimate model parameters via global and local optimization techniques. Prerequisites: Geophys 3210 or Graduate Standing in GGPE.

Info Science & Technology (IS&T)

IS&T 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IS&T 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

IS&T 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

IS&T 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

IS&T 5131 Foundations of Computer Architecture (LEC 3.0)
Design-oriented foundations of computer components and operation. Standard codes; number systems; base conversions; computer arithmetic; boolean algebra; operating system components including memory management, device management; plus related computer architecture topics. Research paper required. Prerequisites: Graduate Standing, strong programming knowledge.

IS&T 5168 Law and Ethics in E-Commerce (LEC 3.0)
Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. (Co-listed with Philos 4368).

IS&T 5215 Technological Innovation Management and Leadership (LEC 3.0)
The course focuses on the knowledge and skills necessary for the development and implementation of effective strategies for the management of technology-based organizations. This involves: developing a general management perspective on technology and innovation, examining the problems of new product development, identifying distinctive technological competencies, licensing and marketing technologies, assessing the organizational and industrial context of technology. Prerequisite: Senior or Graduate Standing.

IS&T 5251 Technological Innovation Management and Leadership (LEC 3.0)
The course focuses on the knowledge and skills necessary for the development and implementation of effective strategies for the management of technology-based organizations. This involves: developing a general management perspective on technology and innovation, examining the problems of new product development, identifying distinctive technological competencies, licensing and marketing technologies, assessing the organizational and industrial context of technology. Prerequisite: Senior or Graduate Standing.

IS&T 5420 Business Analytics and Data Science (LEC 3.0)
Analysis of large business data sets via statistical summaries, cross-tabulation, correlation, and variance matrices. Techniques in model selection, prediction, and validation utilizing general linear and logistic regression, Bayesian methods, clustering, and visualization. Extensive programming in R is expected. Prerequisites: Calculus, Statistics, and Programming knowledge.

IS&T 5423 Foundations of Data Management (LEC 3.0)
Foundational concepts of database management systems. Issues in database architecture, design, administration, and implementation. Extensive use of SQL with Oracle to create and manage databases. Significant project dealing with triggers or stored procedures. Prerequisites: Graduate Standing, knowledge of MIS, programming ability.
IS&T 5520 Data Science and Machine Learning with Python (LEC 3.0)
Examines data science methodologies for scraping, manipulating, transforming, cleaning, visualizing, summarizing, and modeling large-scale data as well as supervised and unsupervised machine learning algorithms applied in various business analytics and data science scenarios. Python libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn are utilized. Prerequisites: One of Stat 3111, Stat 3113, Stat 3115, Stat 3117 and either IS&T 1552 or Comp Sci 1575; for Graduate Students: Graduate Standing and Knowledge of Calculus, Statistics, and Programming.

IS&T 5535 Machine Learning Algorithms and Applications (LEC 3.0)
Introduces techniques of modern machine learning methods with applications in marketing, finance, and other business disciplines. Topics include regression, classification, resampling methods, model selection, regularization, decision trees, support vector machines, principal component analysis, and clustering. R programming is required. Prerequisites: One of Stat 3111, Stat 3113, Stat 3115, Stat 3117 and either IS&T 1552 or Comp Sci 1575; or Graduate Standing with knowledge of calculus, statistics, and programming.

IS&T 5652 Advanced Web Development (LEC 3.0)
Advanced Web development techniques to provide dynamic interaction; methods for extracting and delivering dynamic information to/from Web servers - a hands-on approach. Emphasis on interaction with servers; mobile software development; processing of graphics and web video. Project work is required. Prerequisites: IS&T 1551 and IS&T 4654.

IS&T 5885 Human-Computer Interaction (LEC 3.0)
Introduction to the field of Human-Computer Interaction (HCI). Students examine issues and challenges related to the interaction between people and technology. The class explores the social and cognitive characteristics of people who use information systems. Students learn techniques for understanding user needs, interface prototyping & interface evaluation.

IS&T 5886 Prototyping Human-Computer Interactions (LEC 3.0)
This course explores novel HCI and UX technologies as well as methods and tools for creating system prototypes, including best practices and guidelines for optimal user experiences. Example concepts include mobile applications, behavioral monitoring, gamification, natural user interfaces, haptics, and computers as social actors. Prerequisite: Preceded or accompanied by IS&T 5885.

IS&T 5887 Human-Computer Interaction Evaluation (LEC 1.5 and LAB 1.5)
This course covers research and analysis methods and tools for evaluation of the impact of information technology systems on humans and organizations. The focus will be on practical evaluation with the goal of providing recommendations for improving system functionality and usability. Prerequisite: Preceded or accompanied by IS&T 5885.

IS&T 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

IS&T 6001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.
Materials Science & Eng (MS&E)

MS&E 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MS&E 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MS&E 5010 Seminar (RSD 0.0-6.0)
(Variable) Discussion of current topics.

MS&E 5040 Oral Examination (IND 0.0)
(Variable) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D students may be processed during intersession. Off-campus M.S. students must be enrolled in an oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MS&E 5060 Chemistry of Construction Materials (LEC 3.0)
The objective of the course is to utilize fundamental concepts of materials science and chemistry to understand, analyze, and describe the chemistry of construction materials. Special focus is given to describe composition-reactivity-microstructure-property relations in various cementitious materials. Prerequisites: At least Senior standing.

MS&E 5099 Research (IND 0.0-15)
(Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MS&E 5210 Tissue Engineering I (LEC 3.0)
The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with Bio Sci 5240).

MS&E 5220 Advanced Phase Equilibria (LEC 3.0)
Advanced aspects of unary, binary and ternary organic, phase equilibria. Includes practical examples of the applications of phase diagrams to solve engineering problems. Prerequisite: Graduate standing.

MS&E 5230 Energy Materials (LEC 3.0)
The objectives of the course are to understand how the rational design and improvement of chemical and physical properties of materials can lead to energy alternatives that can compete with existing technologies. Discussions on the present and future energy needs from a view point of multidisciplinary scientific and technological approaches. Prerequisite: Senior standing.
Graduate Catalog 2018-2019

MS&E 5310 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisites: Senior undergraduate standing. (Co-listed with BIO SCI 5210, CHEM ENG 5200).

MS&E 5517 Materials Selection in Mechanical Design (LEC 3.0)
This course will introduce the basics of materials selection in mechanical design. It will also introduce the benefits of computational materials and process selection. The students will also learn to use a commercially available materials selection software. This course will be offered as Distance Ed. Prerequisite: Met Eng 2110.

MS&E 5810 Introduction to Polymeric Materials (LEC 3.0)
A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Credit may not be given for both Chem 5810 and Chem 4810. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with Chem 5810).

MS&E 5819 Polymer Synthesis and Characterization Lab (LAB 1.0)
Laboratory experiments dealing with polymerization syntheses and solution, bulk and solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Credit may not be given for both Chem 5819 and Chem 4819. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810 or Chem Eng 5310, preceded or accompanied by Chem 1100 or Chem 5100 or an equivalent training program approved by S&T. (Co-listed with Chem 5819).

MS&E 5850 Introduction to Coating Chemistry (LEC 3.0)
Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Credit may not be given for both Chem 5850 and Chem 4850. Prerequisite: Chem 1320 or Met Eng 1210. (Co-listed with Chem 5850).

MS&E 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MS&E 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MS&E 6010 Seminar (RSD 0.0-6.0)
(Variable) Discussion of current topics.

MS&E 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MS&E 6060 Advanced Chemistry of Construction Materials (LEC 3.0)
To describe fundamental composition-reactivity-microstructure-property relationships in construction materials. Tests will include quizzes, written-exams, as well as a term paper and a presentation on a topic relevant to the course.

MS&E 6085 Internship (IND 0.0-15)
(Variable) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

MS&E 6099 Research (IND 0.0-15)
(Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MS&E 6110 Bonding, Crystallography, and Structure-Property Relationships (LEC 3.0)
Principles of electronic structure and chemical bonding in solids and their relationships to electrical, mechanical, thermal, and optical properties. An exploration of reciprocal lattices and tensor properties of crystals; consideration of the impact of crystal symmetry on anisotropy. The influence of defects and grain boundary phenomena on material behavior. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6120 Thermodynamics and Phase Equilibria (LEC 3.0)
Classical thermodynamic treatment of materials and material processing based on the 1st and 2nd Laws of Thermodynamics and phase equilibria considerations. The course will cover equilibria in gaseous systems, gas-solid reactions including passive and active oxidation, solution thermodynamics, phase equilibria in solution systems, and electrochemistry. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6130 Kinetic Theory for Materials (LEC 3.0)
Phenomenological and atomistic theories of diffusion in materials including discussion of short circuit diffusion and ionic diffusion in an electric field. Fundamentals of phase transformation in materials; chemical fluctuation, nucleation and growth theory; kinetic models for evaluating and predicting diffusion controlled transformation kinetics. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

MS&E 6210 Tissue Engineering II (LEC 3.0)
The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with Bio Sci 6240).

MS&E 6220 Advanced Energy Materials (LEC 3.0)
The objectives of the graduate level course are to review the recent developments on advanced energy materials and systems in addition to basic understanding how chemical and physical properties of materials can lead to energy alternatives. Prerequisite: Graduate standing.
MS&E 6230 Nanomaterials (LEC 3.0)
Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with Chem Eng 6310).

MS&E 6310 Biomaterials II (LEC 3.0)
This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use. Basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. (Co-listed with Bio SCI 6210, CHEM ENG 6300).

MS&E 6820 Polymer Synthesis (LEC 3.0)
The methods of organic monomer and polymer syntheses will be explored. Mechanistic and structural components, modern and industrial methods for polymer syntheses will be discussed. Topics include linear, branched, graft, and dendritic polymers, nano-technology and macromers. Prerequisites: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; Chem 2220 or Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with Chem 6820).

MS&E 6840 Polymer Physical Chemistry and Analysis (LEC 3.0)
A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisite: Chem 4810 or MS&E 4810 or Chem 5810 or MS&E 5810; Chem 2220 or Chem 4210 or Chem 4220 or Chem 5210 or Chem 5220. (Co-listed with Chem 6840).

Mathematics (MATH)

MATH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 5010 Graduate Seminar (SEM 1.0)
Discussion of advanced or current topics.

MATH 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

MATH 5105 Modern Algebra I (LEC 3.0)
Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange’s Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 3109 or graduate standing; preceded or accompanied by Math 3108.

MATH 5106 Modern Algebra II (LEC 3.0)
This course is a continuation of Math 5105. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 5105.

MATH 5107 Combinatorics And Graph Theory (LEC 3.0)
Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Comp Sci 1200 or Math 3109.

MATH 5108 Linear Algebra II (LEC 3.0)
Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 3108.

MATH 5154 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Eng 5203 and Philos 4354).

MATH 5215 Introduction To Real Analysis (LEC 3.0)
Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 4209.

MATH 5222 Vector And Tensor Analysis (LEC 3.0)
Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 2222; Math 3103 or Math 3108.

MATH 5302 Intermediate Differential Equations (LEC 3.0)
Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 3304 or Math 3329.
MATH 5325 Partial Differential Equations (LEC 3.0)
Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 3304 with a grade of "C" or better.

MATH 5351 Introduction To Complex Variables (LEC 3.0)
The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 3304.

MATH 5483 Operational Calculus (LEC 3.0)
The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 3304.

MATH 5530 Topics in Geometry - Graduate Option (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Students will demonstrate graduate-level mastery of the subject matter. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: MATH 3109.

MATH 5585 Introduction To Topology (LEC 3.0)
Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 4209.

MATH 5603 Methods of Applied Mathematics (LEC 3.0)
Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 3304 or 3329 with a grade of "C" or better, programming competency.

MATH 5604 Introduction to Numerical Methods for Differential Equations (LEC 3.0)
An introduction to finite difference methods for ordinary and partial differential equations, including (1) the derivation of the numerical methods, (2) implementation of the methods in Matlab, and (3) the mathematical accuracy and stability analysis of the methods. Prerequisites: MATH 3304 and programming competency (preferably Matlab).

MATH 5737 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Finance 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Econ 5337).

MATH 5940 Mathematical Analysis For Secondary Teachers (LEC 3.0)
Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 2222 or equivalent.

MATH 5948 Mathematical Analysis For Secondary Teachers Practicum (LEC 1.0)
An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 5940.

MATH 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 6010 Graduate Seminar (RSD 1.0-3.0)
Discussion of topics of current interest. Prerequisite: Graduate standing.

MATH 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 6050 Continuous Registration (IND 0.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MATH 6099 Research (IND 0.0-15)
Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

MATH 6100 Finite Fields And Applications (LEC 3.0)
After reviewing basic group theory and introducing basic properties of commutative rings, the main focus of the course will be on topics such as structure of finite fields, polynomials over finite fields, and applications such as coding theory and cryptography. Prerequisite: Math 5105.

MATH 6105 Introduction to Ring Theory (LEC 3.0)
Properties of rings with an emphasis on commutative rings. Ideals, factor rings, ring homomorphisms, polynomial rings; factorization, divisibility, and irreducibility. Introduction to extension fields and Galois theory. Applications may be chosen based on the interests of the students. Prerequisite: Math 5105.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6107</td>
<td>Group Theory</td>
<td>(LEC 3.0)</td>
<td>Groups, subgroups, and factor groups; homomorphisms, isomorphisms, and associated theorems; abelian groups; Sylow theorems and p-groups; permutation groups; free groups and generators; representation theory; cohomology theory. Prerequisite: Math 5106.</td>
</tr>
<tr>
<td>MATH 6108</td>
<td>Applied Matrix Theory</td>
<td>(LEC 3.0)</td>
<td>A second course in matrix theory directed toward applications. Linear spaces, linear operators, equivalence and similarity, spectral theorem, canonical forms, congruence, inertia theorem, quadratic forms, singular value decomposition and other factorizations, generalized inverses. Applications to optimization, differential equations, stability. Prerequisite: Math 3103, 3108, or 5302.</td>
</tr>
<tr>
<td>MATH 6215</td>
<td>Functions Of A Real Variable I</td>
<td>(LEC 3.0)</td>
<td>Measure spaces, extensions of measures, probability spaces, measures and distributions in normed linear spaces, product measures, independence, integral and expectation, convergence theorems, Radon-Nikodym theorem and applications. Lp spaces, selected topics. Prerequisite: Math 5215.</td>
</tr>
<tr>
<td>MATH 6216</td>
<td>Functions Of A Real Variable II</td>
<td>(LEC 3.0)</td>
<td>Abstract measures and integrals, the Daniell integration theory, integration on locally compact Hausdorff spaces, integration in function spaces, selected topics. Prerequisite: Must be preceded by Math 6215.</td>
</tr>
<tr>
<td>MATH 6330</td>
<td>Theory Of Differential Equations I</td>
<td>(LEC 3.0)</td>
<td>Stability theory, Liapunov's direct method, periodic solutions, Poincare-Bendixson theory, applications. Prerequisite: Math 5302.</td>
</tr>
<tr>
<td>MATH 6335</td>
<td>Functions Of A Complex Variable I</td>
<td>(LEC 3.0)</td>
<td>Complex plane, complex function theory, elementary Riemann surfaces, conformal mapping, complex integration, infinite complex series and sequences, calculus of residues with applications. Prerequisite: Math 4211.</td>
</tr>
<tr>
<td>MATH 6352</td>
<td>Functions Of A Complex Variable II</td>
<td>(LEC 3.0)</td>
<td>Argument principle and consequences; harmonic functions and Dirichlet’s problem; infinite products; entire, meromorphic and rational functions; analytic continuation; symmetry principle; conformal mapping; functions of several complex variables. Prerequisite: Preceded by Math 6351.</td>
</tr>
<tr>
<td>MATH 6375</td>
<td>Theory Of Partial Differential Equations</td>
<td>(LEC 3.0)</td>
<td>Sobolev spaces; existence, uniqueness, and regularity of weak solutions to linear elliptic, parabolic, and hyperbolic PDEs; selected topics. Prerequisite: Math 6417.</td>
</tr>
<tr>
<td>MATH 6383</td>
<td>Special Functions</td>
<td>(LEC 3.0)</td>
<td>Infinite products, gamma and beta functions, asymptotic series, the hypergeometric function, generalized hypergeometric functions, Bessel functions, generating functions; polynomials of legendre, Hermite, Laguerre, and Jacobi; elliptic functions, theta functions, Jacobian elliptic functions. Prerequisites: Math 4209 and 5351.</td>
</tr>
<tr>
<td>MATH 6417</td>
<td>Functional Analysis I</td>
<td>(LEC 3.0)</td>
<td>A continuation of Math 6417 with additional topics related to bounded and unbounded operators and their applications. Prerequisites: Math 6215 and Math 6417.</td>
</tr>
<tr>
<td>MATH 6418</td>
<td>Functional Analysis II</td>
<td>(LEC 3.0)</td>
<td>Fourier series, norm and pointwise convergence of Fourier series, the conjugate and maximal functions, analytic functions in the unit disk and Hardy spaces, interpolation of linear operators and the Haar space, Young- Riesz Theorem, Sidon sets. Prerequisites: Math 5215 and Math 5351.</td>
</tr>
<tr>
<td>MATH 6461</td>
<td>Harmonic Analysis I</td>
<td>(LEC 3.0)</td>
<td>Fourier integrals, almost-periodic functions on the real line, Banach algebras, Wiener's Tauberian Theorem and the prime number theorem, the Paley-Wiener Theorems, band-limited functions and Shannon's Theorem, the continuous wavelet transform, discrete wavelet transforms and frames, orthonormal bases of wavelets and multi-resolution analysis. Prerequisite: Must be preceded by Math 6461.</td>
</tr>
<tr>
<td>MATH 6462</td>
<td>Harmonic Analysis II</td>
<td>(LEC 3.0)</td>
<td>Selected topics in non-Euclidean, solid, projective, and fractal geometry. Prerequisite: Math 4530.</td>
</tr>
<tr>
<td>MATH 6464</td>
<td>Geometric Structures Practicum</td>
<td>(LEC 1.0)</td>
<td>An instructional unit based on material learned in Math 6540 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 6540.</td>
</tr>
<tr>
<td>MATH 6465</td>
<td>Topology I</td>
<td>(LEC 3.0)</td>
<td>Topological spaces, uniform and quasi-uniform spaces, product and quotient spaces, separation properties and connected spaces, compactness. Prerequisite: Math 5585.</td>
</tr>
<tr>
<td>MATH 6585</td>
<td>Topology II</td>
<td>(LEC 3.0)</td>
<td>Metrizability conditions, the theory of convergence using both filters and nets, completions and compactifications, and papers from the recent literature. Prerequisite: Math 6585.</td>
</tr>
</tbody>
</table>
MATH 6601 Numerical Analysis (LEC 3.0)
A proof based course emphasizing theoretical analysis of convergence and accuracy of various numerical methods including approximate solutions of linear and nonlinear equations, numerical integration, and function approximation, with implementation to validate results and illustrate the methods. Prerequisites: Any 4000 or higher level MATH course, or any instructor approved 4000 or higher level course from another discipline with a significant computational component.

MECH ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MECH ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Aero Eng 5001).

MECH ENG 5131 Intermediate Thermofluid Mechanics (LEC 3.0)
Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mech Eng 3131 or Aero Eng 3131. (Co-listed with Aero Eng 5131).

MECH ENG 5135 Fluid Machinery (LEC 3.0)
Fundamental investigation of positive displacement and turbomachinery including pumps, fans, compressors, turbines, and oil hydraulic systems. Operating characteristics, selection, and comparison of types are studied. Prerequisite: Mech Eng 3131 or Aero Eng 5135.

MECH ENG 5139 Computational Fluid Dynamics (LEC 3.0)
Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; one course in fluid mechanics. (Co-listed with Aero Eng 5139).

MECH ENG 5205 Lubrication (LEC 3.0)
Development of basic principles of bearing analysis including manufacture and properties of lubricants, hydrodynamics and hydrostatic lubrication, journal and thrust bearings, ball and roller bearings, boundary considerations, and bearing materials. Prerequisite: Mech Eng 3131.

MECH ENG 5211 Introduction To Continuum Mechanics (LEC 3.0)
Introductory cartesian tensor analysis to aid in the development of the theory of a continuum. Kinematics of deformation, stress tensor, equations of motion, equations of mass and energy balance. Examples from specific material theories in solid and fluid mechanics. Prerequisites: Civ Eng 2210, Math 3304.

MECH ENG 5212 Introduction to Finite Element Analysis (LEC 3.0)
Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisites: Math 3304; senior or graduate standing. (Co-listed with Aero Eng 5212).

MECH ENG 5214 Applications Of Numerical Methods To Mechanics Problems (LEC 3.0)
Numerical solutions of statics, vibrations, and stability problems. Direct stiffness formulations are developed and user-oriented computer codes are used to solve practical structures problems. Computer graphics techniques are utilized to prepare data and display results. Prerequisites: Civ Eng 2210; Mech Eng 2360 or Aero Eng 2360.
MECH ENG 5220 Advanced Mechanics of Materials (LEC 3.0)
Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 2210, Math 3304. (Co-listed with Aero Eng 5220).

MECH ENG 5222 Introduction To Solid Mechanics (LEC 3.0)
Review of basic concepts in continuum mechanics. Finite elasticity, some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: Mech Eng 2111. (Co-listed with Aero Eng 5222).

MECH ENG 5229 Smart Materials And Sensors (LAB 1.0 and LEC 2.0)
Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 3304. (Co-listed with Aero Eng 5229, Elec Eng 5270 and Civ Eng 5118).

MECH ENG 5234 Stability of Engineering Structures (LEC 3.0)
Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 2210; Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Aero Eng 5234).

MECH ENG 5236 Fracture Mechanics (LEC 3.0)
Linear elastic and plastic mathematical models for stresses around cracks; concepts of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5236).

MECH ENG 5238 Fatigue Analysis (LEC 3.0)
The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints, components and structures, design to prevent fatigue. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5238).

MECH ENG 5244Variational Formulations Of Mechanics Problems (LEC 3.0)
Introduction and study of variational problems in classical dynamics and solid mechanics emphasizing the concepts of virtual work, minimum potential energy, and complementary energy. Variational inequalities. Prerequisites: Civ Eng 2210; Math 3304; and Mech Eng 2350 or Mech Eng 2360 or Aero Eng 2360. (Co-listed with Eng Mech 354).

MECH ENG 5282 Introduction to Composite Materials & Structures (LEC 3.0)
Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 2210. (Co-listed with Aero Eng 5282).

MECH ENG 5283 Industrial Applications Of Composite Materials Technology (LEC 3.0)
Composite materials - industrial applications. Fibers and matrices. Fabrication and NDI. Lamination theory overview. Composite joints. Postbuckling. Fatigue and environmental effects. Testing and certification of composite structures. A majority of the presentations will be made by engineers in the industry. Prerequisite: Civ Eng 2210. (Co-listed with Mech Eng 303).

MECH ENG 5307 Vibrations I (LEC 3.0)
Equations of motion, free and forced vibration of single degree of freedom systems and multidegree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Aero Eng 5307).

MECH ENG 5309 Engineering Acoustics I (LEC 3.0)
Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mech Eng 3411 and 3313, or Aero Eng 3613 and Math 3304. (Co-listed with Aero Eng 5309).

MECH ENG 5313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0)
Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mech Eng 3313 or Aero Eng 3613. (Co-listed with Aero Eng 5313).

MECH ENG 5420 Signal Processing for Instrumentation and Control (LEC 3.0)
The course presents fundamental techniques for analysis and processing of experimental data and real-time signals. Continuous- and discrete-time development of signal spectra, Fourier Transform, convolution, filter design, and system identification. The emphasis is on practical problems that arise in instrumentation and control applications. Prerequisites: Math 3304; Mech Eng 3411 or permission of instructor for non-Mech Eng majors.
MECH ENG 5449 Robotic Manipulators and Mechanisms (LAB 1.0 and LEC 2.0)
Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Mech Eng 3313; Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972 or Comp Sci 1570. (Co-listed with Aero Eng 5449).

MECH ENG 5478 Mechatronics (LEC 2.0 and LAB 1.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Aero Eng 5478, Elec Eng 5570 and Comp Eng 5520).

MECH ENG 5481 Mechanical And Aerospace Control Systems (LEC 3.0)
Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 4479 or Aero Eng 3361. (Co-listed with Aero Eng 5481).

MECH ENG 5519 Advanced Thermodynamics (LEC 3.0)
After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 2519. (Co-listed with Aero Eng 5519).

MECH ENG 5523 Transport Phenomena In Manufacturing Processes (LEC 3.0)
A study of the important role that transport phenomena (heat and mass transfer and fluid flow) play during various manufacturing processes including metal casting, joining and welding extrusion, forging, crystal growth, chemical deposition, and thermal spray deposition. Prerequisites: Mech Eng 3525 and 3131.

MECH ENG 5525 Intermediate Heat Transfer (LEC 3.0)
Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mech Eng 3525. (Co-listed with Aero Eng 5525).

MECH ENG 5527 Combustion Processes (LEC 3.0)
Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mech Eng 3521. (Co-listed with Aero Eng 5527).

MECH ENG 5533 Internal Combustion Engines (LEC 3.0)
A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels, and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mech Eng 3521.

MECH ENG 5537 Fuel Cell Principles (LEC 3.0)
Fuel cell fundamentals including thermodynamics, reaction kinetics, mass transport, characterization, and modeling are discussed. Different types of fuel cells such as proton exchange membrane and solid oxide are covered together with subsystem design and system integration as well as environmental impacts. Prerequisites: MECH ENG 3521.

MECH ENG 5541 Applied Energy Conversion (LEC 3.0)
The study of the principles of energy conversion. Specific applications include fuel cells and other direct energy conversion devices used in plug-in hybrid electric vehicles. Prerequisite: Mech Eng 3521.

MECH ENG 5544 Non-Intrusive Measurement Methods (LEC 3.0)
Fundamentals of non-contact measurement methods for engineers. Basic engineering optics with a focus on radiation measurement methods including the effects of various sources and detectors. Prerequisites: Phys 2135; Mech 3525 or consent of instructor for non-Mech Eng majors.

MECH ENG 5566 Solar Energy Technology (LEC 3.0)
Introduction to the nature of solar radiation and associated thermal energy transfers. Methods of collecting and storing solar energy. Analysis and design of systems for utilizing solar energy, including heating and cooling. Prerequisite: Mech Eng 3525, or consent of instructor for non-Mech Eng majors.

MECH ENG 5567 Heat Pump And Refrigeration Systems (LEC 3.0)
The various methods used in the thermal design and analysis of both refrigeration and heat pumps systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, and thermoelectric systems. Prerequisites: Mech Eng 3521, 3525.

MECH ENG 5570 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3131 or Physics 3201 or Comp Sci 3201 or Elec Eng 3201 or Mech Eng 3201. (Co-listed with Aero Eng 5570, Nuc Eng 4370, Physics 4543).

MECH ENG 5571 Environmental Controls (LEC 3.0)
Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 3521 and accompanied or preceded by Mech Eng 3525; or Mech Eng 2527 and Civ Eng 3030.

MECH ENG 5575 Mechanical Systems For Environmental Control (LEC 3.0)
Analysis of refrigeration, heating, and air-distribution systems. Synthesis of environmental control systems. Prerequisites: Mech Eng 3521 and 3525; or Mech Eng 2527 and Civ Eng 3330.
MECH ENG 5606 Material Processing By High-Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques, and basic calculations. Application of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. Prerequisite: Mech Eng 3131 or undergraduate fluids course. (Co-listed with Min Eng 5413).

MECH ENG 5644 Interdisciplinary Problems In Manufacturing Automation
(LEC 2.0 and LAB 1.0)
The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Chem Eng 4310, Eng Mgt 5315).

MECH ENG 5653 Computer Numerical Control of Manufacturing Processes
(LEC 2.0 and LAB 1.0)
Fundamental theory and application of computer numerical controlled machine tools from the viewpoint of design principles, machine structural elements, control systems, and programming. Projects include manual and computer assisted part programming and machining. Prerequisites: Preceded or accompanied by Mech Eng 3653.

MECH ENG 5655 Manufacturing Equipment Automation
(LAB 1.0 and LEC 2.0)
Manufacturing automation at the equipment level. Topics include sensors, actuators, and computer interfacing for manufacturing equipment, dynamic modeling and control of manufacturing equipment, interpolation, coordinated motion control, kinematic and geometric error modeling, and runout. Prerequisites: Preceded or accompanied by Mech Eng 4479 or equivalent.

MECH ENG 5656 Design For Manufacture
(LEC 3.0)
Course covers the approach of concurrent product and process design. Topics includes: principle of DFM, New product design process, process capabilities and limitations, Taguchi method, tolerancing and system design, design for assembly and AI techniques for DFM. Prerequisites: Mech Eng 3708, Mech Eng 3653.

MECH ENG 5702 Synthesis Of Mechanisms
(LEC 3.0)
Synthesis of planar mechanisms for function generation, path generation, and motion generation. Emphasis is on analytical methods for synthesis. Prerequisite: Mech Eng 3313.

MECH ENG 5704 Compliant Mechanism Design
(LEC 3.0)
Introduction to compliant mechanisms; review of rigid-body mechanism analysis and synthesis methods; synthesis of planar mechanisms with force/energy constraints using graphical and analytical methods; pseudo-rigid-body models; force-deflection relationships; compliant mechanism synthesis methods; and special topics, e.g. bistable mechanisms, constant-force mechanisms, parallel mechanisms, and chain algorithm in design. Emphasis will be on applying the assimilated knowledge through a project on compliant mechanisms design. Prerequisites: Mech Eng 3313, Civ Eng 2210.

MECH ENG 5708 Rapid Product Design And Optimization
(LEC 3.0)
Product life cycle design; finding design solutions using optimization technique; rapid product realization using rapid prototyping and virtual prototyping techniques. Prerequisite: Mech Eng 3708.

MECH ENG 5709 Machine Design II
(LEC 3.0)
A continuation of the study of machine elements; bearings, spur, bevel, worm, and helical gearing, and indeterminate machine elements; impact and shrink stresses. Prerequisite: Mech Eng 3708.

MECH ENG 5715 Concurrent Engineering
(LEC 3.0)
Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 3313 or Aero Eng 3131, and Civ Eng 2210. (Co-listed with Aero Eng 5715).

MECH ENG 5757 Integrated Product And Process Design
(LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of product realization activities covering important aspects of a product life cycle such as “customer” needs analysis, concept generation, concept selection, product modeling, process development, and end of product life options. Prerequisites: Junior or above standing. (Co-listed with ENG MGT 5515).

MECH ENG 5758 Integrated Product Development
(LAB 2.0 and LEC 1.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 5515 or Mech Eng 5757 or Mech Eng 3653 or Mech Eng 5708. (Co-listed with Eng Mgt 5516).

MECH ENG 5760 Probabilistic Engineering Design
(LEC 3.0)
The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 3708 or Aero Eng 3361. (Co-listed with Aero Eng 5760).

MECH ENG 5761 Engineering Design Methodology
(LEC 3.0)
This course examines structured engineering design theory and methodologies for conceptual design and redesign of products. Topical coverage includes customer needs gathering, functional modeling, engineering specifications creation (O&D), concept generation, selection and design embodiment. Team work/hands-on projects emphasized. Prerequisite: At least Senior standing in engineering.
MECH ENG 5763 Computer Aided Design: Theory and Practice (LEC 2.0 and LAB 1.0)
Lectures cover the fundamentals of computer-aided design with emphasis on geometric modeling of curves, surfaces and solids, CAD/CAM data exchange, and computer graphics. In the lab session, students practice with commercial CAD/CAM systems including NX and SolidWorks to gain practical experience. Prerequisites: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; Mech Eng 2761; Math 2222; at least Junior standing.

MECH ENG 5764 Introduction to Decision Analysis (LEC 3.0)
This course is an introduction to decision analysis, a decision-making method under uncertainty. The course topics include probability theory, influence diagram, decision tree, subjective probability, sensitivity analysis, value of information, risk attitude, and utility models. Prerequisite: Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117.

MECH ENG 5830 Applied Computational Methods (LEC 3.0)
Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 1570 or Comp Sci 1970 or Comp Sci 1971 or Comp Sci 1972; Math 3304. (Co-listed with Aero Eng 5830).

MECH ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MECH ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MECH ENG 6010 Seminar (LEC 0.0-1.0)
Discussion of current topics. (Co-listed with Aero Eng 6010).

MECH ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MECH ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MECH ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

MECH ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MECH ENG 6123 Viscous Fluid Flow (LEC 3.0)
Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Aero Eng 6123).

MECH ENG 6131 Gas Dynamics I (LEC 3.0)
A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Aero Eng 6131).

MECH ENG 6135 Turbulent Flows - Theory, Measurements and Modeling (LEC 3.0)
Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 5131 or Aero Eng 5131 or Mech Eng 5139 or Aero Eng 5139 or equivalent. (Co-listed with Aero Eng 6135).

MECH ENG 6137 Physical Gas Dynamics I (LEC 3.0)
Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and non-equilibrium gas properties and gas flows are included. Prerequisite: Mech Eng or Aero Eng 5131. (Co-listed with Aero Eng 6137).

MECH ENG 6212 Advanced Finite Element Analysis (LEC 3.0)
MECH ENG 6222 Theory of Elasticity (LEC 3.0)

MECH ENG 6230 Theory Of Plates (LEC 3.0)
General coverage of various approaches to plate problems and the application of these methods to practical problems. Special topics include applications to elastic foundations, buckling and energy methods in plate theory. Prerequisite: Math 5325.

MECH ENG 6232 Theory Of Shells (LEC 3.0)
General theory of stress analysis of shells based on topics in differential geometry and general elasticity theory. Theory is applicable to studies of the elastic behavior of flat plates and shells, buckling and post-duckling behavior of shells, and provides a basis for all shell theories which account for anisotropy, plasticity, creep, thermal strains, internal reinforcements, and transverse shear deformations. Prerequisite: Math 5325.

MECH ENG 6236 Advanced Fracture Mechanics (LEC 3.0)
Mathematical theories of equilibrium cracks and brittle fracture, mathematical analysis of elastic-plastic fracture mechanics, COD, R-curve and J-integral analysis. Prerequisite: Aero Eng 5236 or Mech Eng 5236.

MECH ENG 6248 Analysis of Laminated Composite Structures (LEC 3.0)
An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Aero Eng 6284).

MECH ENG 6285 Mechanics Of Composite Materials (LEC 3.0)
Effective moduli of spherical, cylindrical, and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: Mech Eng 5282 or Aero Eng 5282. (Co-listed with Aero Eng 6285).

MECH ENG 6307 Advanced Vibrations (LEC 3.0)
Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems, and random excitations. Prerequisite: Mech Eng or Aero Eng 5307. (Co-listed with Aero Eng 6307).

MECH ENG 6309 Engineering Acoustics II (LEC 3.0)

MECH ENG 6313 Advanced Dynamics Of Machinery (LEC 3.0)
Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations; stability of systems, to include approximate techniques. Prerequisite: Mech Eng or Aero Eng 5313. (Co-listed with Aero Eng 6313).

MECH ENG 6447 Markov Decision Processes (LEC 3.0)
Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 6310, Mech Eng 6447, Eng Mgt 6410 and Comp Sci 6202).

MECH ENG 6458 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Elec Eng 6360, Aero Eng 6458 and Sys Eng 6215).

MECH ENG 6479 Analysis And Synthesis Of Mechanical And Aerospace Systems (LEC 3.0)
A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mech Eng 5481 or Aero Eng 5481. (Co-listed with Aero Eng 6479).

MECH ENG 6481 Advanced Topics in Decision and Control (LEC 3.0)
This course will deal with latest topics in the areas of decision and control. Course may be repeated if topics vary. Prerequisite: Aero Eng 5481 or Mech Eng 5481 or equivalent. (Co-listed with Aero Eng 6481).

MECH ENG 6525 Heat Transfer by Conduction (LEC 3.0)
A study of conduction heat transfer in solids by analytical and other methods. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Aero Eng 6525).

MECH ENG 6526 Micro-/Nano-Scale Thermophysics and Energy Transport (LEC 3.0)
Introduces advanced statistical thermodynamics, nonequilibrium thermodynamics, kinetic theory, and quantum theory to analyze thermophysics and energy transport for microscale and nanoscale systems. Covers the fundamental concepts of photons, electrons, and phonons in the forms of waves and particles. Includes applications to ultrafast laser processing. Prerequisite: Mech Eng 5525.

MECH ENG 6527 Heat Transfer by Convection (LEC 3.0)
An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Aero Eng 6527).
MECH ENG 6529 Heat Transfer by Radiation (LEC 3.0)
A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mech Eng or Aero Eng 5525. (Co-listed with Aero Eng 6529).

MECH ENG 6541 Advanced Energy Conversion (LEC 3.0)
An analytical study of power producing systems with emphasis on new techniques and energy sources. All basic methods of energy conversion are covered from detailed physical descriptions to mathematical analysis. Included are advanced heat engines, nuclear power reactors, thermoelectric engines, magnetohydrodynamic devices, solar energy, fuel cells, and recent developments. Prerequisite: Mech Eng (or Aero Eng) 5519, or Mech Eng (or Aero Eng) 5525.

MECH ENG 6575 Advanced Environmental Control (LEC 3.0)
The study of environmental control systems including their sizing, control, and energy requirements. Use of major energy analysis programs for system evaluation. Prerequisite: Mech Eng 5575.

MECH ENG 6585 Advanced Optical Materials and Structures (LEC 3.0)
Fundamental principles and advanced topics in optical materials and structures covering areas of photonics, plasmonics and metamaterials, and nanofabrication techniques. Prerequisite: Elec Eng 5200 or equivalent.

MECH ENG 6653 Advanced Cnc Of Manufacturing Processes & Engineering Metrology (LAB 1.0 and LEC 2.0)
Advanced treatment of Computer Numerical Control (CNC) part programming and machine tool metrology. Topics include mathematical modeling and characterization of machine tools and Coordinate Measuring Machines (CMMs); Measurement and analysis of dimensional accuracy, surface finish, precision, and uncertainty; Machine tool error modeling and compensation; Virtual Numerical Control (VNC) Machine Tool modeling, programming, simulation and process verification/optimization. Projects include advanced CNC programming and simulation. Prerequisite: Mech Eng 5653.

MECH ENG 6655 Modeling And Control Of Manufacturing Processes (LEC 3.0)
This course covers control-oriented modeling, simulation, and control of manufacturing processes. Topics include digital control, control system hardware, servomechanisms, interpolation, coordinated motion control, regenerative chatter, and control of machining and non-traditional processes. Control algorithms are implemented on a machining center. Prerequisites: Mech Eng 5655, Mech Eng 5481.

MECH ENG 6657 Laser Aided Manufacturing And Materials Processing (LEC 3.0)
Fundamental studies in laser aided manufacturing and materials processing including laser principles and optics, physics of laser-materials interaction, interface responses for rapid solidification, theories on non-equilibrium synthesis, modeling of transport phenomena, optical sensing techniques, current topics and considerations for lasers in manufacturing. Prerequisite: Mech Eng 5525.

MECH ENG 6659 Advanced Topics in Design and Manufacturing (LEC 3.0)
Various topics in the area of design and manufacturing will be covered in this course: development of flexible manufacturing systems, CAD/CAM integration, rapid prototyping, etc. Prerequisites: Mech Eng 5655 or Mech Eng 5708 or equivalent.

MECH ENG 6663 Advanced Digital Design and Manufacturing (LEC 3.0)
This course covers freeform modeling, reverse engineering, numerical control path generation for material removal and addition, and virtual reality based digital design and manufacturing. Students learn theoretical and fundamental aspects of these topics from lectures and project exercises. Prerequisites: Mech Eng 5708 or Mech Eng 5757 or Mech Eng 5763 or equivalent.

MECH ENG 6704 Mechanics of Machinery (LEC 3.0)
Rigid-body kinematics, dynamics, and synthesis of mechanisms; cam-follower mechanisms; mathematical modeling of mechanisms containing elastic elements; transient and steady-state vibration response; parametric instability in elastic mechanisms; advanced topics in compliant mechanisms; high performance mechanisms will be emphasized. Prerequisites: Vector & matrix analysis; introductory electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mech Eng 5575.

MECH ENG 6761 Modern Product Design (LEC 3.0)
Modern product development, design and prototyping are examined from a product architecture standpoint in this course. Functional modeling techniques are used to establish the architecture of a product and recently developed theories and techniques for design are covered. A prototyping project is required to provide immediate application of the theories. Prerequisite: Aero Eng 5758 /Eng Mgt 4312 or Mech Eng 5708 or Mech Eng 5656.

Metallurgical Engineering (MET ENG)

MET ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 5001 Graduate Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MET ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.
MET ENG 5110 High Temperature And Corrosion Resistant Alloys (LEC 3.0)
Fabrication and use of nickel, titanium, and refractory metal based alloys for use at high temperatures or in chemically corrosive environments. Properties and strengthening mechanisms of these alloys. Theory of high temperature oxidation and corrosion and design of alloys to prevent them. Prerequisites: Met Eng 3130, 2125.

MET ENG 5150 Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 2110.

MET ENG 5160 Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 3120, 3125, Civ Eng 2210.

MET ENG 5170 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 2210; Nuc Eng 3205, Nuc Eng 3223; Met Eng 2110. (Co-listed with Nuc Eng 4241).

MET ENG 5171 Nuclear Materials II (LEC 3.0)
Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFBR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Met Eng 5170.

MET ENG 5220 Recent Advances In Extractive Metallurgy (LEC 2.0)
A survey of extractive processes recently developed in the light of modern requirements with respect to raw materials, product quality, environmental impact, energy consumption, capital cost and process control. Prerequisite: Met Eng 4350.

MET ENG 5270 Mineral Processing II (Mechanics and Design) (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 3412. (Co-listed with Min Eng 5424).

MET ENG 5330 Nonferrous Alloys (LEC 3.0)
Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. Prerequisite: Met Eng 3130 or Met Eng 5810.

MET ENG 5420 Advanced Metals Casting (LEC 3.0)
An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 3420 or Mech Eng 2653.

MET ENG 5425 Metals Casting Laboratory (LAB 1.0)
An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, highquality castings. Prerequisite: Accompanied or preceded by Met Eng 4420.

MET ENG 5430 Metals Joining (LEC 2.0)
Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Met Eng 2110 or 3420.

MET ENG 5440 Metal Deformation Processes (LEC 3.0)
An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Met Eng 3120 and Met Eng 3420 both with "C" or better grade.

MET ENG 5450 Advanced Steelmaking (LEC 3.0)
This course is designed to provide students with an enhanced understanding of the chemistry and physics of ironmaking, steelmaking and casting, to apply these concepts to a wide range of problems in modern steelmaking and casting operations, and to perform advanced design and operational calculations associated with refining and continuous casting processes. Prerequisite: Grade of "C" or better in Cer Eng 3230 or Met Eng 3330.

MET ENG 5460 Metal Coating Processes (LEC 3.0)
Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisite: Senior or Graduate Standing.

MET ENG 5470 Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment. Prerequisite: Met Eng 4420 or Met Eng 5420 or graduate standing with permission of instructor.

MET ENG 5480 Refining Of Metals (IND 2.0-3.0)
Principles and applications of refined metal production by electrochemical methods. The course will address basic copper and zinc processing, electrometallurgy, anodes and anodic processes, cathode deposit control and contamination mechanisms, Faraday’s Law and current efficiency, and current state of practice. Prerequisite: Cer Eng 3230 and Met Eng 3220 or graduate standing.
MET ENG 5510 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 2135 or 2111. (Co-listed with Elec Eng 5670).

MET ENG 5515 Nondestructive Testing Laboratory (LAB 1.0)
Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of materials and manufactured parts. Prerequisite: Accompanied or preceded by Met Eng 5510.

MET ENG 5520 Electron Microscopy (LEC 3.0)
A course in the theory and application of both scanning and transmission electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Met Eng 3130 and Met Eng 2125, or a course in optical microscopy.

MET ENG 5525 Scanning Electron Microscopy Lab (LAB 1.0)
A course in the practical use and operation of scanning electron beam instruments and their associated techniques. Prerequisite: Preceded or accompanied by Met Eng 5520.

MET ENG 5620 Materials Behavior (LEC 3.0)
A course in crystal defects and deformation; mechanical testing; creep; fracture mechanisms and fatigue. Prerequisites: Grade of "C" or better in both Met Eng 2110 and Met Eng 3120.

MET ENG 5630 Environmental Aspects Of Metals Manufacturing (LEC 3.0)
Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.

MET ENG 5810 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Cer Eng 5810).

MET ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MET ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 6160 Advanced Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication.

MET ENG 6320 Advanced Steels and Their Treatment (LEC 3.0)
Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisites: Met Eng 3130 and Met Eng 2125.

MET ENG 6325 Advanced Ferrous Microstructures (LAB 1.0 and LEC 1.0)
Course provides an in-depth explanation of microstructural development during solidification, thermo-mechanical processing, and heat treatment of steel. Topics: microscopy, metallography, the Fe-C phase diagram, solidification, homogenization, grain size control, formation of microstructures upon heating/cooling. Term paper and presentation required.

MET ENG 6440 Advanced Metal Deformation Processes (LEC 3.0)
Advanced metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisites: A grade of "C" or better in both Met Eng 3120 and Met Eng 3420.

MET ENG 6470 Advanced Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucletation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment.

MET ENG 6515 Nondestructive Testing Laboratory (LAB 1.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 6535 Transmission Electron Microscopy Lab (LAB 1.0)
A course in the practical use and operation of transmission electron beam instruments and their associated techniques. Prerequisite: Preceded or accompanied by Met Eng 5520.

MET ENG 6530 Transmission Electron Microscopy Lab (LAB 1.0)
A course in the practical use and operation of transmission electron beam instruments and their associated techniques. Prerequisite: Preceded or accompanied by Met Eng 5520.

MET ENG 6640 Advanced Metal Deformation Processes (LEC 3.0)
Advanced metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisites: A grade of "C" or better in both Met Eng 3120 and Met Eng 3420.

MET ENG 6700 Advanced Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucletation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment.

MET ENG 6810 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Cer Eng 5810).

MET ENG 6999 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 6999 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

Mining Engineering (MIN ENG)

MIN ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MIN ENG 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
MIN ENG 5113 Mine Atmosphere Control (LAB 1.0 and LEC 2.0)
Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Mech Eng 2527 and Civ Eng 3330; or Nuc Eng 3221.

MIN ENG 5212 Aggregates and Quarrying (LEC 3.0)
Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 3912; Preceded or accompanied by Civ Eng 3116.

MIN ENG 5412 Aggregates Materials Sizing and Characterization (LAB 1.0 and LEC 2.0)
Geological formation of aggregates; aggregate properties and their measurements; aggregates for specific end-user applications; specifications and standards; processing (crushing, screening, classification, and washing); plant design and flow sheet analysis; quality control and assurance. Field trip to a nearby quarry required. Prerequisite: Min Eng 2412.

MIN ENG 5413 Material Processing by High Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mech Eng 5606).

MIN ENG 5422 Coal Preparation (LEC 2.0 and LAB 1.0)
Coal properties, sampling, testing, breaking, sizing, cleaning and dewatering. Disposal of refuse. Prerequisite: Min Eng 2412.

MIN ENG 5423 Flotation and Hydrometallurgy (LEC 2.0 and LAB 1.0)
Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisites: Min Eng 2412.

MIN ENG 5424 Mineral Processing II Mechanics And Design (LEC 2.0 and LAB 1.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisites: Min Eng 2412. (Co-listed with Met Eng 5270).

MIN ENG 5513 Ore Reserve Analysis and Geostatistics (LAB 1.0 and LEC 2.0)
Principles of geostatistics, theory of spatially correlated random variables, variance and co-variances and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 3304; Stat 3113 or Stat 3115.

MIN ENG 5532 Advanced Mining Economics (LEC 3.0)

MIN ENG 5612 Principles of Explosives Engineering (LAB 1.0 and LEC 2.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Exp Eng 5612).

MIN ENG 5622 Blasting Design And Technology (LEC 2.0 and LAB 1.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 5612. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 5622).

MIN ENG 5742 Environmental Aspects of Mining (LEC 3.0)
Permitting; the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Preceded or accompanied by Min Eng 5933 or Geo Eng 5441 or Env Eng 5619. (Co-listed with Geo Eng 5276).

MIN ENG 5812 Strata Control (LEC 3.0)
A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 4823.

MIN ENG 5823 Rock Mechanics (LEC 2.0 and LAB 1.0)
Applications of the fundamental principles of mechanics to engineering problems of equilibrium, strength and stiffness of rock materials. Review of in-situ stresses, laboratory and field instrumentation, rock and rockmass properties. Ground Control; pillar design, roof span design, rock reinforcement, surface subsidence, slope stability, and violent failure. Prerequisites: Physics 2135; Civ Eng 2210; Geology 3310. Field trip required.
MIN ENG 5912 Mine Power and Drainage (LEC 2.0 and LAB 1.0)

MIN ENG 5913 Advanced Computer Aided Mine Design (LEC 2.0 and LAB 1.0)
Project-based mine planning and design course. Engineering design process applied to computer-aided mine planning and design. Mine layouts, production planning, and materials scheduling optimization. Prerequisite: Graduate standing.

MIN ENG 5922 Tunneling & Underground Construction Techniques (LEC 2.0 and LAB 1.0)
Mechanical and conventional excavation techniques in underground tunneling and construction. Topics include tunneling layouts design, equipment and performance modeling, ground control systems including support, drainage, and structural integrity. Construction specifications, advance rate and contractual and cost estimation. Prerequisite: Consent of instructor. (Co-listed with Exp Eng 5922).

MIN ENG 5932 Underground Mining Methods (LEC 3.0)

MIN ENG 5933 Surface Mining Methods (LEC 3.0)
Principles of planning, constructing, and operating economically viable surface mines. Cost effective mining methods: placer mining, strip mining, open pit mining, quarrying. Selection of equipment for surface mining operations. Optimization of mine performance. Field trip required. Prerequisites: Min Eng 3912; Min Eng 3512; preceded or accompanied by Min Eng 5823.

MIN ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MIN ENG 6001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 6010 Seminar (RSD 1.0)
Discussion of current topics.

MIN ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MIN ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

MIN ENG 6080 Graduate Project (IND 3.0)
Advanced engineering design, experimentation, evaluation and assessment leading to the preparation of a project report. For practicing professionals, this project could be based on an actual industry problem. Prerequisites: Graduate Standing.

MIN ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

MIN ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MIN ENG 6132 Advanced Mine Health And Safety Design (LEC 3.0)
Incorporation of principles developed in Min Eng 6132 in advanced design projects for mineral plants and systems, with emphasis on environmental protection, health, and safety. Prerequisite: Min Eng 6132.

MIN ENG 6133 Mine Atmospheric Control II (LEC 3.0)
Climatic measurements and temperature precalculations, emergency plans for fan failures and mine fires, mine air contaminants, mine noises, mine dust, refrigeration and cooling plant layout, radiation control. Prerequisite: Min Eng 4113.

MIN ENG 6132 Advanced Mine Health And Safety Design (LEC 3.0)
Principles of design of mining operations with emphasis on the health and safety of the worker. Prerequisite: Graduate standing.

MIN ENG 6133 Mine Atmospheric Control II (LEC 3.0)
Climatic measurements and temperature precalculations, emergency plans for fan failures and mine fires, mine air contaminants, mine noises, mine dust, refrigeration and cooling plant layout, radiation control. Prerequisite: Min Eng 4113.

MIN ENG 6432 Advanced Mineral Engineering Design II (LEC 1.0 and LAB 2.0)
Incorporation of principles developed in Min Eng 6432 in advanced design projects for mineral plants and systems, with emphasis on environmental protection, health, and safety. Prerequisite: Min Eng 6432.
MIN ENG 6522 Mining Property Feasibility Studies And Evaluation Procedure (LEC 2.0 and LAB 1.0)
A systematic phased approach is presented, designed to increase the level of confidence and accuracy of estimates, moving from exploration through to a "bankable" study. Liability, ethics, resource/reserves, political/social/investment risk, economic parameters, and due diligence are discussed. Prerequisite: Min Eng 3512 or Geology 3511 or Min Eng 4742 or Geophys 3251.

MIN ENG 6532 Mine Management II (LEC 3.0)
The course covers advanced concepts in managing mine operations. Topics to be covered include TQM, statistical process control, benchmarking, KPI, standards and standardization, ISO 9000: Quality Control, ISO 14000: Environmental systems, OHSAS 18000. Management systems, SA8000, Social Accountability and others. Prerequisite: Consent of instructor.

MIN ENG 6622 Environmental Controls For Blasting (LAB 1.0 and LEC 2.0)
Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 5612, Successful background check. (Co-listed with Exp Eng 6412).

MIN ENG 6632 Theory Of High Explosives (LEC 3.0)
Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Graduate Standing. (Co-listed with Exp Eng 6212).

MIN ENG 6712 Managing Social and Environmental Risks in Mining (Intro to Responsible Mining) (LEC 3.0)
This course is an introduction to responsible mining. It focuses on industry and NGO programs around sustainability and reporting in mining, financial community response, community of interest engagement and participation, and safety and crisis response and management. Prerequisites: Min Eng 4742 or Min Eng 5742.

MIN ENG 6735 Sustainability In Mining (LEC 3.0)
Sustainability defined: social, economic and environmental impacts. Mining as sustainable development interventions. Mine planning for sustainability, sustainability assessment and reporting, sustainable mine closure and post-mining land use. Case studies. Prerequisite: Min Eng 4742.

MIN ENG 6842 Advanced Rock Mechanics (LEC 3.0)
Advanced topics in static and dynamic rock mechanics; elasticity theory, failure theories and fracture mechanics applied to rock; stress wave propagation and dynamic elastic constants; rock mass classification methods for support design; pillar design in coal and metal mines; introduction to numerical models. Prerequisite: Min Eng 5823 or Civ Eng 3715.

MIN ENG 6843 Dynamic Rock Mechanics (LEC 3.0)
Advanced topics in dynamic rock mechanics. Stress wave propagation in the earth, dynamic elastic constants in isotropic and anisotropic rock, Hopkinson bar impact analysis, spallation and radial fracturing caused by stress pulses, shock wave generation in rock by explosives, shock wave propagation and effects. Prerequisite: Min Eng 5823 or Civ Eng 3715.

MIN ENG 6912 Simulation of Mining Systems (LEC 3.0)
Overview of stochastic simulation. Model formulation using general purpose process simulation software. Model verification and validation. Simulation experimentation. Prerequisites: Graduate standing or Stat 5643.

MIN ENG 6922 Optimization Applications In Mining I (LEC 3.0)
Mining applications of deterministic optimization techniques are covered, including linear, integer, mixed-integer, dynamic, unconstrained and constrained nonlinear, and heuristic programming. Prerequisite: Graduate standing or consent.

MIN ENG 6923 Geostatistics (LEC 3.0)
Definition of geostatistical data; theory of random fields; autocorrelation and measures of spatial variability including semivariograms, variograms and covariance functions; and spatial prediction and validation. Case studies in mineral resource estimation and environmental pollutant prediction will be presented. Prerequisites: Graduate standing or consent of instructor.

MIN ENG 6932 Advanced Mining Systems (LEC 3.0)
Principles of design for the development and production of hard rock mineral deposits that require integrated surface and underground mining methods. Cost considerations leading to optimization. Terminal feasibility report required. Prerequisites: Min Eng 4932 and Min Eng 4933.

MIN ENG 6935 Underground Mine Design (LEC 3.0)
This course will focus on the determinants of underground mine design, geomechanical mine design for underground mining; mine optimization; mine environmental systems; and underground mine design and optimization. Prerequisite: Min Eng 4932 or equivalent.

MIN ENG 6936 Surface Mine Design (LEC 3.0)
This course will focus on the determinants of surface mine design, geomechanical and geometrical mine design for open pit and strip mining; mine layouts optimization; mine environmental systems; and research directions in surface mine design and optimization. Prerequisite: Min Eng 4933 or equivalent.

MIN ENG 6992 Research Methods (LEC 3.0)
Foundations, dimensions, and methods for designing and investigating research problems. Focus on fundamentals and applied research, research methods, literature review, experimental design and experimentation, dissertation composition, concepts of originality and intellectual property. Prerequisites: PhD students only. (Co-listed with Exp Eng 6292).
Nuclear Engineering (NUC ENG)

NUC ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

NUC ENG 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

NUC ENG 5203 Reactor Physics I (LEC 3.0)
Study of neutron interactions, fission, chain reactions, neutron diffusion and neutron slowing down; criticality of a bare thermal homogeneous reactor. Prerequisite: Nuc Eng 3205.

NUC ENG 5207 Nuclear Fuel Cycle (LEC 3.0)
Nuclear fuel reserves and resources; milling, conversion, and enrichment; fuel fabrication; in-and-out-of core fuel management; transportation, storage, and disposal of nuclear fuel; low level and high level waste management; economics of the nuclear fuel cycle. Prerequisite: Nuc Eng 3205.

NUC ENG 5241 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications; design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 2210; Nuc Eng 3205; Nuc Eng 3223; Met Eng 2110. (Co-listed with Met Eng 5170).

NUC ENG 5251 Reactor Kinetics (LEC 3.0)
Derivation and solutions to elementary kinetics models. Application of the point kinetics model in fast and thermal reactor dynamics, internal and external feedback mechanisms, rigorous derivation and solutions of the space dependent kinetics model fission product and fuel isotope changes during reactor operation. Prerequisite: Nuc Eng 3205.

NUC ENG 5257 Introduction to Nuclear Thermal Hydraulics (LEC 3.0)
An introductory course in the application of thermal-hydraulic principles to energy systems, with emphasis on nuclear energy issues. Will include the development of constitutive models and applications to power systems, fluid mechanics, and heat transfer problems (including multiphase flows). Prerequisite: Graduate standing.

NUC ENG 5281 Probabilistic Risk Assessment I (LEC 3.0)
A study of the techniques for qualitative and quantitative assessment of reliability, safety and risk associated with complex systems such as those encountered in the nuclear power industry. Emphasis is placed on fault tree analysis. Prerequisite: Nuc Eng 3205.

NUC ENG 5312 Nuclear Radiation Measurements and Spectroscopy (LAB 1.0 and LEC 2.0)
Contemporary radiation detection theory and experiments with high resolution gamma-ray spectroscopy, solid state detectors, neutron detection and conventional gas filled detectors. Neutron activation analysis of unknown material, statistical aspects of nuclear measurements. Prerequisite: Nuc Eng 3205.

NUC ENG 5347 Radiological Engineering (LEC 3.0)

NUC ENG 5350 Advanced Nuclear Medical Science (LEC 3.0)
Advanced level of technologies involved in medical modalities, such as digital radiography, digital mammography, modern computed tomography, gamma camera, SPECT and PET will be covered. Prerequisites: Nuc Eng 4312 or equivalent.

NUC ENG 5363 Applied Health Physics (LEC 3.0)
Radiation sources; external and internal dosimetry; biological effects of radiation; radiation protection principles; regulatory guides; radioactive and nuclear materials management. Prerequisite: Nuc Eng 3103 or Physics 2305.

NUC ENG 5365 Radiation Protection Engineering (LEC 3.0)

NUC ENG 5367 Radioactive Waste Management And Remediation (LEC 3.0)
Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues, history of disposal actions, and conduct of remedial actions and clean up. Prerequisite: Math 3304. (Co-listed with Geology 4421).

NUC ENG 5370 Plasma Physics I (LEC 3.0)
Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 3131 or Mech Eng 3131 or Physics 3211 or Nuc Eng 3221 or Elec Eng 3600. (Co-listed with Aero Eng 5570, Mech Eng 5570, Physics 4543).

NUC ENG 5428 Reactor Laboratory I (LEC 1.0 and LAB 1.0)
Acquaints the student with neutron flux measurement, reactor operation, control rod calibration, reactor power measurement and neutron activation experiments. Experiments with the thermal column and neutron beam port are also demonstrated. Prerequisites: Nuc Eng 4312, 3205.

NUC ENG 5438 Reactor Laboratory II (LEC 1.0 and LAB 1.0)
A continuation of Nuclear Engineering 304 with experiments of a more advanced nature. Prerequisite: Nuc Eng 4428.
NUC ENG 5456 Reactor Operation II (LAB 1.0)
The operation of the training reactor. The program is similar to that required for the NRC Reactor Operator's license. Students from other disciplines will also benefit from the course. Prerequisite: Nuc Eng 2105, 2406.

NUC ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

NUC ENG 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

NUC ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

NUC ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

NUC ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

NUC ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

NUC ENG 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

NUC ENG 6203 Advanced Reactor Physics (LEC 3.0)
Transport and diffusion theory; multigroup approximation; criticality calculations; cross-section processing; buildup and depletion calculations; delayed neutrons and reactor kinetics; lattice physics calculations; full core calculations; analysis and measurement of reactivity coefficients. Prerequisite: Math 5325.

NUC ENG 6205 Linear Transport Theory (LEC 3.0)
Monoenergetic Boltzmann equation for neutral particles by the method of singular eigen-functions and polynomial expansions. Prerequisites: Nuc Eng 4203, Math 5358.

NUC ENG 6223 Nuclear Reactor Safety (LEC 3.0)
Study of safety criteria; reactor characteristics pertinent to safety; reactor transient behavior; loss of coolant accident analysis; emergency core cooling; fuel behavior during accident conditions; reactor risk analysis; current reactor safety issues. Prerequisites: Nuc Eng 4203 and 3229.

NUC ENG 6241 Effects Of Radiation On Solids (LEC 3.0)
The theories of the interaction of nuclear radiation with matter. Experimental approaches to radiation studies, including the sources and dosimetry. Nature and properties of crystal imperfections. The influence of radiation on physical, mechanical and surface properties of metals and alloys. Radiation effects on materials other than those incorporated in nuclear reactors. The annealing of defects. Prerequisite: Met Eng 5170.

NUC ENG 6257 Advanced Nuclear Thermal Hydraulics (LEC 3.0)
Treatment of advanced topics in nuclear reactor thermal-hydraulics including analysis of fuel elements and fuel melting, multiphase flow dynamics and two-fluid models, interfacial transfer of mass, momentum, and energy, multiphase flow scaling, and numerical applications. Prerequisite: Math 5325.

NUC ENG 6325 Plasma Physics (LEC 3.0)
Fundamentals of kinetic, theory, fluid equations, MHD equations, and applications: wave propagation, shielding effect, diffusion, stability, and charged particle trajectories. Prerequisite: Nuc Eng 4361 for Nuc Eng; Physics 4211 for Physics.

NUC ENG 6331 Radiation Shielding (LEC 3.0)
Radiation sources; interactions of radiation with matter; dosimetry and radiation protection guidelines. The particle transport equation and methods of solving it; the Monte Carlo Method; special computational methods for neutron and gamma attenuation. Computer codes used in shielding. Shielding materials, shield design. Prerequisite: Nuc Eng 4203.

Petroleum Engineering (PET ENG)

PET ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PET ENG 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

PET ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

Missouri University of Science and Technology

Graduate Catalog 2018-2019
PET ENG 5085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

PET ENG 5099 Research (IND 0.0-12)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

PET ENG 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PET ENG 6001 Special Topics (LEC 2.0 and LAB 1.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PET ENG 6010 Seminar (IND 0.0-6.0)
Discussion of current topics.

PET ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with use made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

PET ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

PET ENG 6085 Internship (IND 0.0-15)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

PET ENG 6099 Research (IND 0.0-12)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

PET ENG 6231 Drilling Optimization (LEC 3.0)
Optimization of the drilling process based on geomechanical model of the subsurface. Topics include drilling hydraulics, drilling bits, selection of operational parameters and analysis of drilling time and cost. Prerequisite: Pet Eng 4210.

PET ENG 6431 Advanced Well Completion Design (LEC 3.0)
Overview of hardware, fluids and processes employed in completing oil and gas wells. Types of well completions and design considerations. Downhole mechanics, tubing movement and stress calculations. Advanced concepts in well completion design and review of well completions literature. Prerequisites: Pet Eng 3520. Students may not earn credit for both Pet Eng 4431 and Pet Eng 6431.

PET ENG 6441 Advanced Well Stimulation (LEC 3.0)
This course builds on the basic theory and fundamentals of hydraulic fracturing through the use of STIMPLAN software and hands on industry examples. The course teaches the methods used to plan, execute and evaluate hydraulic fracturing treatments. An advanced exercise and a research assignment are required. Students may not earn credit for both Pet Eng 4441 and Pet Eng 6441. Prerequisites: Pet Eng 3520 and Pet Eng 3310.

PET ENG 6521 Advanced Well Test Analysis (LAB 1.0 and LEC 2.0)
Pressure transient analysis equations, well test analysis for fractured wells, horizontal wells, injection wells, and other special situations. Introduction to rate transient analysis. Prerequisites: Pet Eng 3520 and Pet Eng 4520.

PET ENG 6541 Advanced Reservoir Engineering I (LEC 3.0)
Advanced study of producing mechanisms. Prerequisites: Pet Eng 5631 and Pet Eng 4520.

PET ENG 6551 Advanced Reservoir Engineering II (LEC 3.0)
Flow through porous media: derivations and solutions for steady, semisteady, and transient flow of single and multiple phase flow through porous media. Prerequisite: Pet Eng 3520.

PET ENG 6621 Advanced Applied Reservoir Simulation (LEC 3.0)
Advanced simulation of actual reservoir problems using both field and individual well models to determine well spacing, production effects of secondary and enhanced recovery processes, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Prerequisite: Pet Eng 5621.

PET ENG 6631 A Survey Of Improved Recovery Processes (LEC 3.0)
An overview of current advanced recovery methods including secondary and tertiary processes. An explanation of the primary energy mechanism and requirements of these methods and an analysis of laboratory results and their subsequent field applications. Prerequisite: Pet Eng 4611.

PET ENG 6711 Geodynamics (LEC 3.0)
The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisites: Math 2222 and Geology 3310. (Co-listed with Geology 6211).

Physics (PHYSICS)

PHYSICS 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
PHYSICS 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 5201 Classical Mechanics I (LEC 3.0)
Methods of Newton, Lagrange, and Hamilton applied to the motion of particles and rigid bodies. Introduction to canonical transformations and Poisson brackets. Classical scattering and small oscillations. Prerequisites: Math 3304, Physics 3201.

PHYSICS 5211 Electrodynamics I (LEC 3.0)
A rigorous development of the fundamentals of electromagnetic fields and waves. Electrostatics, magnetostatics, Maxwell's equations—Green's function, boundary value problems, multipoles, conservation laws. Prerequisites: Physics 4211.

PHYSICS 5301 Quantum Mechanics I (LEC 3.0)
Basic formalism applied to selected problems. Schroedinger equation and one dimensional problems, Dirac notation, matrix mechanics, harmonic oscillator, angular momentum, hydrogen atom, variational methods, introduction to spin. Prerequisite: Physics 4301 or equivalent.

PHYSICS 5333 Subatomic Physics (LEC 3.0)
An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 3311.

PHYSICS 5403 Computational Physics (LEC 3.0 and LAB 1.0)
An introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 2305 or Physics 2311; Math 3304; programming experience.

PHYSICS 5413 Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0)
An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics covered include phase plane analysis, iterated maps, routes to chaos, Lyapunov exponents, strange attractors and pattern formation with applications to chaotic vibrations, population dynamics, chemical oscillations and lasers. Prerequisites: Math 3304; Physics 2135 or Physics 2111.

PHYSICS 5503 Fourier Optics (LEC 3.0)
Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: Both Elec Eng 3430 and Elec Eng 3600 or both Physics 2401 and Physics 4211 (Co-listed with ELEC ENG 5210).

PHYSICS 5513 Fiber And Integrated Optics (LEC 3.0)
Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 3600 or Physics 4211. (Co-listed with Elec Eng 5220).

PHYSICS 5603 Advanced Physics Laboratory Teaching Methods (LEC 3.0)
Objectives, methods and problems related to teaching of introductory physics, with an emphasis on laboratory instruction, the development of educational laboratory experiments and techniques, student learning styles, student assessment, student work groups, computer-based data acquisition, and communication techniques. Prerequisite: Graduate standing.

PHYSICS 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department Consent of instructor required.

PHYSICS 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

PHYSICS 6002 Coop Registration (IND 0.0-1.0)
Doctoral candidates participating in a cooperative program with another UM campus must enroll for one hour of credit for their first semester in the program and zero hours of credit for successive registration periods until degree is completed. Failure to do so may invalidate candidacy. Billing is automatic as is registration upon payment.

PHYSICS 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

PHYSICS 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

PHYSICS 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

PHYSICS 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.
PHYSICS 6211 Electrodynamics II (LEC 3.0)
A continuation of Physics 5211+D1067. Applications of time-dependent Maxwell's equations to such topics as plasmas, wave guides, cavities, radiation; fields of simple systems and multipoles. Relativity; covariant formulation of Maxwell's equations and conservation laws, fields of uniformly moving and accelerated charges. Prerequisite: Physics 5211.

PHYSICS 6301 Quantum Mechanics II (LEC 3.0)
Perturbation theory, treatment of spin, angular momentum addition, Wigner-Eckart theorem; scattering theory including partial wave analysis, Born approximation, and formal scattering theory; identical particles, introduction to second quantization, and structure of complex atoms. Prerequisite: Physics 5301.

PHYSICS 6311 Statistical Mechanics (LEC 3.0)
A study of statistical ensembles; Maxwell-Boltzmann, Fermi-Dirac and Einstein-Bose distribution laws, application to some simple physical systems. Prerequisites: Physics 4563, 4301.

PHYSICS 6323 Quantum Statistical Mechanics (LEC 3.0)
Techniques for calculation of the partition function with examples drawn from interacting Fermi gas, interacting Bose gas, superconductors, and similar sources. Prerequisites: Physics 6311 and 6301.

PHYSICS 6333 Condensed Matter Physics (LEC 3.0)
A course in the physics of hard and soft matter including solids, liquids, and complex materials. Topics: atomic structure, mechanical properties, phonons, electronic structure, energy band theory, electronic correlations, transport properties, magnetism, superconductivity. Prerequisite: Physics 5301.

PHYSICS 6353 Atomic And Molecular Structure (LEC 3.0)
Applications of quantum mechanics to the structure of atoms and molecules; perturbation and variational calculations, self-consistent field, multiplets, angular momenta, Thomas-Fermi model, diatomic molecules, spectral intensities. Prerequisite: Physics 5301.

PHYSICS 6363 Atomic Collisions (LEC 3.0)
Basic quantum mechanical concepts involved in atomic scattering theory. Topics include the Born approximation elastic collisions, and inelastic collisions. Other specific topics will be chosen from the general areas of electron, ion, and atom collisions with atoms and molecules. Prerequisite: Physics 6353 or 6301.

PHYSICS 6403 Mathematical Physics I (LEC 3.0)
Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension. (Co-listed with Math 6802).

PHYSICS 6413 Mathematical Physics II (LEC 3.0)
Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 6802 or Physics 6403. (Co-listed with Math 6803).

Psychology (PSYCH)

PSYCH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PSYCH 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new graduate level course. Variable title.

PSYCH 5010 Seminar for Industrial / Organizational Psychology (RSD 3.0)
A seminar course for general overviews of the most recent research in Industrial-Organizational Psychology. Prerequisite: Graduate standing.

PSYCH 5012 Ethics and Professional Responsibilities (LEC 1.0)
Case studies examining the ethical practice of psychology in organizations will be discussed. This will include covering both the legal and ethical standards surrounding the consulting and practice of I-O psychology and personnel management in organizations. Prerequisite: Graduate standing.

PSYCH 5020 Introduction to Industrial-Organizational Psychology (LEC 3.0)
Review of the most recent theoretical and applied research in advanced personnel and organizational psychology. Topics will include personnel selection, training and performance appraisal, job attitudes, motivation, work groups and teams, leadership, organizational culture, and organizational development. Prerequisites: Graduate Standing.

PSYCH 5200 Theories and Practice of Psychological Measurement (LEC 3.0)
An overview of psychological tests and batteries used in a variety of disciplines. An emphasis is placed on the proper development and use of these tests and test batteries. Tests examined will include tests of intelligence, aptitude, personality, and psychopathology. Prerequisite: Psych 4200 or graduate standing.

PSYCH 5201 Psychometrics (LEC 3.0)
An examination of statistical methods used to develop and refine measures of human performance, aptitudes, and personality. Topics include reliability and validity, data reduction, measuring inter-relationships among variables (e.g., factor analysis, multiple regression), and testing group differences. Prerequisite: Psych 5202.

PSYCH 5202 Applied Psychological Data Analysis (LEC 3.0)
This course will focus on those statistical methods most useful for advanced research in psychology. We will learn to use R, a powerful, open-source statistical programming platform, and work through examples with psychological data sets including such techniques as correlation, ANOVAs, regression, and chi-squared. Prerequisite: Graduate standing.

PSYCH 5210 Advanced Research Methods (LEC 3.0)
Research methods and techniques, with an emphasis on conducting psychological research in organizational settings. Topics discussed include: ethics, reliability and validity in measurement and application, proper uses of experimental, quasi-experimental, and survey methodologies, as well as advanced methodologies IRT, SEM, HLM, and Meta-Analyses. Prerequisite: Graduate standing.
PSYCH 5600 Advanced Social Psychology (LEC 3.0)
An advanced study of the behavior of individuals in interaction within groups. Consideration will also be given to the experimental literature dealing with the formal properties of groups, conformity and deviation, intergroup relations, and attitude formation and attitude change. Prerequisite: Psych 4600.

PSYCH 5601 Small Group Dynamics (LEC 3.0)
This course covers group perception, identification, leadership, structure, conflict, cohesion, commitment, performance, norms, roles, influence, and decisions, and groups' relations, networks, and work teams. Students consider both theory and applications to their lives and organizations through observational, research, team and applied assignments. Prerequisite: Psych 4601 or graduate standing.

PSYCH 5602 Organizational Development (LEC 3.0)
Examination of the field of organizational development theories and interventions. An emphasis is placed on research methods and application of practices related to individual processes, group processes, and organizational structures and functions that impact change and development strategies and interventions. Prerequisite: Psych 4602 or graduate standing.

PSYCH 5603 Advanced Social Influence (LEC 3.0)
An in-depth review of the principles and procedures that affect the process of social influence, with consideration given to attitudinal, compliance inducing, and perceptual influences. Students will consider the theoretical implications and practical applications of topics in social influence in the form of independent reading, research proposals and/or projects, and observational assignments. Prerequisite: Psych 4603 or graduate standing.

PSYCH 5700 Job Analysis and Performance Management (LEC 3.0)
A focus on the scientific measurement of job performance. An in-depth discussion of the science and methods of appropriate job and task analysis will be discussed. Additionally, students will focus on current issues in performance management and appraisal including scientific findings related to both objective and subjective measures of performance. Prerequisite: Psych 4700 or graduate standing.

PSYCH 5710 Advanced Human Factors (LEC 3.0)
An in-depth review of the foundations of human factors, focusing on the interaction of people with various forms of technology in a variety of environments. Topics include research and evaluation methods, displays (e.g., visual, auditory), attention and information processing, decision making, motor skills, anthropometry, and biomechanics. (Co-listed with ENG MGT 5330).

PSYCH 5720 Advanced Human-Computer Interaction (LEC 3.0)
This course examines the psychological research and theories that contribute to the field of human-computer interaction. An emphasis will be placed on engaging in critical evaluation of research and applying theoretical knowledge to effectively use computers in organizations. Prerequisite: Psych 4720 or graduate standing.

PSYCH 5730 Environmental Psychology: Research and Practice (LEC 3.0)
An in-depth review of the theoretical perspectives in environmental psychology and the psychological effects of various environments. An emphasis is placed on the review and integration of the research to explain the psychological issues related to various environments as well as to understand ways to effectively design living, educational, work, and recreational environments. Prerequisite: Psych 4730 or graduate standing.

PSYCH 6085 Internship (IND 0.0-6.0)
Students will apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Requires a major report. Prerequisites: Completed Core and Methods courses; instructor consent.

PSYCH 6099 Research (IND 0.0-6.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisites: Consent of instructor required.

PSYCH 6602 Employee Affect and Behavior (LEC 3.0)
Theory and research surrounding employee attitudes, emotions, and behaviors with an emphasis on antecedents and outcomes of: job satisfaction, engagement, organizational justice, trait and state positive and negative affect, organizational citizenship, counterproductive work, and proactive behaviors and the Implications for both employees and organizations. Prerequisite: Psych 5010.

PSYCH 6610 Leadership, Motivation, and Culture (LEC 3.0)
Examination of research related to leadership, motivation, and the impact of organizational culture on organizational performance will be discussed. The course will focus on the application of psychological theories to enhance organizational functioning and to promote positive workplace behaviors. Prerequisite: Psych 5010.

PSYCH 6611 Leadership for Engineers (LEC 3.0)
Provides engineers with a background in leadership concepts and principles; enables students to develop practical skills in leading and managing through multiple personal assessment. Topics include leadership styles, managing commitments, conflict resolution, change management, emotional intelligence, team dynamics and business ethics. Prerequisite: Eng Mgt 5110 or Psych 4602. (Co-listed with Eng Mgt 6112).

PSYCH 6700 Training and Development (LEC 3.0)
Psychological theories of learning will be covered. Students will learn how evaluate training needs in an organization as well as how to subsequently develop, implement, and validate a training program in an organizational context. Prerequisite: Psych 5700.

PSYCH 6702 Personnel Selection (LEC 3.0)
Current trends and methods in personnel recruitment and selection including classification, and promotion will be examined. An emphasis will be placed on legal and methodological considerations that can impact proper testing and assessment procedures. Cognitive abilities, personality, physical abilities, and other non-cognitive assessments will be discussed. Prerequisite: Psych 5700.
Statistics (STAT)

STAT 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

STAT 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

STAT 5260 Statistical Data Analysis Using SAS (LEC 2.0 and LAB 1.0)
This course will introduce the student to selected data analytic tools implemented in the Statistical Analysis System (SAS) and appropriate and effective use of these tools. Focus would be on both the use of SAS data analytic tools and the theoretical and methodological rationale that form the basis of such analyses. Prerequisite: One of Stat 3113 or 3115 or 3117 or 5643, and one of Stat 5346 or 5353 or 6841 or 6343 or 6344 or 6545.

STAT 5346 Regression Analysis (LEC 3.0)
Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, 3117, or 5643. (Co-listed with Comp Sci 5204).

STAT 5353 Statistical Data Analysis (LEC 3.0)
Introduction to methods for analyzing statistical data from experiments and introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 2222 and one of Stat 3111, 3113, 3115, and 3117.

STAT 5425 Introduction to Biostatistics (LEC 3.0 and LAB 1.0)
Introduction to common biostatistical methods for designing research studies, collecting and analyzing data, with application to problems originating from the biological, environmental, and health sciences. Topics include randomization, means comparisons, ANOVA, regression, and analysis of count data. Prerequisites: A grade of "C" or better in Math 1120, Math 1140, Math 1208, Math 1212, or Math 1214.

STAT 5425H Introduction to Biostatistics-Honors (LEC 3.0 and LAB 1.0)

STAT 5643 Probability And Statistics (LEC 3.0)
Introduction to the theory of probability and its applications, sample spaces, random variables, binomial, Poisson, normal distributions, derived distributions, and moment generating functions. Prerequisite: Math 2222.

STAT 5644 Mathematical Statistics (LEC 3.0)
A continuation of Stat 5643 with introduction to the theories of point estimation, hypothesis testing, and interval estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 5643.

STAT 5755 Statistical Models in Actuarial Science (LEC 3.0)
This course covers the statistical foundation of actuarial models and their applications. Topics include survival and severity models, Kaplan-Meier and Nelson-Aalen estimators, aggregate and credibility models for insurance losses, discrete time Markov chains, ruin theory, and simulation. Prerequisite: Stat 5643 and either Stat 5644 or a 3000-level Stat course. (Co-listed with Econ 4350).

STAT 5756 Statistical Models for Life Contingencies (LEC 3.0)
The basic statistical theory of actuarial models for life uncertainties such as time of death. Multiple life and multiple decrement models, statistical models for life and contingent insurance; last survivor, disability, withdrawal, retirement and reserving models for life insurance. Prerequisite: Stat 5643.

STAT 5756H Stat Models for Life Cont-Honors (LEC 3.0)

STAT 5814 Applied Time Series Analysis (LEC 3.0)
Introduction to time series modeling of empirical data observed over time. Topics include stationary processes, autocovariance functions, moving average, autoregressive, ARIMA, and GARCH models, spectral analysis, confidence intervals, forecasting, and forecast error. Prerequisites: One of Stat 3113, 3115, 3117, 5643 and one of Math 3103, 3108, or 5108.

STAT 5904 Science Education and Quantitative Literacy for Middle School Teachers (LEC 3.0)
An integrated science-mathematics course for middle school teachers. Course covers selected science/mathematics topics/skills specified in Missouri standards for grades 5-7. Inquiry based methods of teaching these topics in an integrated manner will be emphasized. Prerequisite: Current enrollment in a Teacher Education Program or a full or part-time teacher in a K12 school. (Co-listed with Physics 4625).

STAT 5905 Making Sense Of Data For Elementary School Teachers (LEC 3.0)
An activity based course that is intended to provide elementary school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint. Prerequisite: Graduate Standing.

STAT 5906 Making Sense Of Data For Middle School Teachers (LEC 3.0)
An activity based course that is intended to provide middle school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.
STAT 5907 Making Sense Of Data For High School Teachers (LEC 3.0)
An activity based course that is intended to provide high school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

STAT 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects in the department. Consent of instructor required.

STAT 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

STAT 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be conducted during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

STAT 6050 Continuous Registration (LEC 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

STAT 6099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

STAT 6238 Stochastic Optimization (LEC 3.0)
Introduction to stochastic modeling theory and application. Topics include probability theory, Markov processes, renewal theory, and queuing theory. Additional topics include stochastic dynamic programming and stochastic programming. Prerequisite: Eng Mgt 5412. (Co-listed with Eng Mgt 6414).

STAT 6239 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 6330, Elec Eng 6340, Sys Eng 6214 and Comp Sci 6405).

STAT 6342 Categorical Data Analysis (LEC 3.0)
A graduate-level introduction to statistical methods for analyzing categorical data. The topics include: contingency tables, generalized linear models including logistic regression models, log-linear models, ordinal and nominal regression models, Poisson regression, etc. The course will involve practical applications of the ideas and their implementations. Prerequisites: Stat 5644 and one of Stat 5346, Stat 5353, Stat 6344, or Stat 6553.

STAT 6343 Nonparametric Statistical Methods (LEC 3.0)
A course covering distribution free statistical methods. Topics include: order statistics, tests of hypotheses for one-sample and two-sample problems, analyses of variance, goodness-of-fit tests, runs test, independence and regression problems, point and interval estimation, ARE. Prerequisite: Stat 5644.

STAT 6344 Design And Analysis Of Experiments (LEC 3.0)
Experimental designs and their statistical analysis. Includes completely randomized designs, complete and incomplete blocking designs, factorial and fractional factorial experiments, multiple comparisons, response surface analysis. Prerequisites: One of Stat 5353, Eng Mgt 5715 and one of Stat 3111, 3113, 3115, 3117, 5643; or Stat 5643 and one of Stat 3111, 3113, 3115, 3117.

STAT 6545 Multivariate Statistical Methods (LEC 3.0)
Analysis of data consisting of simultaneous measurements on many variables. Multivariate normal distribution, multivariate analysis of variance, canonical correlation, principal components, classification and clustering techniques. Prerequisites: Stat 5644 and Math 3103.

STAT 6553 Linear Statistical Models I (LEC 3.0)
Includes a development of the theory of the distribution of quadratic forms, and the estimation of parameters and testing hypotheses in linear statistical models. Prerequisites: Math 3108 and Stat 5643 and either Stat 5353, Stat 6344, or Stat 6553.

STAT 6554 Linear Statistical Models II (LEC 3.0)
Includes the theory of polynomial models, regression models, experimental design models, incomplete block models, nonlinear models, with emphasis on optimum properties of point and interval estimation and the power of tests. Prerequisite: Stat 6553.

STAT 6570 Theory Of Reliability (LEC 3.0)
Statistical analyses of life-testing distributions such as the Weibull, gamma, exponential, logistic, and normal. Reliability estimation, tolerance limits, censored sampling, and applications of Monte-Carlo simulation. Prerequisite: Stat 5644.

STAT 6657 Advanced Mathematical Statistics I (LEC 3.0)

STAT 6658 Advanced Mathematical Statistics II (LEC 3.0)
A continuation of Stat 6657 with the emphasis on hypothesis testing. Prerequisite: Stat 6657.
STAT 6814 Statistical Time Series Analysis (LEC 3.0)
A formal introduction to the fundamentals of statistical modeling and analysis of discrete time series. Topics include autoregressive and moving average processes, ARMA models, second order stationarity, vector processes, autocorrelation function, Fourier representation, estimation and prediction of time series. Prerequisites: Stat 5643 and Math 3103 or 3108.

STAT 6841 Stochastic Processes (LEC 3.0)
Development and application of Poisson and nonhomogeneous Poisson processes; renewal processes; Markov chains and processes including birth and death processes; and normal processes, including Brownian motion. Prerequisites: Stat 5643 and Math 3304 or 3329.

STAT 6846 Advanced Probability Theory (LEC 3.0)
Probability spaces, random variables, distribution functions, expectations, independence, convergence theorems, characteristic functions, moment generating functions, and central limit theorem. Prerequisites: Stat 5644 and Math 5215.

Systems Engineering (SYS ENG)

SYS ENG 5000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SYS ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SYS ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

SYS ENG 5099 Research (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

SYS ENG 5101 System Engineering and Analysis (LEC 3.0)
The concepts of Systems Engineering are introduced through a project. Students work in virtual teams. The topics covered are architecture development, basic system architectural design techniques, functional decomposition, design and technical review objectives, and initial specifications. Prerequisite: Graduate Standing.

SYS ENG 5211 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Elec Eng 5310 and Comp Eng 5310).

SYS ENG 5212 Introduction to Neural Networks and Applications (LEC 3.0)
The course provides an introduction to basic neural network architectures and their applications. Students learn to construct neural networks and train them to solve engineering problems, specifically pattern recognition and function approximation. Mathematical analysis of network architectures, training algorithms and practical applications of neural nets. Prerequisites: Graduate Standing. (Co-listed with Elec Eng 5370).

SYS ENG 5323 Wireless Networks (LAB 1.0 and LEC 2.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 3420 or Comp Eng 3150 and graduate standing. (Co-listed with Comp Eng 5430 and Elec Eng 5430).

SYS ENG 6000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

SYS ENG 6001 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

SYS ENG 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

SYS ENG 6040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

SYS ENG 6050 Continuous Registration (IND 1.0)
Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from campus must continue to enroll for at least one credit hour each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
SYS ENG 6099 Research (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

SYS ENG 6102 Information Based Design (LEC 3.0)
This course is an introduction to the use of common data analytical methods and analysis for the purpose of decision making during the design phase of engineering system development. Through the introduction to such analytical methodologies, the systems engineering tool belt is made more effective as it is the foundation to decision analysis. Prerequisites: Graduate Standing.

SYS ENG 6103 Systems Life Cycle Costing (LEC 3.0)
Methods of economic evaluation for engineering projects involving complex systems. Economic impacts on choosing system alternatives, life cycle costing, economic decisions involving risk and uncertainty, and engineering cost estimation for projects in government, defense, and commercial industries. Prerequisites: Graduate Standing.

SYS ENG 6104 Systems Architecting (LEC 3.0)
Tools and concepts of architecting complex engineering systems. Ambiguity in Systems Architecting and Fuzzy Systems; Search as an Architecting Process; Architecting Heuristics; Systems Scoping and Attribute Selection; Assessing Architectures; Systems Aggregation, Partitioning; Systems Behavior Generation; System Science and Thinking, Cyber Physical Systems. Prerequisites: Graduate Standing.

SYS ENG 6105 Complex Engineering Systems Project Management (LEC 3.0)
The course topics include issues specific to distributed project management, team development, resource management, constraint planning, development of Integrated Master Schedule and Integrated Master Plan, monitoring technical performance, schedule, cost, and risk. Prerequisites: Graduate Standing.

SYS ENG 6110 Risk Modeling and Optimization under Uncertainty (LEC 3.0)
Risk analysis of products and systems will be explored. Traditional probabilistic risk assessment techniques will be covered along with recent approaches (i.e., stochastic programming, robust optimization, and dynamic programming) that use historical data based risk models to realize optimal risk management. Prerequisite: Graduate standing. (Co-listed with ENG MGT 6415).

SYS ENG 6167 Software Intensive Systems Architecting (LEC 3.0)
Basic tools and concepts of architecting complex software intensive systems are introduced. The following topics are covered under four main sections; namely Architecting Process, Architecting Heuristics, Architecting Patterns and Frameworks, and Architecture Assessment. Prerequisite: Graduate Standing.

SYS ENG 6196 Systems Engineering Capstone (LEC 3.0)
The topics covered are Systems Engineering Management Plan (SEMP), Systems Engineering processes, process re-engineering, standards, and systems engineering case studies. Students will apply the skills and theory that they mastered in previous five core courses to the analysis of assigned cases. Prerequisites: Sys Eng 6105.

SYS ENG 6213 Deep Learning and Advanced Neural Networks (LEC 3.0)
Use of deep learning and advance neural networks in the design of cyber physical complex adaptive systems. Machine learning basics, deep feed forward networks, regularization for deep learning, optimization for training deep models, convolutional networks, recurrent and recursive nets, practical , vision and natural language processing applications. Prerequisite: Graduate Standing.

SYS ENG 6214 Clustering Algorithms (LEC 3.0)
An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 6330, Elec Eng 6340, Comp Sci 6405 and Stat 6239).

SYS ENG 6215 Adaptive Dynamic Programming (LEC 3.0)
Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisites: Elec Eng 5370 or Comp Eng 5310. (Co-listed with Comp Eng 6320, Elec Eng 6360, Mech Eng 6458 and Aero Eng 6458).

SYS ENG 6216 Advanced Topics in Data Mining (LEC 3.0)
Advanced topics of current interest in the field of data mining. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: A "C" or better grade in Comp Sci 5001 Introduction to Data Mining. (Co-listed with Comp Sci 6402 and Comp Eng 6302).

SYS ENG 6219 Smart Engineering System Design (LEC 3.0)
Covers the tools, techniques and methods used in developing Flexible Intelligent Learning Architectures for system of systems (SoS) and cyber physical systems (CPS) through evolutionary approach. Meta-architecture generation algorithms, SoS and CPS architecture evaluation methods, executable architectures, many meta-architecture objectives trade. Prerequisites: Graduate Standing.

SYS ENG 6231 Modeling Complex Systems (LEC 3.0)
Engineering Systems of today are non-linear, distributed, global, and adaptive to their environment in both space and time, thereby creating emergent behaviors. This course covers the current modeling tools and techniques used in modeling and architecting these complex systems. Prerequisites: Graduate Standing. (Co-listed with COMP ENG 6410).

SYS ENG 6232 Resilient Networks (LEC 3.0)
This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisites: Sys Eng 6410, Comp Eng 6410, or Comp Eng 5420. (Co-listed with COMP ENG 6510).
SYS ENG 6324 Wireless Ad hoc and Sensor Networks (LEC 3.0)
Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 5430 or Comp Eng 5420 or equivalent. (Co-listed with Comp Eng 6420 and Elec Eng 6430).

SYS ENG 6541 Distributed Systems Modeling (LEC 3.0)
This course will discuss issues related to distributed systems architecting, modeling, analysis and representation, with specific focus on discrete-part manufacturing domain. Distributed modeling techniques and other model decomposition methods using simulation modeling and scalability issues will also be addressed.

SYS ENG 6542 Model Based Systems Engineering (LEC 3.0)
Provides the student with understanding of the use of models to represent systems and validate system architectures. The student will gain proficiency in using a systems modeling language and shifting systems engineering from a document centric to a model centric paradigm. Prerequisites: Graduate Standing. (Co-listed with COMP SCI 6102).

SYS ENG 6612 Investment (LEC 3.0)
An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6212).

SYS ENG 6613 Financial Engineering (LEC 3.0)
An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6213).

SYS ENG 6614 Financial Engineering II (LEC 3.0)
This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito's lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and value-at-risk. Prerequisite: Eng Mgt 6213/Sys Eng 6613. (Co-listed with Eng Mgt 6214).

SYS ENG 6615 Financial Risk Management (LEC 3.0)
Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting. Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisite: Eng Mgt 1210 or 5210. (Co-listed with Eng Mgt 6215).

Technical Communication (TCH COM)

TCH COM 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

TCH COM 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

TCH COM 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

TCH COM 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

TCH COM 5510 Technical Editing (LEC 3.0)
The principles and practices of technical editing, including usability, audience analysis, contextual editing, the conventions of scientific and technical communication, and the role of the editor in document development and publication. Students will also learn standard practices of copy editing and the use of style guides. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5530 Usability Studies (LEC 3.0)
Students in this course will study and apply methods used by technical communicators to evaluate usability. Students will study methods used to evaluate human interaction with communication tools and how to make those products more suitable for human use. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5540 Advanced Layout and Design (LEC 3.0)
Advanced theory and practice of layout and design for print and electronic media. Students who have taken TCH COM 2540 may not take this course for credit. Prerequisite: Graduate standing.

TCH COM 5550 Advanced Proposal Writing (LEC 3.0)
Familiarizes graduate students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Credit will not be given for both TCH COM 4550 and TCH COM 5550. Prerequisites: Graduate standing.
TCH COM 5560 Web-Based Communication (LEC 3.0)
Covers such topics as advanced writing and editing for the web; the creation of rhetorically effective websites; the use of blogs, wikis, and other web genres to communicate technical information. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5610 History of Technical Communication (LEC 3.0)
Introduction to the roles of the technical communicator and the technologies of communication from ancient cultures to the present. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 5620 Research Methods in Technical Communication (LEC 3.0)
Students learn essential research methods in technical communication, including audience analysis, interviewing techniques, working with subject matter experts, and experimental research design. Prerequisites: One semester of college composition or technical writing, or graduate standing.

TCH COM 6001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

TCH COM 6070 Teaching of Technical Communication (LEC 3.0)
Provides a theoretical and pedagogical foundation for teaching workshops and undergraduate courses in technical communication. Includes both traditional and electronic settings.

TCH COM 6410 Theoretical Approaches to Technical Communication (LEC 3.0)
Examines representative theories and research in written, oral, and visual modes of technical communication. Includes such issues as ethics, document design, rhetorical methods, and people-machine communication.

TCH COM 6420 Information Management in Technical Communication (LEC 3.0)
Study of and practice in directing projects related to such areas as multimedia, web sites, strategic planning, newsletters. Includes writing planning documents, selecting team members, synchronizing assignments, testing prototypes, and issuing a final report.

TCH COM 6440 Advanced Theories of Visual Technical Communication (LEC 3.0)
An in-depth investigation and analysis of historical and contemporary visual theories and their impact on technical communication, including visual rhetoric, semiotics, and design and critical theories.

TCH COM 6450 Advanced International Technical Communication (LEC 3.0)
Advanced study of international technical communication. Includes topics such as graphics, icons, symbols; user interface design; intercultural communication. Students may not earn credit for both TCH COM 4450 and TCH COM 6450.

TCH COM 6600 Foundations of Technical Communication (LEC 3.0)
Introduction to themes and issues, methods, and genres that define technical communication.
NON-DEGREE GRADUATE COURSE LIST

The following disciplines (aerospace studies, architectural engineering, art, economics, education, English, enterprise resource planning, finance, French, German, history, marketing, music, philosophy, political science, pre-med, psychology, Russian, Spanish, speech and media studies, and theatre) do not offer a graduate degree. The departments of economics and finance, English and history & political science have entered into cooperative agreements with the corresponding departments of the University of Missouri-St. Louis to offer a master of arts in economics and in English. The agreements permit students to take a maximum of 12 semester hours on the Missouri S&T campus. Some of the upper division courses may be used, where pertinent, for credit toward other graduate degrees. Be sure to check the use of these courses with your major professor before you add these courses to your schedule.

Economics (ECON)

ECON 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ECON 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course.

ECON 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

ECON 5120 Advanced Micro and Macro Economics Essentials (LEC 1.5)
An introduction to the essentials of micro and macro economics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IS&T, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

ECON 5310 Advanced Mathematical Economics (LEC 3.0)
Marginal analysis, calculus, and linear algebraic systems are applied in selected advanced topics in economics such as price theory, general equilibrium theory, input-output analysis, activity analysis, and game theory. This course is an advanced version of Econ 4310, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4310 and Econ 5310. Prerequisites: Econ 2100, 2200 and Math 1208, Math 5303.

ECON 5330 Econometric Methods (LEC 2.0 and LAB 1.0)
A survey of econometric topics and methods illustrated through real world applications. Includes least squares estimation, generalized least squares, two-stage least squares, simultaneous equations models, panel data and qualitative choice models. Students will use modern statistical software packages (STATA, R) to perform hands-on quantitative analysis. Prerequisites: Econ 2100 and Econ 2200, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643.

ECON 5337 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Econ 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Math 5737).

ECON 5342 Advanced Finance (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. This course is an advanced version of Econ 321, and will include additional research and project assignments. Credit cannot be obtained for both Econ 5160 and Econ 5342. Prerequisite: Econ 2100 or Econ 2200.

ECON 5430 Advanced Cost-Benefit Analysis (LEC 3.0)
Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. This course is an advanced version of Econ 4430, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4430 and Econ 5430. Prerequisite: Econ 2100.

ECON 5532 Advanced Mining Economics (LEC 3.0)

ECON 5564 Creativity, Innovation, and Sustainability (LEC 3.0)
This interdisciplinary course examines the use of innovation as a competitive technological strategy with a sustainability perspective. It explores ways in which individuals, groups, and organizations can become more creative and how leadership and a culture of change can be implemented.

ECON 5710 Advanced International Trade (LEC 3.0)
Analysis of gains from trade; the effects of factor mobility; effects of trade restrictions on trade flow and income distribution; arguments for restricting trade; and effects of trade on economic development, employment and human capital development. This course is an advanced version of Econ 4710+D1194, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4710 and Econ 5710. Prerequisite: Econ 2100.
ECON 5720 Advanced International Finance (LEC 3.0)
Examination of the international monetary system, the Balance of Payments, the foreign exchange market, futures and options markets; foreign exchange and other risk management for firms, financing from a global perspective and direct foreign investment. This course is an advanced version of Econ 4720, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4720 and Econ 5720. Prerequisite: Econ 2200.

ECON 5820 Advanced Labor Economics (LEC 3.0)
Labor as a factor of production, collective bargaining, trade unionism, labor legislation, from the viewpoint of public policy. This course is an advanced version of Econ 4820, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4820 and Econ 5820. Prerequisite: Econ 2100 or Econ 2200.

ECON 6000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ECON 6010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

ECON 6337 Financial Mathematics II (LEC 3.0)
Continuation of Math 5737/Econ 5337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 5737 or Econ 5337. (Co-listed with Math 6737).

ECON 6440 Advanced Environmental and Natural Resource Economics (LEC 3.0)
Optimum use of renewable and non-renewable resources, public goods and common resources, externalities, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. As an advanced version of Econ 4440, it will include additional research assignments. Credit can't be earned for both Econ 4440 and 6440. Prerequisite: Econ 2100.

ECON 6540 Advanced Energy Economics (LEC 3.0)
Market structures. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. This course is an advanced version of Econ 4540, and will include additional research and project assignments. Credit cannot be obtained for both Econ 4540 and Econ 6540. Prerequisite: Econ 2100.

ECON 6641 Advanced Foundations of Sustainability (LEC 3.0)
This interdisciplinary course is designed as an introduction to sustainability in commerce. It examines environmental, social, and economic issues in an organized context. Principles, processes and practices in sustainability will be explored. Project or written case study required.

ECON 6642 Global Eco- and Social-preneurship and Innovation (LEC 3.0)
This interdisciplinary course applies an entrepreneurial mindset to the environmental and social opportunities and challenges facing the global community. Topics are examined from multiple perspectives; nonprofit, hybrid, and for-profit organizations. Written case studies required. Research project required. Prerequisites: Econ 6641.

ECON 6643 Advanced Ethical Problems in a Global Environment (LEC 3.0)
Focuses on the international dimension of ethics including corporate responsibility from economic, social, and environmental perspectives. It addresses the ethical challenges of decision-making, stakeholder engagement, and governance at micro-(personal), and meso-(org), and macro-(systems) levels. Case studies will be included as part of the course.

English (ENGLISH)

ENGLISH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ENGLISH 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ENGLISH 5100 Readings In Rhetoric And Composition (LEC 3.0)
Directed readings and writing on selected topics and areas in Rhetoric and Composition. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5210 Readings In British Literature (LEC 3.0)
Directed readings and writing on selected topics and areas in British literature. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5220 Readings In American Literature (LEC 3.0)
Directed readings and writing on selected topics and areas in American literature. Credit will only be given for one of English 402, 403, 404, or 405 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5230 Readings In Literature And Theory (LEC 3.0)
Directed readings and writing on selected topics and areas in Literature and Theory. Credit will only be given for one of English 5210, 5220, 5230, or 5100 toward the Coop MA with UMSL. Prerequisites: Graduate standing and consent of instructor.

ENGLISH 5571 Advanced Writing For Science & Engineering (LEC 3.0)
Focus on writing applications specifically for students in scientific or engineering fields. Primary emphases will be on producing effective and readable professional writing. Prerequisites: English 3560 and 2560, or graduate standing.
ENGLISH 5572 Advanced Writing For Science And Engineering II (LEC 2.0)
This course -- second in a series -- focuses on writing for publication, from the initial proposal and query to the final product. Students will work on the materials they have underway with their advisers and/or research colleagues. Prerequisites: English 3560 and 2560, or graduate standing.

Enterprise Resource Planning (ERP)

ERP 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

ERP 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ERP 5110 Enterprise Resource Planning Systems Design and Implementation (LEC 3.0)
This course provides a technical overview of Enterprise Resource Planning Systems and their impact on organizations. SAP is introduced to illustrate the concepts, fundamentals, framework, general information technology context, technological infrastructure, and integration of business enterprise-wide applications. Prerequisites: Preceded or accompanied by ERP 2110; or Graduate Standing and computer programming knowledge.

ERP 5130 ERP in Small & Mid-Size Enterprises (LEC 3.0)
Provides an overview of enterprise applications for small and midsize companies. A leading platform such as Microsoft Dynamics AX or SAP Business One is introduced to illustrate theories and practical enterprise-wide applications for entrepreneurs, who manage business functions across sales, operation, and financials, all in a single integrated system. Prerequisites: ERP 5110 or ERP 2110.

ERP 5210 Performance Dashboard, Scorecard and Data Visualization (LEC 3.0)
This course will study different performance management systems including dashboards, management cockpit, scorecards, and strategy maps in an organization. SAP’s BW, Business Objects Xcelsius, Crystal Reports, Sybase Unwired Platform will be used to develop the applications. Prerequisite: ERP 2110 or preceded or accompanied by ERP 5110.

ERP 5240 Enterprise Application Development and Software Security (LEC 3.0)
This course provides a conceptual foundation and hands on experience in web and mobile based (HTML5) applications development deployed through an enterprise platform. Enterprise development tools, such as SAP HANA Cloud Platform, will be used to build these apps. The course also covers software cybersecurity from a web and mobile perspective. Prerequisites: Programming knowledge and either ERP 2110 or preceded or accompanied by ERP 5110.

ERP 5310 Supply Chain Management Systems in an ERP Environment (LEC 3.0)
The course studies the need for supply chain integration and the challenges of managing complex interfaces using the systems approach for the planning, analysis, design, development, and evaluation of supply chain. SAP’s ERP ECC, SCM, BW, and Sybase Unwired Platform are used to deploy SCM apps. Prerequisite: ERP 2110 or preceded or accompanied by ERP 5110.

ERP 5410 Use of Business Intelligence (LEC 3.0)
This course introduces data-oriented techniques for business intelligence. Topics include Business Intelligence architecture, Business Analytics, and Enterprise Reporting. SAP Business Information Warehouse, Business Objects, or similar tools will be used to access and present data, generate reports, and perform analysis. Prerequisites: IS&T 1750 or equivalent; ERP 2110 or preceded or accompanied by ERP 5110.

ERP 5510 ERP System Administration (LEC 3.0)
System administration and performance monitoring practices for an Enterprise Resource Planning (ERP) system will be studied. Students will install an instance of an ERP system and establish user management attributes and system security. Prerequisite: ERP 5110.

ERP 6001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

ERP 6120 Enterprise Resource Planning: Systems Config and Integration (LEC 3.0)
Implementation and design practices for business processes in Enterprise Resource Planning (ERP) systems. The course will examine and apply techniques used in SAP ERP system for system configuration and integration, with a focus on Financial Accounting, logistics, Controlling, and production. Prerequisite: ERP 5110.

ERP 6220 Data Modeling & Visualization Prototyping for Enterprise Decision Dashboards (LEC 3.0)
Study how to integrate data modeling and visualization prototyping in design and implementation of enterprise decision dashboards for descriptive, predictive, and prescriptive analytics. Assignments and project implementations use SAP HANA & BW, Design Studio, IBM Watson, and SAS Visual Analytics. Semester project prepared. Prerequisites: ERP 5110 and one of ERP 5410, ERP 6444 or IS&T 6444.

ERP 6444 Essentials of Data Warehouses (LEC 3.0)
This course presents the topic of data warehouses and the value to the organization. It takes the student from the database platform to structuring a data warehouse environment. Focus is placed on simplicity and addressing the user community needs. Prerequisite: IS&T 3423 or equivalent relational database experience. (Co-listed with IS&T 6444).
ERP 6610 Advanced Customer Relationship Management in ERP Environment (LEC 3.0)
Identification (targeting), acquisition, retention, and development (expansion) of (profitable) customers. Effective and efficient mgmt of customers, using IT. SAP CRM, SAS BI tools, and Sybase mobile application development are used. Research paper and presentation required. Prerequisites: ERP 2110 or preceded or accompanied by ERP 5110.

Finance (FINANCE)

FINANCE 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in finance. Prerequisite: Admission to the MBA program and permission of the instructor.

FINANCE 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Admission to the MBA program.

FINANCE 5099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

FINANCE 5160 Corporate Finance II (LEC 3.0)
This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. Prerequisite: Finance 2150.

FINANCE 5205 Graduate Finance Essentials (LEC 1.5)
This course is an introduction to the essentials of corporate finance for running a business. This course is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, Information Sciences and Technology. Additional case or report required. Prerequisite: Bachelor Degree.

FINANCE 5260 Investments I (LEC 3.0)
Introduction to fundamental elements of investment analysis. Students learn financial tools and gain necessary knowledge to select among alternative financial assets. Real world experience includes stock analysis, portfolio simulations and interactions with professionals in the securities industry. Prerequisites: Finance 2150.

FINANCE 5310 Financial Modeling (LEC 3.0)
This course is built on finance theory, financial analysis, and quantitative methods from prerequisite courses. The course will extensively use Excel spreadsheets to design and construct integrated financial models. The objective is to offer students opportunities to experience hands-on numerical analyses, company valuation, and dynamic projections. Prerequisites: Finance 2150 or Graduate Standing.

FINANCE 6001 Special Topics (IND 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Admission to the MBA program.

FINANCE 6099 Research (IND 0.0-6.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

FINANCE 6230 Advanced Mathematical Finance (LEC 3.0)
Topics include exotic options, liquidity, volatility surfaces, discrete hedging, market jumps, calibrating to market, modeling yield curves and related products, convertible bonds, credit derivatives, various hybrid derivatives, applicable numerical methods. Prerequisite: Finance 2150.

History (HISTORY)

HISTORY 5003 Readings In American History Since 1865 (IND 3.0-5.0)
Directed readings and writing on selected topics and areas in American History since 1865. Prerequisites: Graduate standing and consent of instructor.

HISTORY 5004 Readings In European History To 1715 (IND 3.0-5.0)
Directed readings and writing on selected topics and areas in European History to 1715. Prerequisites: Graduate standing and consent of instructor.

HISTORY 5005 Readings In European History Since 1715 (IND 3.0-5.0)
Directed readings and writing on selected topics and areas in European History since 1715. Prerequisites: Graduate standing and consent of instructor.

Marketing (MKT)

MKT 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in marketing. Prerequisite: Consent of instructor required.

MKT 5001 Special Topics (LEC 0.0-6.0)
This is designed to give the department an opportunity to test a new course. Variable title.

MKT 5099 Research (IND 0.0-9.0)
Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Consent of instructor required.

MKT 5105 Graduate Marketing and Strategy Essentials (LEC 1.5)
This course is an introduction to the essentials of marketing and strategy for running a business. It’s designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IS&T or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.
MKT 5310 Digital Marketing and Promotions (LEC 3.0)
A managerial examination of integrated marketing communication (IMC) and creativity, with a focus on digital media and new marketing concepts. Specifically, we will look at innovative marketing techniques such as viral marketing, brand communities, experiential marketing and guerrilla tactics. Prerequisites: At least Junior standing.

MKT 5320 Marketing for Non-Profits (LEC 3.0)
Illustrates the importance of creating synergy within a marketing campaign. Speaking with "one voice" allows a brand to make a stronger impact; students will work with a local non-profit to improve their marketing message at each customer touch point. Students will analyze a marketing plan and work to improve it, including brochures & donation letters. Prerequisites: At least Junior standing.

MKT 6150 Advanced Customer Focus and Satisfaction (LEC 3.0)
Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. Individual focused research is included. Prerequisite: MKT 3110 or MKT 3105 or ENG MGT 3510. (Co-listed with BUS 6150).

MKT 6580 Advanced Marketing Strategy (LEC 3.0)
Identification and analysis of strategic managerial marketing issues. Integration of marketing concepts through theoretical overview and practical analysis, including extensive use of simulation. Independent work on marketing project. Prerequisites: MKT 3110 or MKT 6622 or ENG MGT 3510.

Philosophy (PHILOS)

PHILOS 5000 Special Problems (IND 1.0-3.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PHILOS 5001 Special Topics (IND 1.0-3.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

Psychology (PSYCH)

PSYCH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

PSYCH 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new graduate level course. Variable title.

PSYCH 5010 Seminar for Industrial / Organizational Psychology (RSD 3.0)
A seminar course for general overviews of the most recent research in Industrial-Organizational Psychology. Prerequisite: Graduate standing.

PSYCH 5012 Ethics and Professional Responsibilities (LEC 1.0)
Case studies examining the ethical practice of psychology in organizations will be discussed. This will include covering both the legal and ethical standards surrounding the consulting and practice of i-o psychology and personnel management in organizations. Prerequisite: Graduate standing.

PSYCH 5020 Introduction to Industrial-Organizational Psychology (LEC 3.0)
Review of the most recent theoretical and applied research in advanced personnel and organizational psychology. Topics will include personnel selection, training and performance appraisal, job attitudes, motivation, work groups and teams, leadership, organizational culture, and organizational development. Prerequisites: Graduate Standing.

PSYCH 5200 Theories and Practice of Psychological Measurement (LEC 3.0)
A managerial examination of statistical methods used to develop and refine measures of human performance, aptitudes, and personality. Topics include reliability and validity, data reduction, measuring inter-relationships among variables (e.g., factor analysis, multiple regression), and testing group differences. Prerequisite: Psy 4200 or graduate standing.

PSYCH 5201 Psychometrics (LEC 3.0)
An examination of statistical methods used to develop and refine measures of human performance, aptitudes, and personality. Topics include reliability and validity, data reduction, measuring inter-relationships among variables (e.g., factor analysis, multiple regression), and testing group differences. Prerequisite: Psy 5202.

PSYCH 5202 Applied Psychological Data Analysis (LEC 3.0)
This course will focus on those statistical methods most useful for advanced research in psychology. We will learn to use R, a powerful, open-source statistical programming platform, and work through examples with psychological data sets including such techniques as correlation, ANOVAs, regression, and chi-squared. Prerequisite: Graduate standing.

PSYCH 5210 Advanced Research Methods (LEC 3.0)
Research methods and techniques, with an emphasis on conducting psychological research in organizational settings. Topics discussed include: ethics, reliability and validity in measurement and application, proper uses of experimental, quasi-experimental, and survey methodologies, as well as advanced methodologies IRT, SEM, HLM, and Meta-Analyses. Prerequisite: Graduate standing.

PSYCH 5600 Advanced Social Psychology (LEC 3.0)
An advanced study of the behavior of individuals in interaction within groups. Consideration will also be given to the experimental literature dealing with the formal properties of groups, conformity and deviation, intergroup relations, and attitude formation and attitude change. Prerequisite: Psych 4600.

PSYCH 5601 Small Group Dynamics (LEC 3.0)
This course covers group perception, identification, leadership, structure, conflict, cohesion, commitment, performance, norms, roles, influence, and decisions, and groups' relations, networks, and work teams. Students consider both theory and applications to their lives and organizations through observational, research, team and applied assignments. Prerequisite: Psych 4601 or graduate standing.
PSYCH 5602 Organizational Development (LEC 3.0)
Examination of the field of organizational development theories and interventions. An emphasis is placed on research methods and application of practices related to individual processes, group processes, and organizational structures and functions that impact change and development strategies and interventions. Prerequisite: Psych 4602 or graduate standing.

PSYCH 5603 Advanced Social Influence (LEC 3.0)
An in-depth review of the principles and procedures that affect the process of social influence, with consideration given to attitudinal, compliance inducing, and perceptual influences. Students will consider the theoretical implications and practical applications of topics in social influence in the form of independent reading, research proposals and/or projects, and observational assignments. Prerequisite: Psych 4603 or graduate standing.

PSYCH 5700 Job Analysis and Performance Management (LEC 3.0)
A focus on the scientific measurement of job performance. An in-depth discussion of the science and methods of appropriate job and task analysis will be discussed. Additionally, students will focus on current issues in performance management and appraisal including scientific findings related to both objective and subjective measures of performance. Prerequisite: Psych 4700 or graduate standing.

PSYCH 5710 Advanced Human Factors (LEC 3.0)
An in-depth review of the foundations of human factors, focusing on the interaction of people with various forms of technology in a variety of environments. Topics include research and evaluation methods, displays (e.g., visual, auditory), attention and information processing, decision making, motor skills, anthropometry, and biomechanics. (Co-listed with ENG MGT 5330).

PSYCH 5720 Advanced Human-Computer Interaction (LEC 3.0)
This course examines the psychological research and theories that contribute to the field of human-computer interaction. An emphasis will be placed on engaging in critical evaluation of research and applying theoretical knowledge to effectively use computers in organizations. Prerequisite: Psych 4720 or graduate standing.

PSYCH 5730 Environmental Psychology: Research and Practice (LEC 3.0)
An in-depth review of the theoretical perspectives in environmental psychology and the psychological effects of various environments. An emphasis is placed on the review and integration of the research to explain the psychological issues related to various environments as well as to understand ways to effectively design living, educational, work, and recreational environments. Prerequisite: Psych 4730 or graduate standing.

PSYCH 6085 Internship (IND 0.0-6.0)
Students will apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Requires a major report. Prerequisites: Completed Core and Methods courses; instructor consent.

PSYCH 6099 Research (IND 0.0-6.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisites: Consent of instructor required.

PSYCH 6602 Employee Affect and Behavior (LEC 3.0)
Theory and research surrounding employee attitudes, emotions, and behaviors with an emphasis on antecedents and outcomes of: job satisfaction, engagement, organizational justice, trait and state positive and negative affect, organizational citizenship, counterproductive work, and proactive behaviors and the Implications for both employees and organizations. Prerequisite: Psych 5010.

PSYCH 6610 Leadership, Motivation, and Culture (LEC 3.0)
Examination of research related to leadership, motivation, and the impact of organizational culture on organizational performance will be discussed. The course will focus on the application of psychological theories to enhance organizational functioning and to promote positive workplace behaviors. Prerequisite: Psych 5010.

PSYCH 6611 Leadership for Engineers (LEC 3.0)
Provides engineers with a background in leadership concepts and principles; enables students to develop practical skills in leading and managing through multiple personal assessment. Topics include leadership styles, managing commitments, conflict resolution, change management, emotional intelligence, team dynamics and business ethics. Prerequisite: Eng Mgt 5110 or Psych 4602. (Co-listed with Eng Mgt 6112).

PSYCH 6700 Training and Development (LEC 3.0)
Psychological theories of learning will be covered. Students will learn how evaluate training needs in an organization as well as how to subsequently develop, implement, and validate a training program in an organizational context. Prerequisite: Psych 5700.

PSYCH 6702 Personnel Selection (LEC 3.0)
Current trends and methods in personnel recruitment and selection including classification, and promotion will be examined. An emphasis will be placed on legal and methodological considerations that can impact proper testing and assessment procedures. Cognitive abilities, personality, physical abilities, and other non-cognitive assessments will be discussed. Prerequisite: Psych 5700.

Speech & Media Studies (SP&M S)

SP&M S 5000 Special Problems (IND 0.0-6.0)
Graduate level problems or readings on specific subjects of projects in the department. Consent of instructor required.

SP&M S 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course with senior/graduate level emphasis. Variable title.

SP&M S 5010 Seminar (IND 0.0-6.0)
Advanced discussion of current topics.
INDEX

A
Academic Calendar .. 6
Administrators .. 4
Admissions and Academic Program Procedures - Graduate 27
Advanced Materials Characterization Laboratory 48
Aerospace Engineering - Graduate .. 55
Aerospace Engineering (AERO ENG) - Graduate 200

B
Biological Sciences - Graduate .. 60
Biological Sciences (BIO SCI) - Graduate 203
Business Administration - MBA ... 63
Business (BUS) - Graduate .. 205

C
Career Opportunities and Employer Relations (COER) - Graduate 7
Center for Aerospace Manufacturing Technologies 48
Center for Biomedical Research (CBR) 43
Center for Infrastructure Engineering Studies (CIES) 43
Center of Excellence for Aerospace Particulate Emissions Reduction Research ... 48
Ceramic Engineering - Graduate .. 68
Ceramic Engineering (CER ENG) - Graduate 208
Chemical & Biochemical Engineering - Graduate 70
Chemical Engineering (CHEM ENG) - Graduate 209
Chemistry - Graduate ... 74
Chemistry (CHEM) - Graduate .. 211
Civil, Architectural, and Environmental Engineering - Graduate 78
Civil Engineering (CIV ENG) - Graduate 214
Cloud and Aerosol Sciences Laboratory (CASL) 44
Computer Engineering - Graduate ... 91
Computer Engineering (COMP ENG) - Graduate 221
Computer Science - Graduate ... 96
Computer Science (COMP SCI) - Graduate 224
Council of Graduate Students ... 7
Counseling Services .. 8
Course Information .. 199
Course List ... 200
Critical Infrastructure Protection Laboratory 49
Curtis Lawns Wilson Library ... 8

D
Design Engineering Center .. 49
Doctorate Degrees .. 36
E
Economics - Graduate .. 103
Economics (ECON) - Graduate .. 280
Educational Goals of Missouri S&T .. 3
Electrical Engineering - Graduate .. 105
Electrical Engineering (ELEC ENG) - Graduate 228
Energetic Materials Research Center 44
Energy Research and Development Center (ERDC) 44
Engineering Management - Graduate 115
Engineering Management (ENG MGT) - Graduate 234
English - Graduate .. 124
English (ENGLISH) - Graduate .. 281
Enterprise Resource Planning (ERP) - Graduate 282
Environmental Engineering (ENV ENG) - Graduate 238
Environmental Research Center for Emerging Contaminants (ERCEC) .. 45
Experimental Mine ... 49
Explosives Engineering - Graduate .. 125
Explosives Engineering (EXP ENG) - Graduate 240

F
Fees - Graduate ... 8
Fellowships, Research Assistantships, Teaching Assistantships and Graduate Assistants ... 11
Finance (FINANCE) - Graduate .. 283
Financial Assistance - Graduate ... 12

G
General Information .. 7
Geological Engineering - Graduate .. 128
Geological Engineering (GEO ENG) - Graduate 241
Geology and Geophysics - Graduate 132
Geology (GEOLOGY) - Graduate .. 245
Geophysics (GEOPHYS) - Graduate 247
Geotechnics - Graduate ... 137
Global Learning ... 13
Graduate Certificate and Minor Programs 41
Graduate Certificates .. 54
Graduate Degree Programs .. 55
Graduate Faculty ... 13

H
High Pressure Waterjet Laboratory ... 49
History (HISTORY) - Graduate .. 283
I
Info Science & Technology (IS&T) - Graduate 249
Information Science and Technology - Graduate 141
Information Technology (IT) .. 13
Institute for Applied Chemistry and Nuclear Magnetic Resonance 50
Institute for Chemical and Metallurgical Process Development 50
Intelligent Systems Center (ISC) ... 45
International Affairs .. 15
L
Laboratory for Atomic, Molecular and Optical Research 50
Laboratory for Information Technology Evaluation 50
M
Manufacturing Engineering - Graduate 148
Marketing (MKT) - Graduate .. 283
Masters Degrees .. 32
Materials Research Center (MRC) .. 46
Materials Science & Eng (MS&E) - Graduate 251
Materials Science & Engineering - Graduate 150
Mathematics and Statistics - Graduate 153
Mathematics (MATH) - Graduate .. 253
Mechanical Engineering - Graduate 160
Mechanical Engineering (MECH ENG) - Graduate 256
Metallurgical Engineering - Graduate 170
Metallurgical Engineering (MET ENG) - Graduate 262
Miner Wellness .. 17
Mineral Processing Laboratory .. 50
Mining Engineering - Graduate .. 173
Mining Engineering (MIN ENG) - Graduate 264
Missouri Institute for Computational and Applied Mathematical Sciences .. 51
Missouri S&T ... 3
Missouri S&T Global - St. Louis ... 51
Missouri University of Science and Technology 5
N
Natural Hazards Mitigation Institute 51
Non-Degree Graduate Course List 280
Nuclear Engineering - Graduate 178
Nuclear Engineering (NUC ENG) - Graduate 268
Nuclear Reactor .. 17
O
Oak Ridge Associated Universities (ORAU) 17
Office of Graduate Studies .. 18
Office of the Registrar ... 18
P
Petroleum Engineering - Graduate 181
Petroleum Engineering (PET ENG) - Graduate 269
Philosophy (PHILOS) - Graduate 284
Physics - Graduate .. 183
Physics (PHYSICS) - Graduate .. 270
Psychology - Graduate ... 185
Psychology (PSYCH) ... 272
Psychology (PSYCH) - Graduate 284
R
Research Centers and Institutes .. 43
Rock Mechanics and Explosives Research Center (RMERC) 46
Rocks Mechanics Laboratory ... 52
S
S&T Police Department .. 20
South Central Regional Professional Development Center 52
Special Facilities and Programs .. 48
Speech & Media Studies (SP&M S) - Graduate 285
Statistics (STAT) - Graduate .. 274
Student Design and Experiential Learning Center 52
Student Disability Services ... 23
Student Diversity Initiatives ... 23
Student Health Services ... 24
Student Organizations ... 24
Systems Engineering - Graduate 188
Systems Engineering (SYS ENG) - Graduate 276
T
Technical Communication - Graduate 196
Technical Communication (TCH COM) - Graduate 278
Technology Transfer and Economic Development 53
V
Veteran Affairs .. 25
Virtual Surface Mining Simulator 53
W
Wei-Wen Yu Center for Cold-Formed Steel Structures 53