CHEMICAL ENGINEERING (CHEM ENG)

CHEM ENG 1100 Computers And Chemical Engineering (LAB 1.0 and LEC 2.0)
Introduction to chemical engineering, both its intellectual and professional opportunities. Students are introduced to computer programming and software packages while performing meaningful chemical engineering calculations.

CHEM ENG 2001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course.

CHEM ENG 2100 Chemical Engineering Material & Energy Balances (LAB 1.0 and LEC 2.0)
The application of mathematics, physics and chemistry to industrial chemical processes. The use of equations of state, chemical reaction stoichiometry, and the conservation of mass and energy to solve chemical engineering problems. Prerequisites: Chem 1320 or Geology 3410; Math 1215 or Math 1221; preceded or accompanied by Physics 1135.

CHEM ENG 2110 Chemical Engineering Thermodynamics I (LEC 3.0)
Development and application of the laws and fundamental relationships of thermodynamics to industrial chemical processes. Emphasis is placed on the estimation of thermophysical property values for applications in chemical process engineering. Prerequisites: Preceded by Math 2222; Preceded or accompanied by Chem Eng 2100.

CHEM ENG 2300 Chemical Process Materials (LEC 3.0)
Fundamentals of the chemistry of materials. Classification, properties, selection, and processing of engineering materials. Introduction to polymers, electronic materials, biomaterials, and nanomaterials. Prerequisites: Physics 1135.

CHEM ENG 2310 Professional Practice And Ethics (LEC 1.0)
Preparation for post-graduate activities including resume writing and job searching. Professional attitudes, practice, licensure, and ethics in the chemical engineering profession. Discussions led by visiting industrialists and other invited speakers. Discussion of professional development including professional and graduate programs. Generally offered fall semester only. Prerequisite: At least sophomore standing.

CHEM ENG 3000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 3001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course.

CHEM ENG 3002 Cooperative Engineering Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

CHEM ENG 3100 Chemical Engineering Fluid Flow (LEC 3.0)
Mass, energy, and momentum balance concepts in fluid flow are studied to provide a basis for study of flow measurement, fluid behavior, turbulent flow, dimensional analysis of fluid flows, and the study of some practical flow processes such as: filtration, fluidization, compressible flow, pipe networks. Prerequisites: Chem Eng 2100 and Math 3304; Chem Eng majors only.

CHEM ENG 3101 Fundamentals of Transport in Chemical and Biochemical Engineering (LEC 4.0)
This course covers the fundamentals of momentum, energy, and mass transport. Phenomenological mechanisms of molecular transport, fluid static, analysis of a fluid in motion laminar and turbulent flow are covered. The general differential equations for momentum, energy and mass transfer are presented and solved for a variety of chemical engineering problems. Prerequisites: Math 3304 and Chem Eng 2110. Admitted to the Chemical Engineering Program.

CHEM ENG 3110 Chemical Engineering Heat Transfer (LEC 2.0)
Process principles of heat transfer in the chemical process industry. Steady and unsteady state heat conduction and radiation heat transfer. Free and forced convection and condensation and boiling heat transfer. Practical heat exchanger design. Prerequisites: Math 2222 and preceded or accompanied by Chem Eng 3100. Chem Eng majors only.

CHEM ENG 3111 Numerical Computing in Chemical and Biochemical Engineering (LAB 1.0 and LEC 2.0)
The students are introduced to the concepts of engineering problem formulation, model building, and multi scale models. Matlab, spreadsheet and polymath computing are used to solve chemical engineering problems involving systems of linear and non linear algebraic equations, and ordinary and partial differential equations. Prerequisites: Math 3304 and either both Comp Sci 1971 and Comp Sci 1981 or both Comp Sci 1972 and Comp Sci 1982. Admitted to the Chemical Engineering Program.

CHEM ENG 3120 Chemical Engineering Thermodynamics II (LEC 3.0)
Physical, chemical and reaction equilibrium. Study of the thermophysical relationships of multicomponent, multiphase equilibrium. Application of equilibrium relationships to the design and operation of chemical mixers, separators and reactors. Prerequisites: Grade of "C" or better in Chem Eng 2100 and Chem Eng 2110; Chem Eng majors only.

CHEM ENG 3130 Staged Mass Transfer (LEC 3.0)
Principles of equilibrium stage operations applied to distillation, liquid-liquid extraction, absorption, and leaching. Methods for estimating pressure drop and stage efficiencies are also studied. Quantitative solutions to practical problems are stressed. Prerequisites: Chem Eng 3120, admitted to Chem Eng program.

CHEM ENG 3131 Separations in Chemical and Biochemical Engineering (LEC 3.0)

CHEM ENG 3135 Continuous Mass Transfer (LEC 3.0)
Fundamentals of diffusion and mass transfer applied to absorption, extraction, humidification, drying and filtration. Design and rating of continuous chemical separators. Prerequisites: Preceded or accompanied by Chem Eng 3130. Chem Eng majors only.

CHEM ENG 3140 Process Operations in Chemical and Biochemical Engineering (LEC 2.0)
Design and selection of pumps, fans, compressors, valves, and ejectors. Design and selection of heat exchangers, condensers and reboilers. Design of mixing equipment, sterilizers, sedimentation vessels, centrifuges, and filtration and ultrafiltration units. Prerequisites: Chem Eng 3101 and Chem Eng 3120. Admitted to the Chemical Engineering Program.
CHEM ENG 3150 Chemical Engineering Reactor Design (LEC 3.0)
The study of chemical reaction kinetics and their application to the
design and operation of chemical and catalytic reactors. Prerequisites:
Preceded or accompanied by either Chem Eng 3140 or Chem Eng 3200 or
preceded by both Chem Eng 3111 and Chem Eng 3101. Admitted to Chem
Eng program.

CHEM ENG 3160 Molecular Chemical Engineering (LEC 3.0)
Introduction to the molecular aspects of chemical thermodynamics,
transport processes, reaction dynamics, and statistical and quantum
mechanics. Prerequisites: Chem Eng 3120, admitted to Chem Eng
program.

CHEM ENG 3200 Biochemical Separations (LEC 3.0)
The fundamentals of mass transfer are introduced and applied to various
unit operations employed in the separation of chemical and biochemical
compounds. Prerequisites: Chem Eng 3120. Chem Eng majors only.

CHEM ENG 3210 Introduction to Biomedical Engineering (LEC 3.0)
This course will provide an introduction to the interdisciplinary field
of biomedical engineering. The molecular, cellular, physiological
and engineering principles that govern the field will be covered.
Applications will include biomaterials, tissue engineering, biomechanics,
biomaging, bioinstrumentation, bio-nanotechnology and artificial organs.
Prerequisite: Junior standing or above. (Co-listed with Cer Eng 3110 and
Bio Sci 3110).

CHEM ENG 4000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department.
Consent of instructor required.

CHEM ENG 4001 Special Topics (LEC 3.0)
This course is designed to give the department an opportunity to test a
new course. Variable title.

CHEM ENG 4091 Chemical Process Design I (LEC 1.0 and LAB 2.0)
Economic analysis of a chemical process including capital requirements,
operating costs, earnings, and profits. The economic balance is applied to
chemical engineering operations and processes. Optimization and
scheduling techniques are applied to process evaluation. Preliminary
process design and use of simulation software. Prerequisites: Either
(Chem Eng 3150, Chem Eng 3131 and Chem Eng 3141) or (Chem Eng
3150 and preceded or accompanied by Chem Eng 5250).

CHEM ENG 4096 Chemical Engineering Economics (LEC 2.0)
Economic analysis of a chemical process including capital requirements,
operating costs, earnings, and profits. The economic balance is applied to
chemical engineering operations and processes. Optimization and
scheduling techniques are applied to process evaluation. Prerequisite:
Preceded or accompanied by Chem Eng 3130.

CHEM ENG 4097 Chemical Process Design II (LAB 2.0 and LEC 1.0)
Engineering principles involved in the design and layout of chemical
process equipment. Material and energy balances, equipment selection
and design, and preconstruction cost estimation are performed for a
capstone design project. Communication emphasized course.
Prerequisites: Chem Eng 3130 and Chem Eng 3150; preceded or
accompanied by either Chem Eng 4091 or both Chem Eng 4110 and
Chem Eng 4096.

CHEM ENG 4099 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in
research. Not for graduate credit. Not more than six hours allowed for
graduation credit. Subject and credit to be arranged with the instructor.

CHEM ENG 4100 Chemical Engineering Laboratory I (LAB 1.0 and LEC 1.0)
Experiments associated with unit operations involving fluid flow and heat
transfer. Principles of data and uncertainty analysis are introduced with
emphasis on model building. Communication skills are stressed. This is a
communication emphasized course. Prerequisites: Chem Eng 3100 and
Chem Eng 3110.

CHEM ENG 4101 Chemical Engineering Laboratory I (LEC 1.0 and LAB 2.0)
Experiments associated with unit operations involving fluid flow and heat
transfer. Principles of data and uncertainty analysis are introduced with
emphasis on model building. Communication skills are stressed. This is a
communication emphasized course. Prerequisites: Chem Eng 3141.

CHEM ENG 4110 Chemical Engineering Process Dynamics And Control (LEC 3.0)
Study of the dynamics of chemical processes and the instruments and
software used to measure and control temperature, pressure, liquid level,
flow, and composition. Generally offered fall semester only. Prerequisites:
Preceded or accompanied by any one of Chem Eng 4100 or Chem Eng
4130 or Chem Eng 4200; or preceded by Chem Eng 3150, Chem Eng 3131
and Chem Eng 3141; or preceded by Chem Eng 3150 and preceded or
accompanied by Chem Eng 5250.

CHEM ENG 4120 Process Dynamics And Control Laboratory (LAB 1.0)
Application of concepts of industrial process dynamics and control using
experiments that demonstrate different control and sensing devices and
software. This is a communications emphasized course. Prerequisite:
Preceded or accompanied by Chem Eng 4110.

CHEM ENG 4130 Chemical Engineering Laboratory II (LAB 2.0 and LEC 1.0)
Experiments illustrating the unit operations of continuous and staged
separation. Experimental design methods are extended to include the
principles of regression and model building. Communication skills are
stressed. This is a communication emphasized course. Prerequisites:
Chem Eng 3130 and Chem Eng 3140; or Chem Eng 3141 and Chem Eng
3131 and preceded or accompanied by Chem Eng 3150.

CHEM ENG 4140 Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of
hazardous and/or toxic materials are studied. Prerequisite: Preceded or
accompanied by Chem Eng 3150.

CHEM ENG 4150 Chemical Process Flowsheeting (LEC 2.0 and LAB 1.0)
The development, implementation, and evaluation of methods for
determining the mathematical model of a chemical process, ordering
the equations in the mathematical model, and solving the model.
Prerequisite: Math 3304 or graduate standing.

CHEM ENG 4200 Biochemical Separations Laboratory (LAB 2.0)
Introduction to the unit operations employed in the separation of
chemicals and biochemicals. The experiments illustrate the staged
and continuous separation systems that are involved. This is a
communications emphasized course. Prerequisite: Chem Eng 3200.

CHEM ENG 4201 Biochemical Separations and Control Laboratory (LAB 2.0
and LEC 1.0)
Introduction to the unit operations employed in the separation of
chemicals and biochemicals. The experiments illustrate the staged
and continuous separation systems that are involved. Application of
concepts of industrial process dynamics and control. Communications
stressed. Prerequisites: Chem Eng 5250.

CHEM ENG 4210 Biochemical Reactors (LEC 3.0)
Application of chemical engineering principles to biochemical reactors.
Emphasis on cells as chemical reactors, enzyme catalysis and disposable
technology. Prerequisite: Chem Eng 3150 or graduate standing.
CHEM ENG 4220 Biochemical Reactor Laboratory (LEC 1.0 and LAB 2.0)
Introduction to the unit operations involved with the production of biochemicals. The experiments emphasize the isolation of proteins and enzymes from tissue and bacteria cells. This is a communications emphasized course. Prerequisites: Chem Eng 3200 and preceded or accompanied by Chem Eng 4210; or preceded or accompanied by Chem Eng 5250 and Chem Eng 4210.

CHEM ENG 4230 Bioprocess Safety (LEC 1.0)
This course covers a risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Preceded or accompanied by Chem Eng 4210.

CHEM ENG 4241 Process Safety in the Chemical and Biochemical Industries (LEC 3.0)
This course covers risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Preceded or accompanied by Chem Eng 4210.

CHEM ENG 4300 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Eng Mgt 5514).

CHEM ENG 4310 Interdisciplinary Problems In Manufacturing Automation (LAB 1.0 and LEC 2.0) The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Mech Eng 5644, Eng Mgt 5315).

CHEM ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

CHEM ENG 5001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

CHEM ENG 5010 Seminar (RSD 0.0-6.0)
Discussion of current topics.

CHEM ENG 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intercession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

CHEM ENG 5096 Industrial Chemical Processes (LEC 3.0)
Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Chem Eng 3130 or Chem 2210, or graduate standing. (Co-listed with Chem 5250).

CHEM ENG 5097 Intermediate Process Design (LEC 3.0)
Study of newer unit operations, fluidization, chromatographic absorption, new developments in operations previously studied. Comparison of operations which might be selected for the same end result in an industrial process. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5100 Intermediate Transport Phenomena (LEC 3.0)
The similarities of flow of momentum, heat and mass transfer and the applications of these underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5110 Intermediate Chemical Reactor Design (LEC 3.0)
A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Chem Eng 3150 or graduate standing.

CHEM ENG 5120 Interfacial Phenomena In Chemical Engineering (LEC 3.0)
The course deals with the effects of surfaces on transport phenomena and on the role of surface active agents. Topics include fundamentals of thermodynamics, momentum, heat and mass transfer at interfaces and of surfactants. Some applications are included. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5130 Risk Assessment and Reduction (LEC 3.0)
Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Eng Mgt 4312).

CHEM ENG 5140 Intermediate Chemical Process Safety (LEC 3.0)
The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Methods to design safety systems or alter the chemical process to reduce or eliminate the risks are covered. Prerequisite: Graduate Standing.

CHEM ENG 5150 Intermediate Chemical Process Flowsheeting (LEC 2.0 and LAB 1.0)
The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Projects on special topics and presentations related to the course materials will be included. Prerequisite: graduate standing.

CHEM ENG 5160 Introduction to Molecular Modeling and Simulation (LEC 3.0)
An introduction to the concepts of molecular-based modeling and simulations, their connections to other engineering approaches and their role in multiscale modeling. Major methodologies such as molecular dynamics and lattice and off-lattice Monte Carlo, and special case studies are discussed. Prerequisite: Chem Eng 3160.

CHEM ENG 5161 Intermediate Molecular Engineering (LEC 3.0)
Molecular aspects of chemical thermodynamics, transport processes, reaction dynamics, and statistical and quantum mechanics. Prerequisites: Chem Eng 3120 or graduate standing.

CHEM ENG 5170 Physical Property Estimation (LEC 3.0)
Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5180 Industrial Pollution Control (LEC 3.0)
The study of water, air, and thermal pollution control methods and the application of these methods to the solution of pollution problems in the chemical industry. Prerequisite: Chem Eng 3130 or graduate standing.
CHEM ENG 5190 Plantwide Process Control (LEC 3.0)
Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 4110 or Elec Eng 3320 or Elec Eng 3340 or graduate standing. (Co-listed with Elec Eng 5350).

CHEM ENG 5200 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 5210, MS&E 5310).

CHEM ENG 5210 Intermediate Biochemical Reactors (LEC 3.0)
Application of chemical engineering principles to biochemical reactors. Emphasis on cells as chemical reactors, enzyme catalysis and production of monoclonal antibodies. Projects on special topics and presentations related to the course materials will be included. Prerequisite: Preceded or accompanied by Chem Eng 3150 or graduate standing.

CHEM ENG 5220 Intermediate Engineering Thermodynamics (LEC 3.0)
Review thermodynamic principles for pure fluids and mixtures. Emphasis on applications for the chemical industry and use of fundamental relations and equations of state. Prerequisite: Senior or graduate standing.

CHEM ENG 5230 Bioprocess Safety (LEC 1.0)
This course covers a risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Graduate standing.

CHEM ENG 5241 Intermediate Process Safety in the Chemical and Biochemical Industries (LEC 3.0)
This course covers risk assessment, biohazard containment and inactivation practices, and other biosafety issues relevant to industrial bioprocessing. Considerations relating to the release of genetically modified organisms are also discussed. Prerequisites: Chem Eng 3150 or graduate standing.

CHEM ENG 5250 Isolation and Purification of Biologicals (LEC 3.0)
Isolation and purification of biologicals with emphasis on biopharmaceuticals. Principles and applications of chromatography, lyophilization, and product formulation. Use of ultrafiltration and diafiltration in the processing of protein products. Disposable technology. Prerequisites: Chem Eng 3131 and Chem Eng 3141.

CHEM ENG 5300 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Physics 4523, Met Eng 5810, Cer Eng 5810).

CHEM ENG 5305 Hazardous Materials Management (LAB 1.0 and LEC 2.0)
Major themes: hazard identification and characterization; safety, health and environmental management; and the protection of safety, health and environment. Students will have an understanding of work place and environmental hazards in order to be able to facilitate their management and control. The course will include an intensive 30 hour hands-on workshop. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5310 Structure And Properties Of Polymers (LEC 3.0)
A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5315 Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: A grade of "C" or better in either Chem Eng 3120 or Cer Eng 3230. (Co-listed with Met Eng 4230).

CHEM ENG 5320 Introduction to Nanomaterials (LEC 3.0)
Introduction to the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Prerequisite: Chem Eng 2300, or Met Eng 1210 or Chem 1320.

CHEM ENG 5330 Alternative Fuels (LEC 3.0)
Global energy outlook and available resources are discussed. Alternative energy options and their technologies are covered. Associated environmental concerns and technology are assessed. Special emphases are placed on renewable energies, transportation fuels, energy efficiencies, and clean technologies. Prerequisite: Chem Eng 3130 or senior or graduate standing.

CHEM ENG 5340 Principles Of Environmental Monitoring (LEC 3.0)
This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 3100 and Physics 2135, or graduate standing.

CHEM ENG 5350 Environmental Chemodynamics (LEC 3.0)
Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 3140 or Chem Eng 3200 or graduate standing.

CHEM ENG 5360 Pollution Prevention Via Process Engineering (LEC 3.0)
To arrive at environmentally benign process design, each processing system will be considered as an inter-connection of elementary units. Systematic methods capitalizing on synergistic process integrations will be employed. Linear, nonlinear and integer optimization, mass/heat exchange networks, and reactor and reaction networks will be used. Prerequisite: Chem Eng 3130 or graduate standing.

CHEM ENG 5370 Intermediate Process Dynamics And Control (LEC 3.0)
A study of the dynamic properties of engineering operations and the interrelationships which result when these operations are combined into processes. Formulation of equations to describe open-loop and closed-loop systems. Prerequisite: Chem Eng 3130 or graduate standing.
CHEM ENG 5380 Intermediate Separation Processes (LEC 3.0)
Fundamentals of separation operations such as extraction and distillation; rates of diffusion in equilibrium stages and continuous contactors; efficiencies; multistage contactors; performance of equipment; phase equilibrium data; multicomponent separation.
Prerequisite: Chem Eng 3130 or graduate standing.