METALLURGICAL ENGINEERING (MET ENG)

MET ENG 1017 Introduction To Metallurgical Engineering (LEC 1.0)
Introduction to the field of metallurgical engineering with specific reference to the emphasis areas of extractive, manufacturing and physical metallurgy. The course will include lectures, videos and field trips to local industry.

MET ENG 1027 Computer Application In Metallurgical Engineering (LAB 1.0 and LEC 2.0)
Introduction to the use of microcomputers for simulation, data analysis including statistics, data acquisition from laboratory instruments, and automatic process control systems. The course will provide instruction in programming and software usage, and the laboratory will enable students to fully utilize the potential of microcomputer in later courses.

MET ENG 1210 Chemistry Of Materials (LEC 3.0)
Basic Inorganic Chemistry of Materials. Topics will include chemical properties, structure and bonding of solids, energy, enthalpy, entropy, thermochemistry, kinetics and rate processes. Application of chemistry principles to materials engineering through flowsheeting, reactor design, materials/metals processing and the environment. Prerequisite: “C” or better grade in Chem 1310.

MET ENG 2001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 2002 Cooperative Training (IND 1.0-2.0)
On-the-job experience gained through cooperative education in the field of metallurgical engineering with credit arranged through department cooperative advisor. A pass/fail grade will be given based on the quality of reports submitted and work supervisor’s evaluation.

MET ENG 2110 Metallurgy For Engineers (LEC 3.0)
Introduction to the structure and properties of metals and alloys and to processes used to modify the structure and properties of metallic materials, including alloying, deformation and heat treating. Prerequisite: Preceded or accompanied by Chem 1310, prior or concurrent.

MET ENG 2125 Microstructural Development Laboratory (LAB 1.0 and LEC 1.0)
Investigation of the relationships between microstructures, and processing for various materials. Prerequisite: Accompanied or preceded by Met Eng 3130.

MET ENG 3000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 3001 Special Topics (LAB 0.0 and LEC 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 3002 Cooperative Training (IND 1.0-2.0)
On-the-job experience gained through cooperative education in the field of metallurgical engineering with credit arranged through department cooperative advisor. A pass/fail grade will be given based on the quality of reports submitted and work supervisor’s evaluation.

MET ENG 3120 Fundamentals Of Materials Behavior (LEC 3.0)
An introduction to crystal defects and deformation; mechanical testing; creep, fracture mechanics and fatigue. Prerequisite: “C” or better grade in both Met Eng 2110 and Civ Eng 2210.

MET ENG 3125 Mechanical Testing of Materials (LAB 1.0 and LEC 1.0)
Deformation of materials and mechanical testing of materials; tensile testing, creep; impact testing; fracture mechanics and fatigue. Prerequisite: “C” or better in Met Eng 2110 and preceded or accompanied by Met Eng 3120.

MET ENG 3130 Metals Microstructural Development (LEC 3.0)
Fundamentals of microstructural developments as relating to solid solutions, solidification and transformations; phase diagrams; case studies. Prerequisites: “C” or better grade in MET ENG 2110; accompanied or preceded by CER ENG 3230.

MET ENG 3220 Introduction To Extractive Metallurgy (LEC 3.0)
Production and refining of metals by pyrometallurgy, hydrometallurgy, and electrometallurgy. Emphasis on heat and mass balance calculations for the unit processes of metals extraction. Introduction to the principles of combustion, heat utilization and recovery. Prerequisites: “C” or better grade in Met Eng 1210. Preceded or accompanied by Met Eng 3330 or Cer Eng 3240 or Chem Eng 2210.

MET ENG 3225 Extractive Metallurgy Laboratory (LAB 1.0)
A series of laboratory experiments designed to illustrate the principles of pyrometallurgy, hydrometallurgy, and electrometallurgy. Prerequisite: Preceded or accompanied by Met Eng 3220.

MET ENG 3320 Transport Phenomena In Metallurgy (LEC 3.0)
The application of the principles of fluid flow and heat transfer to the solution of practical problems in metallurgical engineering. Prerequisite: “C” or better grade in Civ Eng 2200.

MET ENG 3330 Metallurgical Thermodynamics I (LEC 3.0)
Thermodynamic laws and thermodynamic functions and their relation to problems of metallurgical interest, thermochemistry, thermophysics, and chemical or phase equilibria. Prerequisite: Met Eng 1210 or Chem 1320.

MET ENG 3420 Principles Of Materials Processing (LEC 3.0)
An introduction to various methods of processing of metals and influences of processing on design. Includes: casting, welding, shaping, inspection and testing. Prerequisite: “C” or better grade in Met Eng 2110.

MET ENG 3425 Metals Processing (LAB 1.0)
Laboratory study of the methods of processing of metals. Prerequisite: Accompanied or preceded by Met Eng 3420.

MET ENG 4000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 4001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 4002 Cooperative Training (IND 1.0-2.0)
On-the-job experience gained through cooperative education in the field of metallurgical engineering with credit arranged through department cooperative advisor. A pass/fail grade will be given based on the quality of reports submitted and work supervisor’s evaluation.

MET ENG 4010 Seminar (IND 0.0-3.0)
Discussion of current topics.
MET ENG 4096 Materials Senior Design I (LAB 1.0 and LEC 3.0)
Overview of the methods, approaches, and techniques required to execute materials related capstone senior design projects. Formation of teams, assignment of projects, review of department curriculum concepts and topics, and comprehensive project management skills needed to complete projects will be used as means to learn the design process. Prerequisites: Met Eng 3125 and Met Eng 2125, or Cer Eng 3315 with a "C" or better. (Co-listed with Cer Eng 4096).

MET ENG 4097 Materials Senior Design II (LAB 3.0)
A continuation of the Materials Senior Design I. Students working in groups will complete a capstone design project including process and product simulation and/or fabrication, safety aspects, environmental impact and capital and operating economics. Prerequisite: "C" or better in either Cer Eng 4096 or Met Eng 4096. (Co-listed with Cer Eng 4097).

MET ENG 4099 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

MET ENG 4160 Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 2110.

MET ENG 4230 Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: "C" or better grade in either Chem Eng 3430 or Cer Eng 3230. (Co-listed with Chem Eng 5310).

MET ENG 4320 Steels And Their Treatment (LEC 3.0)
Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisite: "C" or better grade in both Met Eng 3130 and Met Eng 2125.

MET ENG 4350 Process Metallurgy Applications (LEC 3.0)
Application of thermodynamics to process metallurgy. Equilibrium calculations with stoichiometry and heat balance restrictions, phase transformations, and solution thermodynamics. Use of thermodynamic software to solve complex equilibria in metallurgical applications. Prerequisite: "C" or better grade in Cer Eng 3230.

MET ENG 4420 Metals Casting (LEC 3.0)
An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: "C" or better grade in either Met Eng 3420 or Mech Eng 2653.

MET ENG 4425 Metals Casting Lab (LAB 1.0)
A laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, high quality castings. Prerequisites: Accompanied or preceded by MET ENG 4420.

MET ENG 4450 Steelmaking (LEC 3.0)
Introduction to the fundamentals and unit processes used to turn impure iron and scrap into steel. Includes desulfurization, BOF and electric furnace operations, ladle metallurgy, casting, and stainless steel manufacture. Prerequisite: Cer Eng 3230.

MET ENG 4510 International Engineering and Design (LEC 3.0)
A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisites: Senior standing, instructor approval, Geo Eng 5211, Geo Eng 5247. (Co-listed with Geo Eng 5092 and Cer Eng 4510).

MET ENG 4617 Metallurgical Process Design Principles (LEC 2.0)
Application of mass, component and energy balances for metallurgical design. The fundamentals of engineering economic analysis will be examined and experimental design techniques will be introduced. Students will be prepared for the selection and planning of the subsequent design project. Prerequisite: Senior standing in Met Eng.

MET ENG 4627 Metallurgical Design Project (LAB 2.0)
Student groups will undertake selected projects, which will represent a capstone design experience utilizing skills, understanding and data from previous courses. The faculty supervised open-ended design projects will involve a variety of tasks appropriate to the metallurgical engineer. Prerequisite: Met Eng 4617.

MET ENG 4637 Material Selection, Fabrication, And Failure (LEC 3.0)
Factors governing the selection of materials for specific needs, fabrication, heat treatment, surface treatment, and other aspects in the production of a satisfactory component. Failure analysis and remedies. Lecture plus assigned problems. Prerequisite: "C" or better grade in all of Met Eng 3130, Met Eng 2125, and Met Eng 3420.

MET ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MET ENG 5001 Graduate Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 5040 Oral Examination
This course is designed to give the department an opportunity to test a new course. Variable title.

MET ENG 5099 Research (IND 0.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

MET ENG 5110 High Temperature And Corrosion Resistant Alloys (LEC 3.0)
Fabrication and use of nickel, titanium, and refractory metal based alloys for use at high temperatures or in chemically corrosive environments. Properties and strengthening mechanisms of these alloys. Theory of high temperature oxidation and corrosion and design of alloys to prevent them. Prerequisites: Met Eng 3130, 2125.

MET ENG 5120 Principles for Microstructural Design (LEC 2.0)
This course will introduce the basics of microstructural principles that can be used to design advanced materials. It will help students learn about the basic principles and microstructural design approaches. Prerequisites: At least junior standing, Met Eng 3120; Met Eng 3130 or equivalent.
MET ENG 5130 Alloying Principles (LEC 3.0)
Basis for alloy design and property control. Predictions of phase stability, alloy properties and metastable phase possibilities; interfaces in solids and their role in phase transformations. Prerequisites: Met Eng 3130, 2125.

MET ENG 5140 Composites (LEC 3.0)
An introduction to the structure, properties and fabrication of fiber and particulate composites. Prerequisites: Met Eng 3120 & 211 or Cer Eng 2110 & 3325.

MET ENG 5150 Advanced Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 2110.

MET ENG 5160 Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 3120, 3125, Civ Eng 2210.

MET ENG 5170 Nuclear Materials I (LEC 3.0)
Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 2210; Nuc Eng 3205; Nuc Eng 3223; Met Eng 2110. (Co-listed with Nuc Eng 4241).

MET ENG 5171 Nuclear Materials II (LEC 3.0)
Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFBR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Met Eng 5170.

MET ENG 5210 Biomaterials I (LEC 3.0)
This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 5210, Bio Sci 5210, Chem Eng 5200).

MET ENG 5220 Recent Advances In Extractive Metallurgy (LEC 2.0)
A survey of extractive processes recently developed in the light of modern requirements with respect to raw materials, product quality, environmental impact, energy consumption, capital cost and process control. Prerequisite: Met Eng 4350.

MET ENG 5230 Advanced Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 3430 or Cer Eng 3230. (Co-listed with Chem Eng 5310).

MET ENG 5270 Mineral Processing II (Mechanics and Design) (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 3412. (Co-listed with Min Eng 4424).

MET ENG 5320 Advanced Steels And Their Treatment (LEC 3.0)
Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisites: Met Eng 3130 and Met Eng 2125.

MET ENG 5325 Metals Treatment Laboratory (LAB 1.0)
The students plan and perform experiments that illustrate heat treating processes and their effects on the properties and structure of commercial alloys. Prerequisite: Accompanied or preceded by Met Eng 4320.

MET ENG 5330 Nonferrous Alloys (LEC 3.0)
Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. Prerequisites: Met Eng 3130 or Met Eng 5810.

MET ENG 5350 Advanced Process Metallurgy Applications (LEC 3.0)
Application of thermodynamics to process metallurgy. Equilibrium calculations with stoichiometry and heat balance restrictions, phase transformations, and solution thermodynamics. Use of thermodynamic software to solve complex equilibria in metallurgical applications. Prerequisite: Cer Eng 3230.

MET ENG 5360 Transport Phenomena In Extractive Metallurgy (LEC 3.0)
The application of chemical reaction engineering principles to metallurgical processes. Residence-time distribution in reactors and its effect on performance, topographical gas-solid reactors, two-film theory of mass transfer applied to slag-metal and gas-metal reactions. Prerequisite: Met Eng 4350 or equivalent.

MET ENG 5420 Advanced Metals Casting (LEC 3.0)
An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 3420 or Mech Eng 2653.

MET ENG 5425 Metals Casting Laboratory (LAB 1.0)
An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, highquality castings. Prerequisite: Accompanied or preceded by Met Eng 4420.

MET ENG 5430 Metals Joining (LEC 2.0)
Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Met Eng 2110 or 3420.

MET ENG 5440 Metal Deformation Processes (LEC 3.0)
An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Met Eng 3120 and Met Eng 3420 both with "C" or better grade.

MET ENG 5450 Advanced Steelmaking (LEC 3.0)
Introduction to the fundamentals and unit processes used to turn impure iron and scrap into steel. Includes desulfurization, BOF and electric furnace operations, ladle metallurgy, casting, and stainless steel manufacture. Prerequisite: Cer Eng 3230.
MET ENG 5460 Metal Coating Processes (LEC 3.0)
Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisite: Senior or Graduate Standing.

MET ENG 5470 Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment.

MET ENG 5480 Refining Of Metals (IND 2.0-3.0)
Principles and applications of thermochemistry, phase equilibria, and kinetics as applied to the refining of metals and alloys. Theory of dilute solutions, interaction coefficients and reactions of metals with gases and slags. Analysis and design of refining processes. Optional third credit hour requires a term paper. Prerequisite: Met Eng 4350 or Cer Eng 3230.

MET ENG 5510 Nondestructive Testing (LEC 3.0)
Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 2135 or 2111. (Co-listed with Elec Eng 5670).

MET ENG 5515 Nondestructive Testing Laboratory (LAB 1.0)
Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of metals and manufactured parts. Prerequisite: Accompanied or preceded by Met Eng 5510.

MET ENG 5520 Scanning Electron Microscopy (LAB 1.0 and LEC 2.0)
A course in the theory and application of scanning electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Met Eng 3130 and 2125 or course in optical microscopy - consent of instructor required.

MET ENG 5530 Transmission Electron Microscopy (LAB 1.0 and LEC 2.0)
A course in the theory and application of transmission electron microscopy. Topics considered are electron optics, image formation, defect structures, specimen preparation, contrast theory and electron diffraction. Prerequisite: Met Eng 5520.

MET ENG 5540 Metallurgical Failure Analysis (LEC 3.0)
Application of the principles of manufacturing and mechanical metallurgy for the analysis of failed components. Analytical techniques such as Scanning Electron Microscopy, Optical Metallography, and High Resolution Photography are used to characterize microstructure and fractographic features. In addition, appropriate methods to gather data, assimilate it, and draw conclusions from the data such that it will stand up in a court of law will be addressed. Prerequisite: Senior or Graduate Student standing.

MET ENG 5610 Metals Refining and Recycling of Materials (LEC 3.0)
Survey of selected modern processes for the production of metals, the treatment of wastes, and recycling of metal values. Processes are studied with respect to raw materials, chemical reactions, energy consumption, process intensity, yield and environmental impact. Prerequisite: Cer Eng 3230.

MET ENG 5617 Advanced Materials Selection And Fabrication (LEC 3.0)
Application of the principles of material selection and the factors governing fabrication, heat treatment, and surface treatment. Weekly assignments requiring library research and written reports. Lecture plus classroom discussion of assigned problems.

MET ENG 5620 Materials Behavior (LEC 3.0)
A course in crystal defects and deformation; mechanical testing; creep; fracture mechanics and fatigue. Prerequisites: "C" or better grade in both MET ENG 2110 and CIV ENG 2210.

MET ENG 5627 Electrical Systems and Controls for Materials (LAB 1.0 and LEC 2.0)
This course will cover analysis of alternating and direct current circuits as experienced in the materials industry. Current, voltage, and power relationships in single and three-phase electrical power systems. Introduction to continuous and batch instrumentation including programmable logic controllers (PLCs) and computer interfacing for materials applications. Prerequisite: Physics 2135.

MET ENG 5630 Environmental Aspects Of Metals Manufacturing (LEC 3.0)
Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.

MET ENG 5640 Microfabrication Materials And Processes (LEC 3.0)
An overview course on the materials and processes used to fabricate integrated circuits, microelectromechanical systems (MEMS), interconnect substrates and other microelectronic components from starting material to final product. The emphasis will be on the influence of structure and processing on the electrical, mechanical, thermal, and optical properties. Prerequisites: Chem 1310 or equivalent; Senior or Graduate Standing.

MET ENG 5810 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Aero Eng 3877, Chem Eng 5300, Physics 4523, Cer Eng 5810).