COMPUTER ENGINEERING

The following emphasis areas are offered at the bachelor of science level: computational intelligence, computer architecture and embedded systems, integrated circuits and logic design, and networking, security and dependability.

The computer engineering program is designed to prepare an engineer to work with software and hardware of computers. In the software world, high level languages and complex programs are often the solution to a problem. In the hardware world, designs also include many aspects of the physical world, like temperature or noise, and often must include compromises between many opposing factors. The ability of a computer engineer to work in both worlds is what distinguishes them from a computer scientist or from an electrical engineer who specializes in computers. Computer scientists typically have little training with hardware. Electrical engineers typically have little training with software. Our students are trained to work with both, since many computer systems cannot be built well without a clear understanding of both.

Computer engineers can be found just about anywhere there are computers. Computer engineers might build the integrated circuits (ICs) that go into your home video game or your cell phone. They might develop the microprocessor that goes into your home computer, deciding what instructions it executes and how it interfaces with memory. Computer engineers also build computer systems that use these integrated circuits — for example, they might put together the ICs to build the motherboard for your home computer or the video card that goes into that computer. Computer engineers also help computer networks work together, for example developing computer networks or working with parallel processing. Computer engineers also help build embedded computer systems. These are devices with a computer inside them that work directly with their environment. They could be as complicated as a satellite or as everyday as your car, your phone, or even your microwave oven. Computer engineers also build software. They might be found at companies like Microsoft, working strictly with software or helping make complex software systems interface better with hardware. They might make computers “smarter” using concepts of computational intelligence. Since computers are such an important part of our lives, the options for computer engineers are wide open.

Our ABET-accredited computer engineering program emphasizes both hands-on experience and training in fundamental concepts and theory. Students participate in many laboratories that include both hardware and software. Many lecture courses include one or more projects that require the student to build something “real” and make it work. All students take a 1-year design course for this reason in their final year in the program. While these projects are challenging, they are also fun and prepare a student to perform immediately on the job when they get out of school. Coursework also concentrates strongly on theory and fundamentals because this background is essential for our students to fully understand the systems they will work on to quickly learn new concepts as their job function changes and to adapt to the rapidly changing world of computers in the future.

Students complete the Freshman Engineering Program, thus obtaining basic science skills and an overview of the various degree programs at Missouri S&T, before entering the main program. This allows students time to consider different career options before they commit to a given degree program. The computer engineering program includes several courses in both electrical engineering and computer science. The program follows the electrical engineering program into the sophomore year, including courses like circuits and electronics, and then branches into computer science courses such as data structures and operating systems.

Students work closely with their advisors to carefully plan each semester class schedule in order to have the correct prerequisites for courses in the following semesters. Working with their advisor, they should also select electives in the program to provide the background in areas they wish to emphasize for their career path.

Double majors — particularly with electrical engineering and computer science — are a possibility. Students working with their advisor should be able to plan a program that allows them to quickly graduate with more than one degree by sharing some electives and carefully planning additional course work. Students considering taking several more classes should also consider the alternative of working towards an M.S. or Ph.D. degree in graduate school.

Educational Mission

The electrical and computer engineering department strives to contribute to the state, nation, and world through the education of outstanding professionals and leaders in engineering. Our educational focus is on a broad, rigorous education in all areas of electrical and computer engineering with significant hands-on experiences. The program will provide students with an understanding of engineering problem solving at all levels and an appreciation for engineering as a profession.

Objectives

The electrical and computer engineering degree programs will provide students the foundation to:

- Succeed in professional career placement and practice as engineers, scholars and entrepreneurs
- Grow their career through technical and professional activities and leadership roles
- Contribute to society and the economy through technical products, services, and knowledge
- Adapt to an ever-changing world through continue education, through graduate study, professional development activities, independent learning, or pursuit of follow-on degrees

The hallmarks of students capable of obtaining these objective are:

- **Technical Competency.** Graduates will have a sound knowledge of the fundamentals in electrical or computer engineering that allows them to analyze and solve technical problems, to apply hardware and software tools, to create and evaluate technical products, to learn independently, and to succeed in the workplace and in graduate school.
- **An Engineering Perspective.** Graduates will be capable of understanding complex projects including their evolution and abstraction and the optimization of associated decisions and risk, both locally and globally.
- **Professional Skills and Knowledge.** Graduates will have the ability to communicate well in both oral and written form, to interact in teams, to manage and lead technical projects, to manage their career, and to
conduct themselves with an understanding of ethics, economics, and intellectual property.

Approved by the faculty February 25, 2015.

Bachelor of Science Computer Engineering

Entering freshmen desiring to study Computer Engineering will be admitted to the Freshman Engineering Program. They will be permitted to state a Computer Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Freshman Engineering program is on enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major.

For the Bachelor of Science degree in Computer Engineering, a minimum of 128 credit hours is required. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. An average of at least two grade points per credit hour must be attained. At least two grade points per credit hour must also be attained in all courses taken in Computer Engineering.

Electrical and Computer Engineering degree programs will require a minimum of 24 credit hours of humanities/social-sciences as specified below:

- **ENGLISH 1120**
- **HISTORY 1200 or HISTORY 1300 or HISTORY 1310 or POL SCI 1200**
- **ECON 1100 or ECON 1200**
- **Technical Communication Elective: ENGL 1160 or ENGL 3560**
- **SP&M 1185**

- The remaining minimum of 9 additional credit hours must be three-credit hour lecture courses offered in disciplines in the humanities and social sciences. Humanities courses are defined as those in: Art, English and Technical Communication, Etymology, Foreign Languages, Music, Philosophy, Speech and Media Studies, and Theatre. Social Sciences courses are defined as those in: Economics, History, Political Science, and Psychology. At least one of the courses must be at the upper level. Upper-level H/SS courses are defined as those at the 2000-level or above, and that require as a prerequisite the successful completion of a lower-level H/SS course. Study abroad courses may count as upper-level H/SS courses, even if they do not have a prerequisite. H/SS courses numbered 2001, 3001, and 4001 (experimental courses) may also be used to complete these elective requirements.

Courses in business, education, information science and technology, or any other discipline not listed above will not satisfy the humanities/social sciences elective requirement, although such courses may count toward general education requirements. Transfer credits from other universities in sociology and general humanities may count as humanities or social science electives.

The Computer Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design. These interrelations are presented and discussed through classroom and laboratory instruction.

Free Electives Footnote:

Each student is required to take three hours of free electives in consultation with his/her academic advisor. Credits which do not count towards this requirement are deficiency courses (such as algebra and trigonometry), and extra credits in required courses. Any courses outside of engineering and science must be at least three credit hours.

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ENG 1100<sup>2</sup></td>
<td>1</td>
<td>MATH 1215<sup>3</sup></td>
<td>4</td>
</tr>
<tr>
<td>MATH 1214<sup>9</sup></td>
<td></td>
<td>CHEM 1310</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1319</td>
<td></td>
<td>PHYSICS 1135<sup>3,4</sup></td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 1200, or 1300, or 1310, or POL SCI 1200</td>
<td>3</td>
<td>Elective-Hum or Soc (any level)<sup>5</sup></td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH 1120</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC ENG 2101<sup>16,7</sup></td>
<td>3</td>
<td>COMP ENG Elective A<sup>3,14</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 2101<sup>16</sup></td>
<td></td>
<td>COMP ENG 2211<sup>3,16</sup></td>
<td>1</td>
</tr>
<tr>
<td>MATH 2222<sup>3</sup></td>
<td>4</td>
<td>ELEC ENG 2120<sup>7,9</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 1570<sup>3</sup></td>
<td>3</td>
<td>MATH 3304<sup>2</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 1580<sup>2</sup></td>
<td>1</td>
<td>COMP SCI 1200<sup>3</sup></td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 2135<sup>3,4</sup></td>
<td>4</td>
<td>COMP SCI 1575</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 3110</td>
<td>3</td>
<td>COMP ENG Elective A<sup>3,14</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 3150</td>
<td>3</td>
<td>ELEC ENG 3410<sup>6,9</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 3151<sup>16,8</sup></td>
<td>3</td>
<td>COMP SCI 3800 or 2500<sup>2</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 2200<sup>3,6,7</sup></td>
<td>3</td>
<td>STAT 311<sup>13</sup></td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 2201<sup>3,6,7</sup></td>
<td>1</td>
<td>Communication Elective</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective<sup>10</sup></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP&M S 1185</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 5410 or COMP SCI 5509<sup>2</sup></td>
<td>3</td>
<td>COMP ENG Elective D<sup>3,15,16</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG Elective C<sup>3,15,16</sup></td>
<td>3</td>
<td>COMP ENG Elective E<sup>3,15,16</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 4996<sup>5,17</sup></td>
<td>1</td>
<td>COMP ENG 4097<sup>5,17</sup></td>
<td>3</td>
</tr>
<tr>
<td>Elective-Hum or Soc (any level)<sup>5</sup></td>
<td>3</td>
<td>Elective-Hum or Soc (upper level)<sup>5</sup></td>
<td>3</td>
</tr>
<tr>
<td>Engineering Science Elective<sup>11</sup></td>
<td>3</td>
<td>Free Elective<sup>18</sup></td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG Elective B<sup>3,19</sup></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits: 128

Notes: Student must satisfy the common engineering freshman year requirements and be admitted into the department.
The minimum number of hours required for a degree in Computer Engineering is 128.

Students that transfer to Missouri S&T after their freshman year are not required to enroll in Freshman Engineering Seminars.

A minimum grade of "C" must be attained in MATH 1214, MATH 1215, MATH 2222, and MATH 3304, PHYSICS 1135 and PHYSICS 2135 (or their equivalents), COMP SCI 1570, COMP SCI 1580, COMP SCI 1575, COMP SCI 1200, COMP SCI 2500 or COMP SCI 3800, COMP ENG 2210, COMP ENG 2211, COMP ENG 3150, COMP ENG 3551, COMP ENG 3110, COMP ENG 5410 or COMP SCI 5600, COMP ENG 4096, and ELEC ENG 2100, ELEC ENG 2101, ELEC ENG 2120, ELEC ENG 2200, ELEC ENG 2201, and ELEC ENG 3410 and the COMP ENG electives A, B, C, D and E. Also, students may not enroll in other courses that use these courses as prerequisites until the minimum grade of "C" is attained.

Students may take PHYSICS 1111 and PHYSICS 1119 in place of PHYSICS 1135. Students may take PHYSICS 2111 and PHYSICS 2119 in place of PHYSICS 2135.

All electives must be approved by the student's advisor. Students must comply with the general education requirements with respect to selection and depth of study. These requirements are specified in the current catalog.

Students who drop a lecture course prior to the deadline to drop a class must also drop the corequisite lab course.

Students must earn a passing grade on the ELEC ENG Advancement Exam I (associated with ELEC ENG 2100) before they enroll in ELEC ENG 2120 or ELEC ENG 2200 and ELEC ENG 2201.

Students must earn a passing grade on the COMP ENG Advancement Exam (associated with COMP ENG 2210) before they enroll in any course with COMP ENG 2210 and COMP ENG 2211 as prerequisites.

Students must earn a passing grade on the ELEC ENG Advancement Exam II (associated with ELEC ENG 2120) before they enroll in ELEC ENG 3410 and ELEC ENG 3411.

Students must take one of the following courses:
MATH 3103, MATH 3108, MATH 3109, MATH 5302, MATH 5603, MATH 5105, MATH 5106, MATH 5107, MATH 5108, MATH 4209, MATH 4211, MATH 5215, MATH 5222, MATH 5225, MATH 4530, MATH 5737, MATH 5351, MATH 5154, MATH 4096, MATH 5483, MATH 5585, STAT 5644, STAT 5346, STAT 5353.

Students must take MECH ENG 2340, MECH ENG 2519, MECH ENG 2527, PHYSICS 2311, PHYSICS 2401, CHEM 2210, BIO SCI 2213, or BIO SCI 2223. The following pairs of course are substitutions for any single course: CIV ENG 2200 and MECH ENG 2350, PHYSICS 2305 and PHYSICS 4311, PHYSICS 2305 and CER ENG 4240, or PHYSICS 2305 and NUC ENG 3205.

Students may replace STAT 3117 with STAT 3115 or STAT 5643.

Students must take English 3560 or English 1160. Students may replace SpMS 1185 with the ROTC sequence of Mil Army 4250 and 4500 or Mil Air 4110 and 4120.

Comp Eng Elective A must be a 4000 or 5000-level Comp Eng, Elec Eng, or Comp Sci course with at least a 3-hour lecture component. This normally includes all Comp Eng and Elec Eng 4000 or 5000-level courses except Comp Eng or Elec Eng 4000, 4099, 4096, and 4097 or Comp Sci 5000, 4010, 5600, and 4099.

Comp Eng Electives C, D, and E must be 3000, 4000 or 5000-level courses from an approved list of science, mathematics, and engineering courses. In particular, this list includes all 3000, 4000 or 5000-level Comp Eng, Elec Eng and Comp Sci courses except required courses in Comp Eng, Elec Eng, and Comp Sci and except Comp Eng 4096 and 4097, Elec Eng 2800, 1002, 1003, 4096, and 4097, and Comp Sci 2002 and 4600/5600). Comp Eng Electives C, D, and E must include at least six hours of engineering or computer science courses.

COMP ENG Electives C, D, and E cannot include more than three hours of COMP ENG 4000, COMP ENG 4099, ELEC ENG 4000, or ELEC ENG 4099.

Students pursuing dual degrees in COMP ENG and ELEC ENG may take either COMP ENG 4096 or ELEC ENG 4096 and COMP ENG 4097 or ELEC ENG 4097. Students may not receive credit for both COMP ENG 4096 and ELEC ENG 4096 or COMP ENG 4097 and ELEC ENG 4097 in the same degree program.

Students are required to take at least three credit hours. Elec Eng 2800 level, ELEC ENG 4096, ELEC ENG 4097, COMP ENG 4096 and COMP ENG 4097 may not be used for free electives. No more than one credit hour of COMP ENG 3002 or ELEC ENG 3002 may be applied to the BS degree for free electives.

Comp Eng Elective B must be a 4000 or 5000 level COMP ENG course with at least a 3-hour lecture component, excluding COMP ENG 4096 and COMP ENG 4097. Students admitted to the accelerated BS/MS program must satisfy Cp Eng Electives B and C with 5xxx or 6xxx-level courses and a minimum grade of B.

A accelerated BS/MS program is optional.

Emphasis Areas for Computer Engineering

Note: The following emphasis areas identify courses from which a student may opt to develop a specific emphasis. It is not required that students obtain an emphasis specialty within computer engineering.

Computational Intelligence

<table>
<thead>
<tr>
<th>Highly Recommended</th>
<th>Suggested</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 5310 Computational Intelligence</td>
<td>ELEC ENG 5370 Introduction to Neural Networks and Applications</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 6310 Markov Decision Processes</td>
<td>ELEC ENG 5430 Fuzzy Logic Control</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 5450 Digital Image Processing</td>
<td>COMP ENG 5460 Machine Vision</td>
<td>3</td>
</tr>
</tbody>
</table>

Computer Architecture and Embedded Systems

<table>
<thead>
<tr>
<th>Highly Recommended</th>
<th>Suggested</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP ENG 5110 Principles of Computer Architecture</td>
<td>COMP ENG 5120 Digital Computer Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 5151 Digital Systems Design Laboratory</td>
<td>COMP ENG 5160 Embedded Processor System Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 5170 Real-Time Systems</td>
<td>COMP ENG 5610 Real-Time Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>COMP ENG 5460 Digital Image Processing</td>
<td>COMP SCI 2500 Advanced Microcomputer System Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 2500 Advanced Digital Image Processing</td>
<td>ELEC ENG 3100 Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 3100 Software Engineering I</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Integrated Circuits and Logic Design

Highly Recommended

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2210</td>
<td>Introduction to Digital Logic</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5210</td>
<td>Introduction To VLSI Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5220</td>
<td>Digital System Modeling</td>
<td>3</td>
</tr>
<tr>
<td>COMP 6210</td>
<td>Digital Logic</td>
<td>3</td>
</tr>
</tbody>
</table>

Suggested

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 3100</td>
<td>Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5110</td>
<td>Principles of Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5151</td>
<td>Digital Systems Design Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5120</td>
<td>Digital Computer Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5130</td>
<td>Advanced Microcomputer System Design</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5510</td>
<td>Fault-Tolerant Digital Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Networking, Security, and Dependability

Highly Recommended

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 5420</td>
<td>Introduction to Network Security</td>
<td>3</td>
</tr>
<tr>
<td>COMP 5430</td>
<td>Wireless Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMP 6440</td>
<td>Network Performance Analysis</td>
<td>3</td>
</tr>
<tr>
<td>COMP 6510</td>
<td>Resilient Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

Suggested

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 5510</td>
<td>Fault-Tolerant Digital Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Accelerated BS/MS Program Option for EE and CpE Majors

Electrical engineering or computer engineering undergraduates in ECE at Missouri S&T may opt to apply for an accelerated BS/MS ECE program where a student can achieve both degrees faster than if pursuing the degrees separately. The degrees may be BS EE and MS EE, BS CpE and MS CpE, BS EE and MS CpE, or BS CpE and MS EE. The benefits of the program for admitted students are:

- Undergraduate and graduate courses may be chosen with greater flexibility.
- Dual-enrollment status is automatically granted.
- Six hours of 5000-level or above ECE coursework may apply to both the BS and MS requirements.
- The dual-counted classes may be taken at the lower undergraduate tuition rate.
- The GRE is not required for admission.
- Other graduate credit courses may be taken anytime after entering the program, and
- Work on a thesis project may begin before the BS requirements are completed.

The BS-degree requirements are modified for admitted students such that EE Electives D and E or CpE Electives B and C will be satisfied by six-credit-hours of 5000-level or above ECE coursework. The courses must be identified as dual-counted courses and must be completed with a B or better. These six hours of coursework will be taken as undergraduate credit, must be approved by the academic advisor, and may not be undergraduate research, special problems, or transfer courses. (A co-listed course can only apply for these undergraduate requirements if it is under an EE or CpE registration. Note that the choice of EE or CpE registration may effect how a course can apply within an MS program.) Other courses for the MS degree program must be identified as graduate credit when taken. All other MS degree requirements are not changed and the MS degree must be for the thesis option. The program may be combined with existing honors research and emphasis area options. Admitted students will have both undergraduate and graduate records in

the Registrar’s Office. Upon separate completion of requirements, the BS degree would be awarded followed by the MS degree at a later semester, or the BS and MS degrees may be awarded simultaneously at the same semester.

To be eligible for the accelerated BS/MS ECE program, a EE or CpE undergraduate must be at or beyond the junior level with a minimum of 60 credit hours and must have completed 18 credit hours of EE and/or CpE courses at Missouri S&T with at least a 3.50 GPA in the ECE courses.

If the student exits the program before completion of the MS degree requirements or fails to maintain continuous enrollment at Missouri S&T, the dual-counted courses may not apply toward graduate requirements in the event of future readmission. The student is responsible for checking on how dual-enrollment status and graduate coursework will affect scholarships and other financial aid. International students should check with international affairs during completion of an accelerated BS/MS to ensure immigration status will be maintained throughout the program.

Minor Curriculum

A minor in computer engineering will require the following:

Pass the ELEC ENG Advancement Exam I (ELEC ENG 2100 final) with a "C" or better.**

Pass the COMP ENG Advancement Exam (COMP ENG 2210 final) with a "C" or better.***

A "C" or better in the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3150</td>
<td>Introduction to Microcontrollers and Embedded System Design</td>
</tr>
<tr>
<td>COMP 3110</td>
<td>Computer Organization and Design</td>
</tr>
<tr>
<td>COMP 5410</td>
<td>Introduction to Computer Communication Networks</td>
</tr>
<tr>
<td>COMP 556</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Pass 3 hours of additional 4XXX-level or above COMP ENG or ELEC ENG or COMP SCI coursework with a “C” or better, excluding senior design, special problems, and undergraduate research. Transfer courses cannot be used to satisfy this requirement.

The course choice for this requirement is subject to the approval of the minor advisor.

- One opportunity will be given to pass the EL ENG Advancement Exam I if a student has prior course or experience in circuits. Otherwise, the student must pass ELEC ENG 2100.
- One opportunity will be given to pass the COMP ENG Advancement Exam if a student has prior course or experience in digital circuits. Otherwise, the student must pass COMP ENG 2210.

Levent Acar, Associate Professor
PHD Ohio State University

Daryl G Beetner, Professor
DSC Washington University

Rui Bo, Assistant Professor
PHD Univeristy of Tennessee-Knoxville

Egemen K Cetinkaya, Assistant Professor
PHD University of Kansas

Minsu Choi, Associate Professor
PHD Oklahoma State University
Mariesa L Crow, Professor
PHD University of Illinois-Urbana

Kristen Marie Donnell Hilgedick, Assistant Professor
PHD Missouri University of Science & Technology

James L Drewniak, Curators Professor
PHD University of Illinois-Urbana

Rohit Dua, Associate Teaching Professor
PHD University of Missouri-Rolla

Kelvin Todd Erickson, Professor
PHD Iowa State University

Jun Fan, Professor
PHD University of Missouri-Rolla

Mehdi Ferdowsi, Professor
PHD Illinois Institute of Technology

Ian Ferguson, Professor
PHD University of St. Andrews, Scotland

Jie Huang, Assistant Professor
PHD Clemson University

Ali Hurson, Professor
PHD University of Central Florida

Chulsoon Hwang, Assistant Professor
PHD KAIST, Daejeon, Korea

Amardeep Kaur, Assistant Teaching Professor
PHD Missouri University of Science & Technology

Victor Khilkevich, Assistant Professor
PHD Moscow Power Engineering Institute

Chang-Soo Kim, Professor
PHD Kyungpook National University

Jonathan William Kimball, Associate Professor
PHD University of Illinois-Urbana

Kurt Louis Kosbar, Associate Professor
PHD University of Southern California

Hamidreza Modares, Assistant Professor
PHD University of Texas-Arlington

Theresa Avosuahi Odun-Ayo, Assistant Teaching Professor
PHD Missouri University of Science & Technology

David Pommerenke, Professor
PHD Technical University Berlin

Jagannathan Sarangapani, Professor
PHD University of Texas-Arlington

Sahra Sedighsarevestani, Associate Professor
PHD Purdue University-W. Lafayette

Pourya Shamai, Assistant Professor
PHD University of Texas-Dallas

Bijaya Shrestha, Associate Teaching Professor
PHD University of Missouri-Rolla

Ronald Joe Stanley, Associate Professor
PHD University of Missouri-Columbia

Theresa Mae Swift, Associate Teaching Professor
PHD University of Missouri-Rolla

Steve E Watkins, Professor
PHD University of Texas at Austin

Cheng Hsiao Wu, Professor
PHD University of Rochester

Donald C Wunsch II, Professor
PHD University of Washington

Maciej J Zawodniok, Associate Professor
PHD University of Missouri-Rolla

Yahong Rosa Zheng, Professor
PHD Carleton University

Reza Zoughi, Professor
PHD University of Kansas

COMP ENG 1200 Introduction to Digital Electronics (LEC 3.0)
Introduction to electronics and digital circuit design including combinational logic and sequential circuits using circuit design tools, logic gates, integrated circuits and field programmable gate arrays. This course provides S&T equivalent credit for the Project Lead The Way Digital Electronics course.

COMP ENG 2001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 2210 Introduction to Digital Logic (LEC 3.0)
Binary arithmetic, Boolean algebra, logic and memory elements, computer organization. Prerequisite: Sophomore standing. Comp Eng 2211 is also a co-requisite for Comp Eng and Elec Eng majors.

COMP ENG 2211 Computer Engineering Laboratory (LAB 1.0)
Introduction to digital design techniques, logic gates, Medium Scale Integration (MSI) parts and flipflops, Timing analysis, Programming and use of Programmable Logic Devices (PLD). Prerequisite: Preceded or accompanied by Comp Eng 2210.

COMP ENG 3000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 3001 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.
COMP ENG 3002 Cooperative Engineering Training (IND 1.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisor’s evaluation. Pass-fail grading option only. Prerequisite: Consent of the Electrical and Computer Engineering Department required.

COMP ENG 3110 Computer Organization and Design (LEC 3.0)
Introduction to basic concepts of computer organization and design: metrics for computer performance, computer arithmetic, Von Neumann architecture, instruction implementation, control unit, pipelining, memory systems hierarchy, cache memories and basic I/O controllers. Prerequisites: COMP ENG 2210; preceded or accompanied by COMP ENG 3150.

COMP ENG 3150 Introduction to Microcontrollers and Embedded System Design (LEC 3.0)
Microcontroller-based digital system design methodology and techniques. Topics include basic machine organization, interface design, and C and assembly language programming for real-time embedded systems. Prerequisites: COMP ENG 2210 and COMP SCI 1570 (or programming equivalent) each with grade of “C” or better.

COMP ENG 3151 Digital Engineering Lab II (LAB 1.0)
Advanced digital design techniques, Microcontroller based design, hardware and software codesign. Prerequisites: Comp Eng 2210, Comp Eng 2211, and Comp Sci 1570 (or programming equivalent) each with grade of “C” or better. Preceded or accompanied by Comp Eng 3150.

COMP ENG 4000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 4001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 4096 Computer Engineering Senior Project I (LAB 1.0)
A complete design cycle. Working in small teams, students will design, document, analyze, implement, and test a product. Topics include: iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Comp Eng 2210, either Econ 1100 or Econ 1200, either English 3560 or English 1160, Comp Eng 3150, Comp Eng 3151, Comp Eng 3110, and Elec Eng 2200.

COMP ENG 4097 Computer Engineering Senior Project II (LAB 3.0)
A continuation of Comp Eng 4096. Prerequisites: Comp Eng 4096 with a grade of “C” or better, Stat 3117 or Stat 3115 or Stat 5643, and Sp&M S 1185.

COMP ENG 4099 Undergraduate Research (IND 1.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

COMP ENG 5000 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 5001 Special Topics (LEC 1.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 5070 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 5070, Env Eng 5070, Elec Eng 5070, Civ Eng 5070).

COMP ENG 5099 Special Research And Thesis (IND 1.0-15)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of the instructor required.

COMP ENG 5110 Principles of Computer Architecture (LEC 3.0)
Principles of performance measurement and instruction set design; advanced issues in pipelining; instruction level parallelism (dynamic scheduling, branch prediction, multi-issue processors); memory hierarchies for superscalar processors; multiprocessors; multi-threading; storage systems; and interconnection networks. Prerequisite: COMP ENG 3150 and COMP ENG 3110.

COMP ENG 5120 Digital Computer Design (LEC 3.0)
Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software tradeoffs in different levels of computer system design. Prerequisites: COMP ENG 3150 and COMP ENG 3151.

COMP ENG 5130 Advanced Microcomputer System Design (LEC 3.0)
The design of digital systems based on advanced microprocessors. Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language tradeoffs. Hardware and software laboratory projects required. Prerequisites: COMP ENG 5110.

COMP ENG 5150 Introduction to Microcontrollers and Embedded System Design (LAB 1.0)
Experimental studies of problems with high speed digital signals in hardware and software codesign. Prerequisites: COMP ENG 3150 or 5110.

COMP ENG 5151 Digital Systems Design Laboratory (LAB 1.0 and LEC 2.0)
Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language tradeoffs. Hardware and software laboratory projects required. Prerequisites: COMP ENG 5110.

COMP ENG 5200 Digital Computer Design (LEC 3.0)
Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software tradeoffs in different levels of computer system design. Prerequisites: COMP ENG 3150 and COMP ENG 3151.

COMP ENG 5300 Cooperative Engineering Training (IND 1.0-6.0)
On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisor’s evaluation. Pass-fail grading option only. Prerequisite: Consent of the Electrical and Computer Engineering Department required.

COMP ENG 5310 Computer Organization and Design (LEC 3.0)
Introduction to basic concepts of computer organization and design: metrics for computer performance, computer arithmetic, Von Neumann architecture, instruction implementation, control unit, pipelining, memory systems hierarchy, cache memories and basic I/O controllers. Prerequisites: COMP ENG 2210; preceded or accompanied by COMP ENG 3150.

COMP ENG 5350 Introduction to Microcontrollers and Embedded System Design (LEC 3.0)
Microcontroller-based digital system design methodology and techniques. Topics include basic machine organization, interface design, and C and assembly language programming for real-time embedded systems. Prerequisites: COMP ENG 2210 and COMP SCI 1570 (or programming equivalent) each with grade of “C” or better.

COMP ENG 5400 Special Problems (IND 1.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

COMP ENG 5401 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

COMP ENG 5496 Computer Engineering Senior Project I (LAB 1.0)
A complete design cycle. Working in small teams, students will design, document, analyze, implement, and test a product. Topics include: iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Comp Eng 2210, either Econ 1100 or Econ 1200, either English 3560 or English 1160, Comp Eng 3150, Comp Eng 3151, Comp Eng 3110, and Elec Eng 2200.

COMP ENG 5497 Computer Engineering Senior Project II (LAB 3.0)
A continuation of Comp Eng 4096. Prerequisites: Comp Eng 4096 with a grade of “C” or better, Stat 3117 or Stat 3115 or Stat 5643, and Sp&M S 1185.

COMP ENG 5499 Undergraduate Research (IND 1.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.
COMP ENG 5160 Embedded Processor System Design (LEC 3.0)
Development of hardware and software for embedded systems, including real-time operating systems, advanced programming, communication schemes, hardware peripherals and sensors, control methodologies, printed-circuit board design, interrupts, microcontrollers, and hardware-software co-design. One or more team design projects. Prerequisites: COMP ENG 3150 or equivalent or 80x51 processor experience.

COMP ENG 5170 Real-Time Systems (LEC 3.0)
Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisites: COMP ENG 3150 or COMP SCI 3800. (Co-listed with Comp Sci 5205).

COMP ENG 5210 Introduction to VLSI Design (LEC 3.0)
An introduction to the design and analysis of digital integrated circuits (ICs). Topics include basic manufacturing techniques, transistor-level design and analysis of logic and memory circuits, logic timing, and parasitics. Computer aided design tools are used to develop circuits in the lab. Prerequisites: Elec Eng 2200 and Comp Eng 2210.

COMP ENG 5220 Digital System Modeling (LEC 3.0)
Digital system modeling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies. Prerequisite: Comp Eng 2210 with a grade of "C" or better.

COMP ENG 5230 Optical Computing (LEC 3.0)
Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 2210 or equivalent. (Co-listed with Elec Eng 5250).

COMP ENG 5310 Computational Intelligence (LEC 3.0)
Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Graduate Standing. (Co-listed with Elec Eng 5310 and Sys Eng 5211).

COMP ENG 5410 Introduction to Computer Communication Networks (LEC 3.0)
Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internetworking. A modeling tool is used for network design and simulation. Prerequisites: Comp Eng 3150 or computer hardware competency and Stat 3117 or Stat 3115 or Stat 5643 or equivalent.

COMP ENG 5420 Introduction to Network Security (LEC 3.0)
This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Comp Eng 5410 or Comp Sci 5600.

COMP ENG 5430 Wireless Networks (LEC 2.0 and LAB 1.0)
Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 3420 or Comp Eng 3150 and graduate standing. (Co-listed with Elec Eng 5430 and Sys Eng 5323.).

COMP ENG 5450 Digital Image Processing (LEC 3.0)
Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5450).

COMP ENG 5460 Machine Vision (LEC 3.0)
Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Elec Eng 3410. (Co-listed with Elec Eng 5460).

COMP ENG 5510 Fault-Tolerant Digital Systems (LEC 3.0)
Design and analysis of fault-tolerant digital systems. Fault models, hardware redundancy, information redundancy, evaluation techniques, system design procedures. Prerequisites: Comp Eng 2210 and Comp Eng 2211.

COMP ENG 5610 Real-Time Digital Signal Processing (LAB 1.0 and LEC 2.0)
Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisite: Elec Eng 3400 or Elec Eng 3410.

COMP ENG 5620 Signal Integrity in High-Speed Digital & Mixed Signal Design (LEC 3.0)
Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: Elec Eng 3600 or Comp Eng 3150, and Senior standing. (Co-listed with Elec Eng 5620).

COMP ENG 5803 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Sci 5203, Philos 4354 and Math 5154).
COMP ENG 5820 Mechatronics (LAB 1.0 and LEC 2.0)
This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 4479 or equivalent. (Co-listed with Mech Eng 5478, Aero Eng 5478 and Elec Eng 5870).

COMP ENG 5880 Introduction to Robotics (LEC 3.0)
This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A grade of "C" or better in both Math 3108 and Comp Sci 1575. (Co-listed with Comp Sci 5403 and Elec Eng 5880).