Mathematics is a universal language. It is a language which can be used to concisely express ideas and relationships and a tool which can be used to investigate many applied problems in science, engineering, and other fields. Mathematics is also a subject worthy of exploration on its own and can lead students to many surprising and surprisingly powerful discoveries.

Students pursuing a bachelor of science degree in applied mathematics at Missouri S&T may choose to pursue emphasis areas in actuarial science, algebra/discrete mathematics, applied analysis, computational mathematics, secondary education, and statistics.

Through your study of mathematics at Missouri S&T, you will engage with a broad range of mathematics and statistics coursework. In addition, students pursuing a degree in applied mathematics complete technical coursework in other disciplines to enhance the context of their study of mathematics. Through your studies at Missouri S&T, you will find that mathematics contributes to the growth of knowledge in many areas.

The department of mathematics and statistics is housed in the Rolla Building, and classes are held in a variety of locations around campus.

Bachelor of Science Applied Mathematics

A minimum of 128 credit hours is required for a bachelor of science degree in applied mathematics. A minimum grade of "C" is required by the department in each course counted toward the math/stat requirement for the B.S. in applied mathematics. Moreover, the department requires that an average of at least two grade points per credit hour must be obtained for all courses taken within the department. These requirements for the B.S. degree are in addition to credit received for algebra, trigonometry, and basic ROTC.

The applied mathematics curriculum requires fifteen semester hours of technical electives, except where this requirement is reduced to compensate for extra requirements of emphasis areas, in addition to basic courses in chemistry or biology, physics, computer science, and economics. Two semesters of language and communication, ENGLISH 1160 or ENGLISH 3560, and either HISTORY 1300, HISTORY 1310, HISTORY 1200, or POL SCI 1200 are also required. Specific requirements for the bachelor’s degree are outlined in the sample program below.

Freshman Year

<table>
<thead>
<tr>
<th></th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH</td>
<td>1101</td>
<td>4</td>
<td>MATH 1215 or 1221</td>
<td>4</td>
</tr>
<tr>
<td>MATH</td>
<td>1208 or 1214</td>
<td>4</td>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>CHEM</td>
<td>1100</td>
<td>1</td>
<td>COMP SCI 1570</td>
<td>3</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>1120</td>
<td>3</td>
<td>COMP SCI 1580</td>
<td>1</td>
</tr>
<tr>
<td>Campus History Requirement</td>
<td>3</td>
<td>Language and Communication Requirement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language and Communication Requirement</td>
<td>3</td>
<td>Basic ROTC (if elected)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Basic ROTC (if elected)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>15</td>
<td>Credits</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
The student must choose two from the following five groups and then complete six hours in each of the chosen groups:

1. MATH 5105, MATH 5106, MATH 5107, MATH 5108
2. MATH 5105, MATH 5215, MATH 4530 or MATH 5530, MATH 5351, MATH 5585
3. MATH 5222, MATH 5302, MATH 5325, MATH 5351, MATH 5483, MATH 5603, MATH 5604
4. STAT 5814, STAT 5643, STAT 5644, STAT 5346, STAT 5353, STAT 5755, STAT 5756
5. COMP SCI 3200, COMP SCI 5201, COMP SCI 5202, MATH 5603, MATH 5604, MATH 5605, MATH 5606, MATH 5607, MATH 5608, STAT 5346, STAT 5756

Courses in biology, chemistry, computer science, economics, engineering, geology, mechanics, or physics approved by advisor. The general math curriculum requires 15 credit hours; actuarial science emphasis area, 12 credit hours; algebra/discrete math emphasis area, 15 credit hours; computational math emphasis area, 9 credit hours; statistics emphasis area, 12 credit hours.

The capstone experience for all applied mathematics majors (other than students completing the secondary education emphasis area) consists of a course chosen from the following list: MATH 4098 (three credits), MATH 4099 or STAT 4099 (three credits), MATH 5107, MATH 5215, MATH 5603, STAT 5346, STAT 5353, STAT 5755, or STAT 5756.

Emphasis Areas at the Bachelor of Science Level

Note: It is not required that students complete an emphasis area to obtain the bachelor of science degree in applied mathematics. The emphasis area requirements often specify most, if not all, of the electives in mathematics, statistics and computer science as well as many technical or free electives.

Actuarial Science Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 5643</td>
<td>Probability And Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5644</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1100</td>
<td>Principles Of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 1200</td>
<td>Principles Of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2200</td>
<td>Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5737</td>
<td>Financial Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

And six hours from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 5814</td>
<td>Applied Time Series Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5346</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5353</td>
<td>Statistical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5755</td>
<td>Statistical Models in Actuarial Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5756</td>
<td>Statistical Models for Life Contingencies</td>
<td>3</td>
</tr>
</tbody>
</table>

In addition, the student must pass the first actuarial science exam. Note that the capstone requirement is included in, not separate from, this list of courses.

When selecting a 3000-level statistics course to satisfy the major requirements, it is recommended that students pursuing an Actuarial Science emphasis select Stat 3117.

Algebra/Discrete Mathematics Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 5105</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5106</td>
<td>Modern Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6105</td>
<td>Finite Fields And Applications</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5107</td>
<td>Combinatorics And Graph Theory (Satisfies Capstone requirement)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 5108</td>
<td>Linear Algebra II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5643</td>
<td>Probability And Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5644</td>
<td>Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 2200</td>
<td>Theory of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 5200</td>
<td>Introduction To Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 5200</td>
<td>Analysis Of Algorithms</td>
<td>3</td>
</tr>
</tbody>
</table>

Computational Mathematics Emphasis Area

Required courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 5353</td>
<td>Statistical Data Analysis (Satisfies Capstone requirement)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5346</td>
<td>Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 3200</td>
<td>Introduction To Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 5302</td>
<td>Intermediate Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5325</td>
<td>Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5603</td>
<td>Methods of Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 5604</td>
<td>Introduction to Numerical Methods for Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 5201</td>
<td>Object-Oriented Numerical Modeling I</td>
<td>3</td>
</tr>
<tr>
<td>COMP SCI 5402</td>
<td>Introduction to Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 5139</td>
<td>Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO ENG 5139</td>
<td>Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 5212</td>
<td>Introduction to Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AERO ENG 5212</td>
<td>Introduction to Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 5830</td>
<td>Applied Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>AERO ENG 5830</td>
<td>Applied Computational Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Applied Analysis Emphasis Area

Required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP SCI 3200</td>
<td>Introduction To Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>and two of groups 3, 4, and 5 under Mathematics and Statistics electives (plus the Capstone requirement) must be satisfied, and choose Technical Electives and Free Electives to satisfy one of the following two options:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 2200</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 2210</td>
<td>Mechanics Of Materials</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH ENG 2350</td>
<td>Engineering Mechanics-Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 2360</td>
<td>Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO ENG 3613</td>
<td>Aerospace Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>AERO ENG 5313</td>
<td>Intermediate Dynamics of Mechanical and Aerospace Systems</td>
<td>3</td>
</tr>
<tr>
<td>AERO ENG 5614</td>
<td>Spaceflight Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM ENG 2100</td>
<td>Chemical Engineering Material & Energy Balances</td>
<td>4</td>
</tr>
<tr>
<td>CHEM ENG 2110</td>
<td>Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ELEC ENG 2800</td>
<td>Electrical Circuits</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 3313</td>
<td>Machine Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 2519</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MECH ENG 5131</td>
<td>Intermediate Thermofluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 3103</td>
<td>Interactions Of Radiation With Matter</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 4203</td>
<td>Reactor Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PET ENG 4621</td>
<td>Fundamentals Of Petroleum Reservoir Simulation</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 3330</td>
<td>Engineering Fluid Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>
or NUC ENG 3221
or MECH ENG 3131

CIV ENG 5207
Intermediate Hydraulic Engineering

ELEC ENG 3270
Introduction to Neural Networks and Applications

MECH ENG 5207
Vibrations I

MECH ENG 5211
Introduction To Continuum Mechanics

MECH ENG 5234
Stability of Engineering Structures *

GEOPHS 3221
Potential Field Theory

* Courses with an asterisk (*) are co-listed in more than one department.

Physics Option
Required courses:

PHYSICS 2311
Modern Physics I

PHYSICS 3311
Modern Physics II

And take at least nine additional hours of physics courses at the 2000 level or above.

Note that the requirements for a minor in physics will be satisfied with this option.

Secondary Education Emphasis Area
You may earn a B.S. degree in applied mathematics from Missouri S&T and certification to teach at the secondary level in the schools of Missouri with this emphasis area program. This program can be completed in four academic years.

Students interested in this emphasis area should consult with the advisor for mathematics education majors in the mathematics and statistics department.

In order to successfully complete this emphasis area, students must maintain a cumulative GPA of at least 2.75 and attain at least a 3.0 GPA in all mathematics, statistics, and education courses. Current Missouri S&T or transfer students who wish to pursue this emphasis area must meet these GPA requirements to be accepted into the program. Students must also meet all requirements listed under teacher education in the catalog. Students who do not meet all the teacher certification requirements will not be eligible for the secondary education emphasis area, even if they have completed all coursework.

A degree in this emphasis area requires 128 credit hours. The required courses and a sample four-year program are provided below. (A minimum grade of “C” is required by the department in all mathematics and statistics courses counted toward this degree. No course may be used to satisfy more than one degree requirement, except as otherwise noted.)

Freshman Year
First Semester Credits
MATH 1101 1
MATH 1208 or 1214 4
CHEM 1100 1
ENGLISH 1120 3
HISTORY 1300 or 1310 3
EDUC 1040 2
EDUC 1104 2

Second Semester Credits
MATH 1215 or 1221 4
BIO SCI 1113 3
BIO SCI 1219 (Science Lab Requirement) 1
PSYCH 1101 3
EDUC 1164 3
EDUC 1174 2

Credits
16
16

Sophomore Year
First Semester Credits
MATH 2222 4
MATH 3108 3
PHYSICS 1135 or 1111 and 1119 2

Second Semester Credits
MATH 3304 3
MATH 3109 3
ENGLISH 1160 3
PHYSICS 2135 or 2111 and 2119 4

Credits
17
18

Junior Year
First Semester Credits
MATH 4209 3
STAT 3113, or 3115, or 3117 3
ECON 1100 or 1200 3
ENGLISH 3170 3
EDUC 3216 3

Second Semester Credits
MATH 4211 3
MATH 4530 3
EDUC 3200 or EDUC 2102 3
PSYCH 2300 or EDUC 2102 3

Credits
15
18

Senior Year
First Semester Credits
Electives-Math or Stat* 6
PSYCH 4310 or EDUC 4310 3
POL SCI 1200 3
Literature 3
Electives 2

Second Semester Credits
EDUC 4298 or EDUC 2993 3

Credits
17
13

Total Credits: 128

1 May be met by BIO SCI 1219 or CHEM 1319, but if CHEM 1319 is used, one extra hour must be attained in any elective area to fulfill the 128 total hour requirement.

2 Any three-hour course from the areas of foreign language, music, theater, philosophy or art.

3 Student Teaching satisfies the capstone requirement for students completing this emphasis area.

4 Any two three-hour courses from the following list with the approval of the mathematics education advisor. MATH 5105, MATH 5106, MATH 5107, MATH 5108, MATH 5215, MATH 5222, MATH 5302, MATH 5325, MATH 5351, MATH 5483, MATH 5585, STAT 5643, STAT 5644, STAT 5346, STAT 5353, COMP SCI 3200, COMP SCI 5201, COMP SCI 5202, MATH 5737.

5 COMP SCI 1570 if not transferred in will require COMP SCI 1580, requiring one extra credit hour which will count either towards technical electives or free electives.

Statistics Emphasis Area
Required courses:

STAT 5643
Probability And Statistics

STAT 5644
Mathematical Statistics

STAT 5346
Regression Analysis

STAT 5353
Statistical Data Analysis (Satisfies Capstone requirement)

Select two of the following:

BIO SCI 2223
General Genetics

COMP SCI 3200
Introduction To Numerical Methods

COMP SCI 5402
Introduction to Data Mining

STAT 5260
Statistical Data Analysis Using SAS

Credits
3
3
3
3
3

2016-2017
Bioinformatics Minor

Students majoring in mathematics are eligible to pursue a minor in bioinformatics. See the description of the bioinformatics minor (http://catalog.mst.edu/undergraduate/degreeprogramsandcourses/bioinformaticsmminor).

Mathematics Minor Curriculum

The minor will consist of at least 12 hours of mathematics/statistics courses at the 3000 or higher level*, 9 hours of which must be completed in residence at Missouri S&T and 3 hours of which must be at the 4000 or higher level, and passing all of them with at least a grade of "C". Further, MATH 3304 and MATH 3115 cannot both be counted, MATH 3103 and MATH 3108 cannot both be counted, and at most one of STAT 3111, STAT 3113, STAT 3115 and STAT 3117 may be counted. Finally, the specific choice of courses is subject to the approval of the minor advisor.

* COMP SCI 3200 Introduction To Numerical Methods may be substituted for one of these courses.

Akim Mouhamadou Adekpédjou, Associate Professor
PHD University of South Carolina Columbia

Elvan Akin, Professor
PHD University of Nebraska Lincoln

Martin Bohner, Curators’ Distinguished Professor
PHD University of Ulm, Germany

Wlodzimierz Jan Charatonik, Professor
PHD University of Warsaw, Poland

Stephen L Clark, Professor
PHD Univ. of Tennessee-Knoxville

Stephanie L Fitch, Teaching Professor
MA University of Texas-Austin

David E Grow, Associate Professor
PHD University of Nebraska Lincoln

Daozhi Han, Assistant Professor
PHD Florida State University

Xiaoming He, Associate Professor
PHD Virginia Polytechnic Institute

Wenqing Hu, Assistant Professor
PHD University of Maryland-College Park

Eugene M Insall Jr, Associate Professor
PHD University of Houston

Nan Jiang, Assistant Professor
PHD University of Pittsburgh

Kimberly S Kinder, Assistant Teaching Professor
MS Central Missouri State University

Kelley Renee Koob, Lecturer
MASTER University of Missouri - Rolla

Vy Khoi Le, Professor
PHD University of Utah

Jason Murphy, Assistant Professor
PHD University of California-Los Angeles

Gayla Renee Olbricht, Associate Professor
PHD Purdue University

Robert L Paige, Professor
PHD Colorado State University

Robert Paul Roe, Associate Professor
PHD University of Wyoming

Paul N Runnion, Associate Teaching Professor
MS University of Missouri-Rolla

V A Samaranayake, Curators’ Distinguished Teaching Professor
PHD Kansas State University

John R Singler, Associate Professor
PHD Virginia Polytechnic Institute

Xuerong (Meggie) Wen, Associate Professor
PHD University of Minnesota

Yanzhi Zhang, Associate Professor
PHD National University of Singapore

MATH 1000 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 1001 Special Topics (LEC 0.0 and LAB 0.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 1101 Introduction To Mathematics (LEC 1.0)
Introduction to the department, program of study, methods of study, and an introduction of the various areas of mathematics. Required of fall semester freshman mathematics majors.

MATH 1103 Fundamentals Of Algebra (LEC 3.0)
Basic principles of algebra including the number line and an introduction to equations and inequalities, polynomials, rational expressions, exponents and radicals, the quadratic formula and functions. Prerequisite: Entrance requirements.
MATH 1110 Introduction To Mathematical Ideas (LEC 3.0)
A course for non-science majors, including liberal arts and education majors. A study of the nature of mathematics and its relation to western culture, number systems, sets, functions, and selected topics from algebra, computer science and other areas of mathematics. Prerequisite: Two years high school mathematics.

MATH 1120 College Algebra (LEC 5.0)
Contains the same topics as covered in Math 1140, and precede by a thorough review of the basic principles of algebra. Prerequisite: By placement examination.

MATH 1140 College Algebra (LEC 3.0)
A study of linear equations, rational functions, radicals, quadratic equations, inequalities, determinants, progressions, theory of equations, permutations, combinations, and the binomial theorem. Prerequisite: By placement examination.

MATH 1160 Trigonometry (LEC 2.0)
A study of the trigonometric functions, radian measure, graphs of trigonometric functions, identities, trigonometric equations and inverse trigonometric functions. Solutions of general triangles and trigonometric representation of complex numbers are included. Prerequisite: Math 1120 or 1140 with a grade of "C" or better; or by placement exam.

MATH 1190 Success for Calculus (LEC 3.0 and LAB 1.0)
This course focuses on the use of college algebra and trigonometry skills within the context of calculus, providing students with the opportunity to improve their preparedness for future calculus coursework. Pass/Fail only. Prerequisites: Consent of instructor.

MATH 1208 Calculus With Analytic Geometry I (LEC 5.0)
A study of limits, continuity, differentiation and integration of algebraic and trigonometric functions. Applications of these concepts in physical as well as mathematical settings are considered. Credit will only be given for one of Math 1208 or Math 1214. Prerequisites: Math 1160; Math 1120 or 1140, both with a grade of "C" or better; or by placement exam.

MATH 1214 Calculus For Engineers I (LEC 3.0 and LAB 1.0)
Introduction to limits, continuity, differentiation and integration of algebraic and elementary transcendental functions. Applications in physical science and engineering. Credit will be given for only one of Math 1208 or Math 1214. Math 1214 may be accompanied by Math 1160 with Math department approval. Prerequisites: A grade of "C" or better in both Math 1160 and one of Math 1120 or Math 1140; or by placement exam.

MATH 1215 Calculus For Engineers II (LAB 1.0 and LEC 3.0)
Continuation of Math 1214. Transcendental functions, techniques of integration, sequences, series including power series, polar coordinates, polar and parametric equations. Applications in physical science and engineering. Credit will be given for only one of Math 1215 or Math 2211. Prerequisites: Math 1160 and either Math 1208 or Math 1214 both with a grade of "C" or better; or by placement exam.

MATH 1221 Calculus With Analytic Geometry II (LEC 5.0)
A continuation of Math 8; differentiation and integration of elementary transcendental functions, integration techniques, improper integrals, conic sections, polar coordinates, introduction to sequences and series. Credit will only be given for one of Math 1221 or Math 1215. Prerequisites: Math 1160 and either Math 1208 or Math 1214 both with a grade of "C" or better; or by placement exam.

MATH 2002 Cooperative Work Training (IND 0.0-6.0)
On-the-job experience gained through cooperative education with industry. Variable credit arranged with the advisor. P/F grading option is required and maximum credit per semester is 3 hrs., maximum for entire program is 6 hrs.

MATH 2222 Calculus with Analytic Geometry III (LEC 3.0 and LAB 1.0)
An introduction to multivariable calculus. Vector valued functions, curves and surfaces in two and three dimensions, partial differentiation, multiple integration, line and surface integrals, the major theorems of vector calculus, and applications of these ideas are studied. Prerequisites: Math 1215 or Math 1221 with a grade of "C" or better.

MATH 3000 Special Problems (IND 0.0-6.0)
Problems or readings in specific subjects or projects in the department. Consent of instructor required.

MATH 3001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 3010 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 3108 Linear Algebra I (LEC 3.0)
Systems of linear equations, matrices, vector spaces, inner products, linear transformations, determinants, and eigenvalues are studied. Prerequisite: Math 1215 or 1221 or 2222 with a grade of "C" or better.

MATH 3109 Foundations Of Mathematics (LEC 3.0)
Introduction to mathematical reasoning through an axiomatic development of mathematical systems. Strong emphasis is placed on learning to understand what constitutes a sound mathematical argument. Communication, both written and spoken, is emphasized. Prerequisite: Math 1215 or 1221 with a grade of "C" or better.
MATH 3304 Elementary Differential Equations (LEC 3.0)
First order differential equations and linear differential equations of higher order are studied. The Laplace transform and systems of linear equations as well as selected physical applications are covered. Credit will not be given for both Math 3329 and Math 3304. Prerequisite: Math 2222 with a grade of "C" or better.

MATH 3921 Teaching Math in Elementary and Middle Schools (LEC 3.0)
The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Math 1120 or Math 1140; Educ 1040. (Co-listed with Educ 3221).

MATH 4000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 4001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 4010 Undergraduate Seminar (SEM 1.0-3.0)
Discussion of advanced or current topics. (Course cannot be used for graduate credit).

MATH 4096 Problem Solving In Pure Mathematics (LEC 1.0)
Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student's entire mathematics background. Prerequisites: Corequisite Math 4209 and Senior standing.

MATH 4097 Problem Solving In Applied Mathematics (LEC 1.0)
Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 3109 and Senior standing.

MATH 4098 Explorations in Pure Mathematics (LEC 3.0)
Students interested in pure mathematics will be encouraged to use their entire mathematics background as a context for learning about some of the great theorems which have shaped the development of mathematics and solving novel problems in areas such as, but not limited to, analysis, algebra, number theory, set theory, topology, and finite mathematics. Prerequisites: Senior standing; preceded or accompanied by Math 4209.

MATH 4099 Undergraduate Research (IND 0.0-6.0)
This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

MATH 4209 Advanced Calculus I (LEC 3.0)
Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 2222 and Math 3109, or a 4000-level or higher mathematics course, or graduate standing.

MATH 4211 Advanced Calculus II (LEC 3.0)
Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 4209.

MATH 4530 Topics In Geometry (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: MATH 3108.

MATH 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MATH 5001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MATH 5010 Graduate Seminar (SEM 1.0)
Discussion of advanced or current topics.

MATH 5040 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

MATH 5099 Graduate Research (IND 0.0-6.0)
Investigation of an advanced nature leading to the preparation of a MS thesis or dissertation.

MATH 5105 Modern Algebra I (LEC 3.0)
Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange's Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 3109 or graduate standing; preceded or accompanied by Math 3108.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 5106</td>
<td>Modern Algebra II</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5107</td>
<td>Combinatorics And Graph Theory</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5108</td>
<td>Linear Algebra II</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5154</td>
<td>Mathematical Logic I</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5215</td>
<td>Introduction To Real Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5222</td>
<td>Vector And Tensor Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5302</td>
<td>Intermediate Differential Equations</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5325</td>
<td>Partial Differential Equations</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5351</td>
<td>Introduction To Complex Variables</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5483</td>
<td>Operational Calculus</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5530</td>
<td>Topics in Geometry - Graduate Option</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5585</td>
<td>Introduction To Topology</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5603</td>
<td>Methods of Applied Mathematics</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5604</td>
<td>Introduction to Numerical Methods for Differential Equations</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5737</td>
<td>Financial Mathematics</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 5940</td>
<td>Mathematical Analysis For Secondary Teachers</td>
<td>1.0</td>
</tr>
<tr>
<td>MATH 5948</td>
<td>Mathematical Analysis For Secondary Teachers Practicum</td>
<td>3.0</td>
</tr>
</tbody>
</table>

MATH 5106 Modern Algebra II (LEC 3.0)
This course is a continuation of Math 5105. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 5105.

MATH 5107 Combinatorics And Graph Theory (LEC 3.0)
Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Comp Sci 1200 or Math 3109.

MATH 5108 Linear Algebra II (LEC 3.0)
Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 3108.

MATH 5154 Mathematical Logic I (LEC 3.0)
A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 3254 or Math 5105 or Comp Sci 2500 or Comp Eng 2210. (Co-listed with Comp Eng 5803, Comp Sci 5203 and Philos 4354).

MATH 5215 Introduction To Real Analysis (LEC 3.0)
Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 4209.

MATH 5222 Vector And Tensor Analysis (LEC 3.0)
Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 2222; Math 3103 or Math 3108.

MATH 5302 Intermediate Differential Equations (LEC 3.0)
Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 3304 or Math 3329.

MATH 5325 Partial Differential Equations (LEC 3.0)
Linear equations, heat equation, eigenfunction expansions, Green’s formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 3304 with a grade of "C" or better.

MATH 5351 Introduction To Complex Variables (LEC 3.0)
The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 3304.

MATH 5483 Operational Calculus (LEC 3.0)
The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 3304.

MATH 5530 Topics in Geometry - Graduate Option (LEC 3.0)
A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Students will demonstrate graduate-level mastery of the subject matter. Credit will not be given for both Math 4530 and Math 5530. Prerequisites: MATH 3108.

MATH 5585 Introduction To Topology (LEC 3.0)
Metric spaces; general topological spaces; connectedness, separation properties, functions and continuity. Prerequisite: Math 4209.

MATH 5603 Methods of Applied Mathematics (LEC 3.0)
Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 3304 or 3329 with a grade of "C" or better, programming competency.

MATH 5604 Introduction to Numerical Methods for Differential Equations (LEC 3.0)
An introduction to finite difference methods for ordinary and partial differential equations, including (1) the derivation of the numerical methods, (2) implementation of the methods in Matlab, and (3) the mathematical accuracy and stability analysis of the methods. Prerequisites: MATH 3304 and programming competency (preferably Matlab).

MATH 5737 Financial Mathematics (LEC 3.0)
The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 1215 or Math 1221, Econ 2100 or Econ 2200 or Finance 2150 or Finance 5160, Stat 3111 or Stat 3113 or Stat 3115 or Stat 3117 or Stat 5643. (Co-listed with Econ 5337).

MATH 5940 Mathematical Analysis For Secondary Teachers (LEC 1.0)
Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 2222 or equivalent.

MATH 5948 Mathematical Analysis For Secondary Teachers Practicum (LEC 3.0)
An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 5940.