MINING ENGINEERING

Emphasis areas at the bachelor level in explosives engineering, mining health and safety, quarry engineering, coal, mining and the environment, and sustainable development.

The mining and explosives engineering programs are offered under the department of mining engineering. The overall objectives of the mining engineering program are to provide a broad engineering education with strong expertise in mining engineering, a cultural foundation for the mining industry and a strong basis for future growth and development. These objectives are achieved at the B.S. level by providing education in basic sciences, engineering sciences and design, core mining engineering, humanities and social sciences.

ABET Educational Objectives
The objectives establish broad career and professional attributes that the mining engineering program prepares students to achieve in industry. The educational objectives include:

1. Graduates will become frontline supervisors and middle level managers within three to five years in industry.
2. Graduates will have a vital interest and a passion to remain and promote industry growth.
3. Graduates will be capable of solving industrial problems toward growth and competitiveness of their respective companies.
4. Graduates will become functional and effective leaders or members of industrial teams for carrying out the mission of their respective companies.
5. Graduates will communicate effectively the technical, social and economic aspects of the job requirements to subordinates, peers and superiors.
6. Graduates will carry out their functional responsibilities with supreme understanding of safety and health, environment and ethics.
7. Graduates will cultivate and maintain an interest in life-long learning through professional development and memberships in professional societies.
8. Graduates will continue to grow in the knowledge of relevant technologies, skills and tools for modern mining engineering practice.

ABET Student Outcomes
The mining engineering program has the same student outcomes as the campus student outcomes. Thus, graduates of the mining engineering program will have:

1. An ability to communicate effectively both orally and in writing.
2. An ability to think critically and analyze effectively.
3. An ability to apply disciplinary knowledge and skills in solving critical problems.
4. An ability to function in diverse learning and working environments.
5. An understanding of professional and ethical responsibility.
6. An awareness of national and global contemporary issues.
7. A recognition of the need for, and an ability to engage in, life-long learning.

General Program Information
The mining engineering courses provide students with the knowledge necessary to enter a variety of segments of the mining industry. Graduate mining engineers, who satisfactorily complete the program criteria, usually obtain employment in one or more of the following areas: mine engineering, operations management, extraction or processing, base metals, precious metals, industrial minerals, quarry industry, explosives industry, construction or demolition, mining equipment suppliers and mining/geotechnical consulting firms.

The mining engineering profession deals with location, extraction, and use of mineral resources and mineral policy. Lunar and ocean mining constitute new frontiers. The mining engineer is concerned with all phases of mineral recovery, including exploration, evaluation, development, extraction, mine evaluation, reclamation, processing, and marketing of minerals. In addition to engineering, science and liberal arts courses, appropriate courses are taken in explosives engineering, geology, mineral beneficiation, coal mine development and production, mining of metallic and aggregate minerals, mine systems design, mining economics and law, mine hygiene and safety, mine management, mine ventilation, rock mechanics, ground support, and reclamation.

The mining engineer relies upon geologic knowledge and highly sensitive instruments for the location and evaluation of mineral deposits. Problems involved in the development, exploitation and the beneficiation of minerals and marketing of valuable constituents must be determined in advance. Mining must be carried out efficiently, safely, and economically, with the welfare of the public as a primary consideration. Land must be restored to a useful condition after mining ceases and pollution controls must be designed to prevent harmful environmental effects.

Intensive research programs are conducted at Missouri S&T in surface and underground mining, heavy mining machinery, explosives engineering, mine health and safety, oil sands recovery, waterjet excavation, mineral economics, mine operations and design, mine atmospheric control and ventilation, minerals transportation, rock mechanics and applied geophysics. Appropriate research by faculty and graduate students ensures program relevance to industry.

An Experimental Mine and the Rock Mechanics and Explosives Research Center are located close to the campus and provide facilities for laboratory instruction and research. Trips to coal, metal, and industrial mineral operations supplement classroom activities. Summer employment and co-op training provide valuable practical mining and engineering expertise.

Program Mission and Core Values
The Mining Engineering Program at Missouri S&T provides superb education and training to undergraduate and graduate students for the mining and construction industries of Missouri, USA and those global mining companies with strategic interests in the USA. The programs provide students with total quality education and research capabilities to make a difference in our state and the technological world.

Core Values
Our vision of global leadership will be achieved through the following seven core values that form the basis of Missouri S&T’s tradition of excellence in mining engineering education and research.

Excellence: The efforts of faculty, staff, alumni, industry partners and related organizations create an environment that promotes excellence in education and research.
Ethics: We value truth, honesty, integrity and hard work as abiding principles for professional excellence.

Experience: Through its experimental mine facilities, internships, cooperative education and field trips, students receive hands-on experience, which is vital to the practice of the profession.

Exposure: S&T reaches out to global frontiers through its board of industry executives, alumni, research and professional societies, and our global partners.

Passion: S&T educates graduates with a passion for the mining industry’s growth and competitiveness.

Tradition: S&T maintains the tradition of excellence, unity, collegiality and family that have been the bedrock of its mining engineering programs.

Bachelor of Science
Mining Engineering

Entering freshmen desiring to study Mining Engineering will be admitted to the Foundational Engineering and Computing Program. They will, however, be permitted, if they wish, to state a Mining Engineering preference, which will be used as a consideration for available freshman departmental scholarships. The focus of the Foundational Engineering and Computing Program is on fundamental sciences and mathematics, enhanced advising and career counseling, with the goal of providing to the student the information necessary to make an informed decision regarding the choice of a major. In addition, students who state the Mining Engineering preference are required to complete MIN ENG 2126 during the first or second semester on campus.

For the Bachelor of Science degree in Mining Engineering a minimum of 128 credit hours is required, although completion of an emphasis area may require up to 132 credits. These requirements are in addition to credit received for algebra, trigonometry, and basic ROTC courses. A student must maintain at least two grade points per credit hour for all courses taken in the student’s major department, and an average of at least two grade points per credit hour must be maintained in Mining Engineering.

Each student’s program of study must contain a minimum of 21 credit hours of course work in general education and must be chosen according to the following rules:

1. All students are required to take one American History course, two economics courses, one humanities course, ENGLISH 1120 and either ENGLISH 1160, ENGLISH 3560 or TCH COM 1600. The history course is to be selected from HISTORY 1200 , HISTORY 1300 , HISTORY 1310 , or POL SCI 1200 . The economics courses must be either ECON 1100 or ECON 1200 , and ECON 3512 . The humanities course must meet requirements as specified under “Engineering Degree Requirements” published in the current undergraduate catalog.
2. The remaining three credit hours must meet requirements as specified under “Engineering Degree Requirements” published in the current undergraduate catalog. Foreign language courses can be considered to be one of these courses. (Students may receive humanities credit for foreign language courses in their native tongue only if the course is at the 4000 or 5000 level.)
3. Special topics, special problems courses and honors seminars are allowed only by petition to and approval by the student’s department chairman.

The Mining Engineering program at Missouri S&T is characterized by its focus on the scientific basics of engineering and its innovative application; indeed, the underlying theme of this educational program is the application of the scientific basics to engineering practice through attention to problems and needs of the public. The necessary interrelations among the various topics, the engineering disciplines, and the other professions as they naturally come together in the solution of real world problems are emphasized as research, analysis, synthesis, and design are presented and discussed through classroom and laboratory instruction.

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

Explosives Engineering Emphasis: MIN ENG 5622 (Blasting Tech) and MIN ENG 5823 (Rock Mechanics) or MIN ENG 5922 (Tunneling/Construction) have to be taken as Technical Electives.
Coal Emphasis: Two of CIV ENG 3116 (Construction Materials); MIN ENG 5212 (Aggregate and Quarrying); and MIN ENG 5412 (Aggregate Materials) have to be taken as Technical Electives.

Coal Emphasis: Two of MIN ENG 5322 (Coal Mine Development and Production), MIN ENG 4414 (Mine Plant Management) or an approved substitute course must be taken as Technical Electives.

Minning and the Environment Emphasis: GEO ENG 5235 (Environmental Geological Engineering) and GEO ENG 5233 (Risk Assessment in Environmental Studies), or approved substitute courses have to be taken as Technical Electives.

Mining Health and Safety Emphasis: MIN ENG 3002 (Mine Rescue), ENG MGT 4330 (Human Factors), or other approved substitute courses must be taken as Technical Electives.

Sustainable Development Emphasis: POL SCI 3310 (Public Policy Analysis), ECON 4440 (Environmental and Natural Resource Economics), or other approved substitute courses must be taken as Technical Electives.

Graduating Mining Engineers Examination

Mining engineering students must complete the Fundamentals of Engineering Examination prior to graduation as a senior assessment requirement. A passing grade is not required to earn a B.S. degree in mining engineering; however it is the first step toward becoming a registered professional engineer. This requirement is part of the Missouri S&T assessment process.

Mining Health and Safety Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN 3002</td>
<td>Mine Rescue (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>ENG MGT 4330</td>
<td>Human Factors (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Sustainable Development Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL SCI 3300</td>
<td>Principles Of Public Policy (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4440</td>
<td>Environmental And Natural Resource Economics (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Quarrying Engineering Emphasis

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 3116</td>
<td>Construction Materials, Properties And Testing (in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5212</td>
<td>Aggregates and Quarrying</td>
<td>3</td>
</tr>
</tbody>
</table>

Explosives Engineering Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP ENG 5922</td>
<td>Tunneling & Underground Construction Techniques</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 5471</td>
<td>Rock Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EXP ENG 5622</td>
<td>Blasting Design And Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Coal Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 5322</td>
<td>Coal Mining Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Mining and the Environment Emphasis

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV ENG 5640</td>
<td>Environmental Law And Regulations</td>
<td>3</td>
</tr>
<tr>
<td>GEO ENG 5233</td>
<td>Risk Assessment In Environmental Studies (or approved substitute course in lieu of Technical Elective.)</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor in Mining Engineering

A student who receives a Bachelor of Science degree in an accredited engineering program from Missouri S&T may receive the Minor in Mining Engineering by completing 15 credit hours from the courses listed below. Non-engineering students who have a strong background in mathematics and the physical sciences may also qualify for the Minor in Mining Engineering or Explosives Engineering with the approval of the Department and based on an individually designed program of study. Students will need to consult with the Chair of the Mining Engineering Program to determine pre-requisite requirements for each course. The program granting the Bachelor of Science degree shall determine whether or not courses taken for the Mining Engineering Minor or Explosives Engineering Minor may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the Minor in Mining Engineering:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 3913</td>
<td>Mineral Identification and Exploration</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5932</td>
<td>Underground Mining Methods</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5933</td>
<td>Surface Mining Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Two other Mi Eng 3000-, 4000-, or 5000-level lecture courses (3 credit hours), or relevant courses from other disciplines, as approved, must be taken to match the student’s area of emphasis in Mining Engineering. The following areas of emphasis may be pursued:

Explosives Engineering; Quarrying; Mineral Economics; Mining-Environmental; Mining-Equipment; Mining-Geo-technical; Mining-Health and Safety; Mining Operations Management; Mining-Tunneling; Sustainable Development; Surface Mining; Underground Mining.

The Minor in Mining Engineering is not accredited by the Accreditation Board of Engineering and Technology (ABET).

Minor in Mineral Processing

The minor in Mineral Processing provides an in-depth study of the fundamental theories and applications of mineral and coal processing and aggregate materials sizing and classification. Any student who receives a Bachelor of Science degree in an accredited engineering program from Missouri S&T may also receive the minor in Mineral Processing by completing 15 credit hours in this specialty. The B.S. degree granting program shall determine whether or not courses taken for the minor in Mineral Processing may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the minor in Mineral Processing:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN ENG 2412</td>
<td>Principles Of Mineral Processing</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5412</td>
<td>Aggregates Materials Sizing and Characterization</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5422</td>
<td>Coal Preparation</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5423</td>
<td>Flotation and Hydrometallurgy</td>
<td>3</td>
</tr>
<tr>
<td>MIN ENG 5424</td>
<td>Mineral Processing II Mechanics And Design</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor in Explosives Engineering

The department of mining and nuclear engineering, mining engineering program, realizing the attractiveness of explosives engineering to students, the potential for jobs in the area (post 9-11), and the use of over 6 billion pounds of explosives in mining, tunneling, construction, and other areas, is offering a minor in explosives engineering so that students interested in explosives engineering have a chance to attain in-depth knowledge of the sub-discipline.

A student who received a bachelor of science degree in an accredited engineering program from Missouri S&T may receive the minor in explosives engineering by completing 15 credit hours from the courses listed below. Non-engineering students who have a strong background in mathematics and the physical sciences may also qualify for the minor in explosives engineering, with the approval of the department and based on an individually designed program of study. Students need to consult with the chair of the explosives engineering program to determine pre-requisite requirements for each course. The program granting the bachelor of science degree shall determine whether or not courses taken for the explosives engineering minor may also be used to fulfill the requirements of the B.S. degree from that program.

The following courses are required for the minor in explosives engineering:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP ENG 5612/ MIN ENG 5612</td>
<td>Principles of Explosives Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EXP ENG 5622/ MIN ENG 5622</td>
<td>Blasting Design And Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

The minor in explosives engineering is not accredited by the Accreditation Board of Engineering and Technology (ABET).

Undergraduate Certificate in Explosives Engineering

This certificate program is designed to provide formalized education in the area of explosives engineering.

Students will be exposed to the theoretical and practical approaches of explosives engineering. Students will be exposed to the analysis and design of explosive-related systems and both natural and built structure effects.

The explosives engineering certificate program is open to all persons holding a high school diploma who have a minimum of 12-months of post-high school, professional employment or college experience.

Once admitted to the program, a student will be given three years to complete the program so long as he/she maintains a 2.0 GPA in the courses taken.

Required courses:

- EXP ENG 5612 Principles of Explosives Engineering
- EXP ENG 5622 Blasting Design And Technology

Choose any two courses from the list below:

- EXP ENG 5555 Computer Fired Pyrotechnic Show Design and Firing System Operation
- EXP ENG 5112 Explosives Handling and Safety
- EXP ENG 5512 Commercial Pyrotechnics Operations
- EXP ENG 5513 Stage Pyrotechnics and Special Effects
- EXP ENG 5514 Display Fireworks Manufacturing
- EXP ENG 5713 Demolition of Buildings and Structures
- EXP ENG 5922 Tunneling & Underground Construction Techniques or MIN ENG 5922 Tunneling & Underground Construction Techniques or MIN ENG 4922 Tunneling & Underground Construction Techniques

Any 5000 level explosives course or other explosive-related course with approval of the student’s advisor and instructor permission.

Other courses approved by the explosives engineering faculty may be substituted for any of the above listed courses on a case-by-case basis.

Students with a GPA of 3.0 in the certificate program may take postgraduate explosives classes as electives.

Lana Z Alagha, Associate Professor
PHD University of Texas at Dallas
Mineral processing, tailings management, polymer science, nanotechnology, interfacial science, colloidal interactions in aqueous systems, and clays.

Kwame Awuah-Offei, Associate Professor
PHD University of Missouri-Rolla
Life cycle sustainability assessment, community acceptance modeling, energy efficiency modeling, production optimization, CO2 hazard delineation and innovative post-mining land uses for underground mines.

Samuel Frimpong, Professor, Robert H. Quenon Chair in Mining Engineering and Interim Department Chair Computer Science
PHD University of Alberta, Canada
Surface mining, formation excavation, heavy machinery imaging and integration, intelligent mining systems, stochastic processes and risks simulation, extra heavy oil extraction, and mine safety, and health and hazards engineering.

Grzegorz Galecki, Emeritus
PHD Wroclaw Tech University, Poland
System integration, modeling of mining processes supported by waterjets, novel methods of comminution, particulate processing, coal conversion into fuels, borehole mining, and mineral processing.

Catherine Johnson, Assistant Professor
PHD University of Kentucky
Environmental Considerations of blasting, fragmentation prediction, biological effects of shock exposure, explosibility of dusts.

Braden Lusk, Lecturer
PHD University of Missouri-Rolla
Kyle Perry, Associate Professor
PHD University of Kentucky
Explosion protection, mine blasting effects, dust explosions, ground control.

Taghi Sherizadeh, Assistant Professor
PHD University of Arizona
Computational mechanics; numerical, statistical, and probabilistic modeling in rock mechanics; rock slope stability and stability of underground excavations; application of numerical modeling in underground and surface mining; reservoir geomechanics (Wellbore stability, Hydraulic fracturing, and Sand production); geomechanical aspects of CO2 sequestration; geothermal Energy recovery; assessment of nuclear waste disposal sites; pore pressure and in-situ stress analysis; compaction and subsidence modeling, artificial Intelligence (artificial neural networks, fuzzy logic and genetic algorithms).

Paul Nicholas Worsey, Professor Emeritus
PHD University of Newcastle-upon-Tyne, United Kingdom
Explosives engineering, drilling and blasting, rock excavation, demolition, and commercial pyrotechnics.

Guang Xu, Associate Professor
PHD Virginia Tech
Mine ventilation, health and safety; mining-induced particulate matter (PM) monitor and control, underground fire safety, computational fluid dynamics (CFD), enhanced coalbed methane recovery using microwave technology.

MIN ENG 1912 Principles Of Mining Engineering (LEC 2.0)
Principles and definitions related to mining engineering including one or more field trips to familiarize the student with current mining practices.

MIN ENG 1913 Computing In Mining Engineering (LAB 1.0)
Basic software needed by mining engineers for computer applications in various phases of mine planning, development, and operations will be covered. The overarching goal is developing early familiarity with relevant software so it can be integrated across mining engineering courses.

MIN ENG 2126 Introduction To Mining Safety (LAB 1.0)
Safety aspects of mining in accordance with the MSHA Training Program required for all new miners. Subjects include self-rescue and respiratory protection, ground control, hazard recognition, mine gases, and legal aspects associated with mining.

MIN ENG 2412 Principles Of Mineral Processing (LAB 1.0 and LEC 2.0)
Introduction to the principles of mineral processing including mineral resources; particle comminution, classification, separation and dewatering; flowsheet and equipment design.

MIN ENG 2914 Surface Mine Design (LAB 2.0 and LEC 1.0)

MIN ENG 2924 Underground Mine Design (LAB 2.0 and LEC 1.0)

MIN ENG 2925 Surveying For Mineral Engineers (LAB 2.0)
Principles of surface and underground survey practice utilizing total station, engineer's level and GPS. Traversing and details, note taking and computations, balancing surveys and error analysis, staking-out new points, and map construction with AutoCAD. Prerequisite: Preceded or accompanied by Min Eng 2126.

MIN ENG 3000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

MIN ENG 3001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 3002 Mine Rescue (LAB 1.0 and LEC 2.0)
Utilization of the principles of mine safety concerning mine gases, ventilation, explosives, fires, and first aid in the organization of mine rescue personnel and techniques. Training in the use of current mine rescue equipment, recognition and control of common recovery hazards, handling of survivors. Prerequisite: Min Eng 2126.

MIN ENG 3512 Mining Industry Economics (LEC 3.0)
Importance of the mineral industry to national economy, uses, distribution, and trade of economic minerals, time value of money, mineral taxation, economic evaluation utilizing depreciation, depletion, and discounted cashflow concepts, social and economical significance of mineral resources. Prerequisite: Econ 1100 or 1200. (Co-listed with Econ 3512).

MIN ENG 3912 Materials Handling In Mines (LAB 1.0 and LEC 2.0)
Mining applications of material transport and handling. Truck haulage and haulroads. Conveyors: belt, armored, and others; feeders; bins and bunkers; material stockpiling and homogenization; rail transport; water transport; slurry transport; mine hoists and hoisting. Prerequisite: Min Eng 1912.

MIN ENG 3913 Mineral Identification and Exploration (LAB 1.0 and LEC 2.0)

MIN ENG 4000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.
MIN ENG 4001 Special Topics (LEC 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 4096 Computer Aided Mine Design (LAB 3.0)
Mine planning and design using commercial software. Orebody description. Surface mining: geometric design, pit limits, and production planning. Underground mining: development planning, opening and support design, ventilation and production planning. Group projects with real-world mining data. Preparation for capstone design project. Prerequisites: Min Eng 4522, Min Eng 4932, and Min Eng 4933.

MIN ENG 4097 Capstone Design Project (LAB 3.0 and LEC 1.0)
Capstone project with written and oral presentations. Includes mine design and optimization, production plan, equipment and flowsheet design based on geology, resources/reserves, geotechnics, hydrology and hydro-geology. Project also incorporates markets, environmental and permitting, mine-mill organization, support facilities, economic and risk analyses. Prerequisite: Min Eng 4096.

MIN ENG 4099 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

MIN ENG 4122 Advanced Mine Health and Safety (LEC 3.0)
A detailed study of health and safety principles, practices, analyses, regulations, risks and hazards recognition, mitigation and control, and disaster prevention in the mining industry. Prerequisite: Min Eng 2126.

MIN ENG 4414 Mine Plant Management (LEC 2.0)
Optimization of mine plant and equipment performance. Availability, utilization and reliability of equipment; matching equipment and plant to minesite specific conditions; maintenance planning, scheduling and control; parts and materials supply systems; mine information and management systems. Basics of mine automation and robotics. Prerequisite: Senior standing or consent of instructor.

MIN ENG 4512 Mine Management (LEC 3.0)
Theory and practice of mine management, including basic managerial functions, management theories, communication skills, motivation, leadership, organization, maintenance management, managerial decision making, cost control, labor relations, government relations, ethics and risks management with emphasis in presentation skills. Prerequisite: Completion of 50 credits toward Mining Engineering degree. (Co-listed ECON 4512).

MIN ENG 4514 Mine Plant Management (LEC 2.0)
Optimum use of replenishable and non-replenishable resources, public goods and common resources, externalities, private vs. public costs, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. Prerequisite: Econ 2100. (Co-listed with Econ 4440).

MIN ENG 4524 Energy Economics (LEC 3.0)
For students interested in both economic and engineering issues of energy policy. Provides an assessment of economics and technology issues related to traditional and renewable energy resources. Presented in a framework that allows for analysis of the economic trade-offs between energy sources and the technologies associated with their use and extraction. Prerequisite: Econ 1100 or Econ 1200. (Co-listed with Chem Eng 4540 and Econ 4540).

MIN ENG 4824 Soils and Overburden Materials for Mining Engineering (LEC 2.0)
Physical and mechanical properties of soils and overburden materials. Soils and overburden characterization for reclamation and mine closure and overburden blasting. Soil failure modes and slope stability for surface mine layouts, waste dumps, tailings and earth dams, and foundations for heavy mining machinery. Prerequisites: Civ Eng 2210.

MIN ENG 4922 Tunneling & Underground Construction Techniques (LAB 1.0 and LEC 2.0)
Cover both mechanical excavation and conventional excavation techniques to underground tunneling and construction. The emphasis will be on equipment selection and prediction of performance expected of the equipment. Ground control systems will be covered as technology emerges. Excavation methods and support of large caverns, often found in civil structures, will also be discussed. A limited focus will be on underground construction specifications and underground advance rate and cost estimation techniques. Prerequisites: Min Eng 4823, Min Eng 4932 or Civ Eng 3715, Civ Eng 3116 or Geo Eng 5471.

MIN ENG 5000 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MIN ENG 5001 Special Topics (IND 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 5002 Environmental Sampling and Analysis (LAB 3.0 and LEC 2.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

MIN ENG 5003 Special Topics (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

MIN ENG 5113 Mine Atmosphere Control (LAB 1.0 and LEC 2.0)
Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Mech Eng 2527 and Civ Eng 3330; or Nuc Eng 3221.

MIN ENG 5212 Aggregates and Quarrying (LEC 3.0)
Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 3912; Preceded or accompanied by Civ Eng 3116.

MIN ENG 5322 Coal Mining Methods (LEC 3.0)
An in-depth study of all aspects of coal mining, including an overview of the coal industry, reserves and geology, planning and development of coal mines, surface and underground mechanized methods of face preparation, equipment, coal extraction, handling and preparation as practiced in the United States. Prerequisites: Min Eng 5912.
MIN ENG 5412 Aggregates Materials Sizing and Characterization (LAB 1.0 and LEC 2.0)
Geological formation of aggregates; aggregate properties and their measurements; aggregates for specific end-user applications; specifications and standards; processing (crushing, screening, classification, and washing); plant design and flow sheet analysis; quality control and assurance. Field trip to a nearby quarry required. Prerequisite: Min Eng 2412.

MIN ENG 5413 Material Processing by High Pressure Water Jet (LEC 3.0)
Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mech Eng 5606).

MIN ENG 5422 Coal Preparation (LAB 1.0 and LEC 2.0)
Coal properties, sampling, testing, breaking, sizing, cleaning and dewatering. Disposal of refuse. Prerequisite: Min Eng 2412.

MIN ENG 5423 Flotation and Hydrometallurgy (LAB 1.0 and LEC 2.0)
Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisites: Min Eng 2412.

MIN ENG 5424 Mineral Processing II Mechanics And Design (LAB 1.0 and LEC 2.0)
Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisites: Min Eng 2412. (Co-listed with Met Eng 5270).

MIN ENG 5522 Ore Reserve Analysis and Geostatistics (LAB 1.0 and LEC 2.0)
Principles of geostatistics, theory of spatially correlated random variables, variance and co-variaces and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 3304; Stat 3113 or Stat 3115.

MIN ENG 5532 Advanced Mining Economics (LEC 3.0)

MIN ENG 5612 Principles of Explosives Engineering (LAB 1.0 and LEC 2.0)
Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 2126; successful background check. (Co-listed with Exp Eng 5612).

MIN ENG 5622 Blasting Design And Technology (LAB 1.0 and LEC 2.0)
Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 5612. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 5622).

MIN ENG 5742 Environmental Aspects of Mining (LEC 3.0)
Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Preceded or accompanied by Min Eng 5933 or Geo Eng 5441 or Env Eng 5619. (Co-listed with Geo Eng 5276).

MIN ENG 5822 Strata Control (LEC 3.0)
A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 4823.

MIN ENG 5823 Rock Mechanics (LAB 1.0 and LEC 2.0)
Applications of the fundamental principles of mechanics to engineering problems of equilibrium, strength and stiffness of rock materials. Review of in-situ stresses, laboratory and field instrumentation, rock and rockmass properties. Ground Control; pillar design, roof span design, rock reinforcement, surface subsidence, slope stability, and violent failure. Prerequisites:Physics 2135; Civ Eng 2210; Geology 3310. Field trip required.

MIN ENG 5912 Mine Power and Drainage (LAB 1.0 and LEC 2.0)

MIN ENG 5913 Advanced Computer Aided Mine Design (LAB 1.0 and LEC 2.0)
Project-based mine planning and design course. Engineering design process applied to computer-aided mine planning and design. Mine layouts, production planning, and materials scheduling optimization. Prerequisite: Graduate standing.

MIN ENG 5922 Tunneling & Underground Construction Techniques (LAB 1.0 and LEC 2.0)
Mechanical and conventional excavation techniques in underground tunneling and construction. Topics include tunneling layouts design, equipment and performance modeling, ground control systems including support, drainage, and structural integrity. Construction specifications, advance rate and contractual and cost estimation. Construction specifications, advance rate and contractual and cost estimation. Construction specifications, advance rate and contractual and cost estimation. Con
MIN ENG 5932 Underground Mining Methods (LEC 3.0)

MIN ENG 5933 Surface Mining Methods (LEC 3.0)
Principles of planning, constructing, and operating economically viable surface mines. Cost effective mining methods: placer mining, strip mining, open pit mining, quarrying. Selection of equipment for surface mining operations. Optimization of mine performance. Field trip required. Prerequisites: Min Eng 3912; Min Eng 3512; preceded or accompanied by Min Eng 5823.